
Faster Parallel Exact Density Peaks Clustering

Yihao Huang* † Shangdi Yu‡ † Julian Shun‡

Abstract

Clustering multidimensional points is a fundamental data mining
task, with applications in many fields, such as astronomy, neuro-
science, bioinformatics, and computer vision. The goal of clustering
algorithms is to group similar objects together. Density-based clus-
tering is a clustering approach that defines clusters as dense regions
of points. It has the advantage of being able to detect clusters of
arbitrary shapes, rendering it useful in many applications.

In this paper, we propose fast parallel algorithms for Density
Peaks Clustering (DPC), a popular version of density-based clus-
tering. Existing exact DPC algorithms suffer from low parallelism
both in theory and in practice, which limits their application to large-
scale data sets. Our most performant algorithm, which is based
on priority search kd-trees, achieves O(logn log log n) span (par-
allel time complexity) for a data set of n points. Our algorithm is
also work-efficient, achieving a work complexity matching the best
existing sequential exact DPC algorithm. In addition, we present
another DPC algorithm based on a Fenwick tree that makes fewer
assumptions for its average-case complexity to hold.

We provide optimized implementations of our algorithms and
evaluate their performance via extensive experiments. On a 30-
core machine with two-way hyperthreading, we find that our best
algorithm achieves a 10.8–13169x speedup over the previous best
parallel exact DPC algorithm. Compared to the state-of-the-art
parallel approximate DPC algorithm, our best algorithm achieves a
1.5–4206x speedup, while being exact.

1 Introduction

Clustering is the task of grouping similar objects into clusters
and it is a fundamental task in data analysis and unsupervised
machine learning. Clustering algorithms can be used to
identify different types of tissues in medical imaging [69],
analyze social networks, and identify weather regimes in
climatology [17]. They are also widely used as a data
processing subroutine in other machine learning tasks [18,
67, 44, 47]. One popular type of clustering is density-based
clustering, which defines clusters as dense regions of points
in the coordinate space. Density-based clustering algorithms
have received a lot of attention [23, 2, 5, 38, 55, 64, 34, 33,
57], because they can discover clusters of arbitrary shapes,
while many other popular algorithms, such as k-means, can
only recover separable clusters with spherical shapes.

Density peak clustering (DPC) [55] is a popular version
of density-based clustering. In this paper, we present
fast parallel exact algorithms for DPC that outperform
existing state-of-the-art implementations. Many density-
based clustering algorithms, such as DBSCAN [23], are
sensitive towards the choice of a density-noise cutoff hyper-

*Phillips Academy
†The first two authors contributed equally to this work.
‡MIT CSAIL

parameter (points with density lower than the cutoff are
deemed as irrelevant noise) [23]. DPC, in comparison,
has been shown to perform well consistently over different
hyper-parameter choices [55]. It is also very easy to set
the hyper-parameters of DPC because DPC can generate
a decision graph [55] that visually aids the determination
of the hyper-parameters. Due to its advantages, DPC
has been applied in many situations, such as the analysis
of pathogenesis of COVID-19 [75], cancer studies [32],
neuroscience studies [50], market analysis [65], computer
vision tasks [43], and natural language processing [63]. DPC
has three main steps:
1. Compute the density of each point x, which is the number

of points in a ball centered at x with a user-input parameter
radius, dcut.

2. For each point x, connect x to its dependent point, which
is the closest neighbor of x that has a higher density than x.
The resulting graph is a tree.

3. Remove all connections with a distance higher than a cer-
tain threshold value. Each resulting connected component is
a separate cluster. This final step is equivalent to performing
single-linkage clustering [56] on the tree.

For a data set of n points, a naive implementation of
DPC that computes all pairwise point distances takes Θ(n2)
work to compute the density of all points and to connect each
point to its dependent point [55]. This is expensive when the
data set is large. Hence, multiple works have attempted to
optimize the computational cost of DPC [6, 68, 29, 73, 52, 3].
Rasool et al. [52] propose a sequential algorithm with average-
case work complexity of O(n log n). Amagata and Hara
[3] proposed a parallel algorithm that uses a kd-tree to
compute density values and find dependent points; it is
currently the state-of-the-art parallel DPC algorithm for
exact DPC clustering. Their algorithm is able to achieve
the same average-case work complexity as Rasool et al.
[52]’s algorithm, and their worst-case span1 complexity is
O(n log n).2 We will describe more about related work in
Section 2.

As the sizes of modern data sets increase, it is important
for clustering algorithms to have high parallelism, and

1The span is the length of the longest chain of sequential dependencies in
the algorithm.

2Amagata and Hara [3]’s implementation has a O(n2) span complexity,
but it can be trivially reduced to a O(n logn) span by parallelizing the
kd-tree nearest neighbor search.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ideally have polylogarithmic span. In this work, we develop
parallel DPC algorithms to improve the span complexity of
existing DPC algorithms. Our algorithms are able to achieve
O(log n log log n) worst case span complexity. We present
new parallel algorithms for Step 2—the parallelism bottleneck
for Amagata and Hara [3]’s algorithm. Our algorithms
significantly reduce Step 2’s span complexity. We also
optimize existing parallel algorithms for Steps 1 and 3.

Our first new algorithm for solving Step 2’s dependent
point finding task utilizes a priority search kd-tree. A priority
search kd-tree is an optimization of a max kd-tree [31, 21].
The priority search kd-tree can be constructed from a data
set of n points similar to a regular kd-tree [66] in O(n log n)
work and O(log n log log n) span. A priority search kd-tree
can be used to directly find the dependent point of a point
x. It is designed to process queries for the nearest neighbor
of x with a higher density value than x itself. Hence, to
compute the dependent point for every point in the data
set, we only need to perform priority search kd-tree queries
for every point in the data set in parallel. The parallelism
across different priority search kd-tree queries allows our
algorithm to avoid sequentiality in Amagata and Hara [3]’s
algorithm, achieving O(log n) span complexity for finding
dependent points while maintaining O(n log n) average-case
work. Since the priority search kd-tree construction has a span
complexity of O(log n log log n), the overall span complexity
of the algorithm is O(log n log log n).

We also present a parallel Fenwick tree-based algorithm
for finding dependent points. This algorithm stores points in
multiple kd-trees nested inside a Fenwick tree. The Fenwick
tree partitions points along increasing density values such
that each kd-tree stores points within a particular range of
density values. To query the dependent point of a point
x, we consider the range of density values higher than x’s
density. This range is partitioned by the Fenwick tree into
O(log n) sub-ranges that each correspond to a kd-tree. We
perform queries on these O(log n) kd-trees and aggregate
the results. The algorithm is highly parallel since each
dependent point query can be performed independently.
The algorithm takes O(n2) work in the worst case, but
its average-case work is O(n log2 n). The span is again
bounded by O(log n log log n). Although this algorithm has
a higher average-case work bound than our priority-search
tree algorithm, its average-case complexity result requires
fewer assumptions and it can sometimes be faster in practice.

In addition to our two dependent point finding algorithms,
we also introduce an optimization technique for density
computation: while counting the number of points within
the neighborhood of a particular query point, we prune
the searches through kd-tree subtrees completely contained
within that neighborhood by storing the number of points
each subtree contains inside the kd-tree and directly adding
that number to the total number of points. Finally, we solve

the single-linkage clustering step of the algorithm (Step 3)
by using a parallel union-find data structure [39], which has
O(nα(n, n)) expected work and O(log n) span with high
probability, where α represents the inverse Ackermann’s
function.

We implement our algorithms and evaluate them on
both synthetic and real-world data sets. We compare our
runtime results to state-of-the-art exact and approximate
DPC algorithms [3, 52] on a 30-core machine with two-
way hyper-threading. Our optimized density computation
algorithm outperforms state-of-the-art [3] parallel exact
density computation by 1.4–18586.3x. For dependent point
finding, our parallel Fenwick tree based algorithm achieves
12.9–1551.7x speedup over state-of-the-art [3] algorithm and
our parallel priority search kd-tree based approach attains 8.3–
4666.3x speedup. Considering the overall runtime, our best
algorithm achieves a 10.8–13169x speedup over the previous
best parallel exact DPC algorithm. Since our algorithms are
exact, they give the same clustering quality as the original
DPC algorithm. Compared to the state-of-the-art parallel
approximate DPC algorithm, our best algorithm achieves a
1.5–4206x speedup, while being exact.

Our contributions are threefold:
1. We introduce two novel algorithms for solving the depen-
dent point finding task in DPC, and introduce techniques
for speeding up the density computation and single-linkage
clustering tasks in DPC.

2. We provide theoretical bounds of our algorithms as well
as the priority search kd-tree data structure.

3. We provide fast implementations of our algorithms and
perform extensive experimental evaluations showing that
our implementations outperform state-of-the-art implemen-
tations by up to orders of magnitude.

Our source code is publicly available at https://gith
ub.com/michaelyhuang23/ParCluster.

2 Related Work

2.1 kd-trees and K-nearest neighbor queries In this
work, we use kd-trees and a variant of it for K-nearest neigh-
bor query and range search. There are also variants of kd-trees
that are specialized for other tasks. Maneewongvatana and
Mount [46] proved that a kd-tree that adopts a sliding mid-
point space partitioning scheme only visits O(K) cells, in the
worst case; however, their kd-tree does not have a bounded
height and therefore does not have a O(log n) average-case
query complexity. Wald et al. [62] proposed implicit kd-
trees, which define the partitioning of space using a recursive
splitting-function and is applied in ray tracing. Robinson [54]
proposed the K-D-B-tree, which is used to organize large
point sets stored in secondary memory. Groß et al. [31] pro-
posed the min-max kd-tree, which is designed for storing
points with an extra attribute value. Each node of the min-
max kd-tree records the minimum and maximum attribute

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/michaelyhuang23/ParCluster
https://github.com/michaelyhuang23/ParCluster

Algorithm worst-case work average-case work worst-case span

Density Computation

Original DPC∗ [55] Θ(n2) Θ(n2) O(logn)

Exact Baseline DPC∗ [3] O(n(n1− 1
d + ϱavg)) O(min(n(n1− 1

d + ϱavg), nϱavg logn)) O(logn log logn)

R-tree DPC∗ [52] O(n2) – O(log2 n)

Fenwick DPC (Ours) O(n(n1− 1
d + ϱavg)) O(min(n(n1− 1

d + ϱavg), nϱavg logn)) O(logn log logn)

Priority DPC (Ours) O(n(n1− 1
d + ϱavg)) O(min(n(n1− 1

d + ϱavg), nϱavg logn)) O(logn log logn)

Dependent Point Finding

Original DPC∗ [55] Θ(n2) Θ(n2) O(1)
Exact Baseline DPC∗ [3] O(n2) O(n logn) O(n logn)

R-tree DPC∗ [52] O(n2) – O(log2 n)

Fenwick DPC (Ours) O(n2) O(n log2 n) O(logn log logn)
Priority DPC (Ours) O(n2) O(n logn) O(logn log logn)

Table 1: Average-case work and worst-case work and span of DPC algorithms. The span for the algorithms marked with ∗ is the span of a
trivial parallelization of the algorithm. ϱavg is the average density, where the density value of each point equals the number of points around
it within a hyper-cubical region with a side length of 2dcut. This is different from the ρ density parameter for DPC, because it is computed
as the number of points around it within a hyperball with radius dcut. ”–” indicates that we were unable to find a bound with a proof.

value amongst all points stored under the subtree of that node,
which can be used to prune searches [62, 31]. Our proposed
priority search kd-tree is an optimized variant of a max kd-
tree. It can also be viewed as a generalization of the priority
search tree data structure [48] to higher dimensions.

2.2 Density Peaks Clustering (DPC) Many variants of
the standard DPC [55] have been developed [15, 49, 63, 72,
20, 40, 68], and there has also been a line of work focused
on improving the computational efficiency of the standard
DPC algorithm. The naive DPC algorithm takes Θ(n2) work,
and can be implemented to take O(log n) span for density
computation and O(1) span for depending point finding.3 Bai
et al. [6] utilized k-means clustering as a preprocessing step
of DPC to prune the number of points needed to be traversed
to find a point’s density and dependent point. Gong et
al. [29] parallelized DPC in a distributed setting and employed
Voronoi diagrams to improve its efficiency. Liu et al. [45]
proposed a DPC algorithm for GPUs. Amagata and Hara [3]
leveraged the kd-tree data structure to improve the efficiency
of density computation and dependent point finding. Rasool
et al. [52] used an R-tree to optimize the density computation
and dependent point searching efficiency. Their algorithm
is sequential, but in theory, it could be parallelized by using
a parallel version of R-trees [35] and performing queries in
parallel. We summarize the complexity of DPC algorithms in
Table 1. The average-case work bounds of our algorithms are
proved in the full version of our paper.

Some works have relaxed the definition of DPC to
develop efficient algorithms for approximate DPC. Zhang
et al. [73] proposed LSH-DDP, a parallel DPC algorithm for
distributed memory that first hashes points into buckets, with
spatially-close points being hashed into the same bucket. It
then approximates the density and dependent point query of
a point x by only considering points from the same bucket
as x. Finally, it applies corrections to the approximations as

3Note that although the naive DPC algorithm achieves better span
complexity than subsequent DPC algorithms, its work complexity is larger.

necessary. Sieranoja and Fränti [59] developed an algorithm
that first constructs a K-nearest neighbor graph, and then
computes approximate density values and dependent points
based on the K-nearest neighbor graph. Amagata and Hara
[3] also proposed a parallel approximate DPC algorithm that
constructs a spatial grid on top of the points. Leveraging the
grid structure, the algorithm shares density and dependent
point computations across all points inside the same grid cell,
thus reducing the computational cost.

2.3 Density-based Clustering Algorithms DPC falls un-
der the broad category of density-based clustering algorithms.
Density-based clustering algorithms come in different vari-
eties. Some density-based clustering algorithms define the
density of a point based on the number of points in its vicin-
ity [23, 2, 5, 38, 55, 25, 15]. Others leverage a grid-based
definition [64, 34, 33, 57]. Some algorithms define density
based on a probabilistic density function [64, 41, 60]. One
popular density-based clustering algorithm is DBSCAN [23],
which has many derivatives as well [5, 61, 30, 11, 22, 14].

3 Preliminaries

In this section, we provide the definitions and notations used
in this paper. We assume that arrays are indexed from 1 to n.

Let P = {x1, x2, . . . , xn} represent a set of n points
that we need to cluster. Each point is given in d-dimensional
coordinate space. We use x to denote a generic point in
Rd and xi to represent the ith point in our point set P . Let
D(xi, xj) denote the distance between point xi and point xj .
For the complexity results of our work to hold, D should be a
metric distance [26].

DPC requires three parameters: dcut, ρmin, and δmin.
Intuitively, dcut controls how the density is computed; ρmin
controls the noise level; and δmin controls the granularity of
clusters. Below, we formally explain how they are used.

DEFINITION 1. Given a point xi ∈ P and a cutoff value
dcut, we define the density of xi to be ρ(xi) = |{xj | xj ∈
P and D(xi, xj) ≤ dcut}|, i.e., the number of points inside a

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

hyperball centered at xi with radius dcut.

DEFINITION 2. Let Pi = {xj | xj ∈ P and ρ(xj) >
ρ(xi)}. For a point xi ∈ P , the dependent point of
xi is a point λ(xi) ∈ Pi such that, D(xi, λ(xi)) ≤
D(xi, xj) ∀ xj ∈ Pi.

Given a point xi, we define its dependent point set Pi as
the set of points with density value higher than ρ(xi). When
ρ(xi) = ρ(xj) for some points xi and xj , the tie is broken
lexicographically. The dependent point λ(xi) of point xi is
thus xi’s nearest neighbor in Pi.

DEFINITION 3. Let δ(xi) = D(xi, λ(xi)) be the dependent
distance of xi. If xi is the point with highest density in P ,
then it does not have a well-defined dependent point. In that
case, we let δ(xi) = ∞.

DEFINITION 4. A point xi ∈ P is considered a noise point
if ρ(xi) < ρmin for some density cutoff ρmin.

DEFINITION 5. xi is considered a cluster center if δ(xi) ≥
δmin and it is not a noise point.

Each cluster center corresponds to a separate cluster.
Each non-noise point that is not a cluster center is assigned to
be in the same cluster as its dependent point. Noise points do
not belong to any cluster.

Thus, dcut, ρmin, and δmin are the three hyper-parameters
of DPC. They can be set manually using the visual aid of
an intuitive decision graph that plots each point xi’s density
value ρ(xi) against its dependent point distance δ(xi) [55].
Rodriguez and Laio [55] suggest that dcut can chosen such that
the average number of neighbors is between 0.01n–0.02n.
There are also automatic parameter tuning methods [28, 71].

3.1 Model of Computation We use the work-span
model [37, 19], a standard model for analyzing shared-
memory parallel algorithms. The work T1 of an algorithm
is the total number of operations executed by the algorithm,
and the span T∞ is the length of the longest sequential de-
pendency chain of the algorithm (it is also the parallel time
complexity when there are an infinite number of processors).
We can bound the expected running time of an algorithm on
P processors by T1/P +O(T∞) using a randomized work-
stealing scheduler [10].

3.2 Relevant Techniques Our algorithms make use of the
kd-tree [7] and Fenwick tree [24] data structures.
kd-trees. A kd-tree [7] is a binary space partitioning tree,
where each internal node contains a splitting hyperplane that
partitions the points contained in the node between its two
children. Let the smallest bounding box containing all points
in a node be the node’s cell. The root node contains all of the
points, and the kd-tree is constructed by recursing on each
of its two children after splitting, until a leaf node is reached.

Each node stores the coordinates for its cell, which can be
used for pruning searches. The kd-tree can be constructed
with O(n log n) work and O(log n log log n) span [66, 70].
kd-trees can answer two types of queries efficiently: finding
points inside a radius and finding the nearest neighbors of
some chosen point. We call the first type range query and the
second nearest neighbor query.

A kd-tree T can be incremental, in which case we can
insert points into T . Note that an incremental kd-tree can be
imbalanced and not satisfy complexity results of a normal
kd-tree. We use BUILD-kD-TREE(P) to represent initializing
a kd-tree from the set of points P .
Range query with kd-trees. Let T.QUERY-RANGE(x, r)
denote a range search on T , in a spherical region R with
radius r centered at a point x, and returns the number of
points inside the region. In a range query, when traversing
down the kd-tree, we only need to visit a node if its cell
intersects with R; otherwise the node can be pruned from
the search. A range query takes O(n1− 1

d + |Q|) work on a
balanced kd-tree with splitting dimension chosen cyclically,
where Q is the set of points returned and d is the dimension
of the data set [8]. The query takes O(log n) span by visiting
children in parallel.
Nearest neighbor query with kd-trees. We use T.QUERY-
NN(x) to represent performing a nearest neighbor search
on T for the point x, which returns the closest neighbor of
x. To compute the nearest neighbor of a point x, we first
traverse down the kd-tree to find the leaf node that contains
the point x. Then, in the backtracking process, we search
the sibling subtrees. Let x’s distance to the current nearest
neighbor candidate of x be represented by L. We prune the
search of any subtree whose cell is farther than L away from
x. Friedman et al. [26] proved that the average-case work
complexity of a nearest neighbor search can be bounded by
O(log n) under the assumptions that the density of points in
space is locally uniform and the kd-tree is split at the widest
dimension’s median per level.
Fenwick tree. The Fenwick tree decomposes a range [1, n]
into n sub-ranges such that the ith sub-range, represented
by B[i], corresponds to the range [i− LSB(i) + 1, i], where
LSB(i) represents the least significant bit of integer i and∑n

i=0 |B[i]| = O(n log n) [24]. The key property of a Fen-
wick tree is that each prefix range [1, i] can be decomposed
into O(log n) disjoint sub-ranges; we represent the set of
these sub-ranges by S[i]. In other words,

⋃
j∈S[i] B[j] =

[1, i]. Each S[i] can be built iteratively in O(log n) work, and
we can access a partition of the range [1, i] in O(log n) work
using the indices stored in S[i].
Union-find. The union-find data structure maintains the set
membership of elements, and allows for merging of these
sets. Initially, each element is in its own singleton set. A
UNION(a, b) operation merges a and b into the same set. We

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

use a lock-free concurrent union-find [39], where performing
m unions on a union-find data structure with n elements takes
O(m

(
log(n

m + 1) + α(n, n)
)
) work and O(log n) span (α

denotes the inverse Ackermann function).
Other parallel primitives. WRITE-MIN(loc, val) is a priority
concurrent write that takes as input two arguments, where
the first argument is the location to write to and the second
argument is the value to write; on concurrent writes, the
smallest value is written [58]. We assume that WRITE-MIN
takes O(1) work and span. RADIX-SORT(A) takes a sequence
of elements A of size n, with an ordering key defined for each
element. It sorts them in parallel according to the ordering of
the elements’ keys. Radix sort takes O(n) work and O(log n)
span with high probability (w.h.p.)4 given that the range of
the keys is bounded by O(n logO(1) n) [51].

4 Priority Search kd-tree-based Dependent Point
Finding

We present our first algorithm for solving the dependent point
finding task using our new variant of kd-trees.

4.1 Sequential Dependent Point Finding To warm up,
we first introduce a sequential incomplete kd-tree based
algorithm for finding dependent points. This algorithm is
an improvement over Amagata and Hara [3]’s dependent
point finding algorithm. Their algorithm uses an incremental
kd-tree, which incurs an expensive cost for inserting points.5

In Amagata and Hara [3]’s algorithm, points are sorted in
reverse order of density, and inserted to the tree one by one in
order via top-down traversals of the tree. Each point queries
its nearest neighbor in the tree, before being inserted into
the tree itself. Since points are inserted in reverse order of
density, the nearest neighbor of a point x as returned by the
incremental kd-tree must have a higher density value than x
and be its dependent point [3].

We propose to use an incomplete kd-tree in place of an
incremental kd-tree, and take advantage of the fact that we
know all the points to insert. Instead of inserting points into
the incremental kd-tree, we utilize a lazy insertion strategy: a
balanced kd-tree is constructed with all points in P , but all
points are marked as inactive initially. We use a boolean
variable isActivei (initialized to false) to track if the ith

subtree contains an active point. When we insert a point
into the kd-tree, we simply activate the point and set isActive
to true for all of its ancestors in the tree by a bottom-up
traversal from the leaf node containing the inserted point.
When traversing the kd-tree to query for the nearest neighbor,
we can prune a subtree i if its isActivei value is false. An
example of incomplete kd-tree is given in Figure 1.

Our new method has two advantages. First, the incre-
4We say O(f(n)) with high probability (w.h.p.) to indicate O(cf(n))

with probability at least 1− n−c for c ≥ 1, where n is the input size.
5Although Amagata and Hara [3]’s exact DPC algorithm has parallel

components, their dependent point finding step is sequential.

Figure 1: An example of an incomplete kd-tree. A node is unfilled
if its subtree does not contain any active point; otherwise it is filled.
During a nearest neighbor search, the entire grayed out subtree can
be pruned because it contains no active point.

mental kd-tree can be imbalanced and make querying slower
while our kd-tree is always balanced since its structure is
not modified after construction. This is especially important
when we perform queries in parallel, because the span of the
query is the same as the depth of the tree. Second, traversing
down the kd-tree to insert a point requires computing which
child the point belongs to, but our method only needs to fol-
low the parent pointers starting at a leaf node to traverse up
the tree without requiring any other computation.

However, this method still has high span, because the
points are inserted one by one. The span of each nearest neigh-
bor search is O(log n), and there are O(n) nearest neighbor
queries, so the span is O(n log n). Amagata and Hara [3]’s
algorithm can also be modified to achieve O(n log n) span
by replacing their sequential nearest neighbor queries with
parallel nearest neighbor queries. In the rest of the section,
we will see that we can use a priority search kd-tree to find
the dependent points of all points in parallel.

4.2 Priority Search kd-tree

4.2.1 Priority Search kd-tree Definition To parallelize the
dependent point finding routine described in Section 4.1, we
first introduce a parallel analogue of the incomplete kd-tree—
a priority search kd-tree—and describe its general properties.
A priority search kd-tree is designed to store a set of points
P = {x1, x2, . . . , xi, . . . , xn}, such that each point xi ∈ Rd

is associated with a priority value γi. In our case, γi is the
density. Similar to a normal kd-tree, each node in the priority
search kd-tree corresponds to a set of points and a partition
of space. Additionally, each node in a priority search kd-tree
stores the point with the highest γ value among all points
in its point set; this γ value is referred to as the γ value of
the node. The remaining points are split evenly between the
children of the node along a hyperplane perpendicular to the
longest side of the cell of that node. An example of a priority
search kd-tree is shown in Figure 2. A priority search kd-tree
is structurally similar to a max kd-tree [31], which records
only the maximum priority value at each node. However, in
a max kd-tree, the point with the maximum priority value is
stored at a leaf in either the left or the right subtree of that
node, instead of directly at that node like our priority search
kd-tree. A priority search kd-tree is advantageous in that a
meaningful priority range query complexity bound can be
established for it, but not for a max kd-tree because each cell
in a max kd-tree is not uniquely associated with a point. We
give more details in the full version of our paper.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

1

9

5
3 9

7 26 8

4

8
6

7
25

1
4

3

Figure 2: An example of a priority search kd-tree. Each point is
labeled with its priority value γ, which is an integer from 1 to 9 in
this example. Each node of the priority search kd-tree stores the
point with the highest γ within the region of the cell of the node; the
number inside the circle of the node represents the node’s γ value.
The dotted lines on the graph connects each node with the splitting
hyperplane of that node. The grayed area represent a subgraph Tq

comprising all nodes with γ > 4. Because the γ values of a priority
kd-tree satisfy the heap property, Tq is always an upper portion of
the priority search kd-tree.

Priority search kd-trees can be constructed similarly to
a normal kd-tree; the only extra step is finding the point
with highest priority value at each node by scanning all
of its descendant nodes. The cost of this extra step is
subsumed by the cost of splitting at each node. Construction
takes O(n log n) work and O(log n log log n) span. The data
structure takes O(n) space like a normal kd-tree, because
only O(1) extra information is stored at each node.

4.2.2 Priority Nearest Neighbor Query Let the priority
nearest neighbor be the nearest neighbor of a point xi with
higher priority. It is easy to see that the priority nearest
neighbor query problem is equivalent to the problem of
finding dependent points if we set the priority value γi for
a point xi to be the density value ρ(xi). A more formal
definition is given below.

DEFINITION 6. Given a generic query point xq ∈ Rd, a
distance measure D, and a point set P ⊆ Rd, we define
Pq = {xi | xi ∈ P and λi > λq}. Then, the priority nearest
neighbor of xq is the point in Pq that is closest to xq as
measured by D.

Priority nearest neighbor queries can be solved by query-
ing a priority search kd-tree following a similar procedure as
a normal nearest neighbor query, with the exception that all
subtrees with priority value ≤ λq are pruned from the search.
Consider a particular query, with a threshold priority value
of λq. Let T denote a priority search kd-tree. Let Tq ⊆ T
represent the set of nodes with priority value > γq. Because
of the structure of the priority search kd-tree, Tq must be a
connected subgraph of T .6 A priority nearest neighbor search
on T is thus equivalent to a normal nearest neighbor search
on an incomplete kd-tree T with Tq forming its active por-
tion. Thus, similar to the complexity result on an incomplete

6If two tree nodes a and b are both in Tq but not connected, then some
ancestor of either a or b is not in Tq and has a priority value less than γq .
However, this is not possible because the ancestors can only have higher
priority values.

Algorithm 1 Parallel dependent point finding with a priority
search kd-tree
1: procedure PRIORITY-DEPENDENT-POINT(P , ρ)
2: T ← BUILD-PRIORITY-SEARCH-KD-TREE(P, ρ)

3: parfor all xi in P with ρ(xi) ≥ ρmin do
4: λ(xi)← T .QUERY-PRIORITY-NN(xi)

5: return λ

kd-tree, a priority nearest neighbor query on a priority search
kd-tree takes O(log n) average-case work with some assump-
tions, O(n) worst-case work, and O(log n) worst-case span.
Similar assumptions are made in the analysis of the original
kd-tree [26]. For average-case analysis, we assume that the
points in Pq are sampled from Rd according to some prob-
ability density function µq, and that the number of points
is sufficiently large such that µq can be considered locally
uniform. We provide a proof of the bounds in the full version
of our paper.

4.3 Parallel Dependent Point Finding with Priority
Search kd-tree We now apply the priority search kd-tree
to solve the dependent point finding task. The recipe for
finding dependent points using a priority search kd-tree is
given in Algorithm 1, where P is the input data set with
size n and ρ is an array containing the density of points in
P . On Line 2, we construct the priority search kd-tree in
O(n log n) work and O(log n log log n) span. On Lines 3–4,
we compute the dependent point for each non-noise point in
parallel. Let the work and span of each dependent point search
operation be W and S , respectively, on the priority search kd-
tree. The work and span of this step is then O(nW +n log n)
and O(S + log n log log n), respectively. In the worst case,
W = O(n) and S = O(log n). Under the assumptions stated
earlier, W = O(log n) in the average case.

THEOREM 4.1. Constructing a priority search kd-tree
and finding all dependent points can be done in
O(n log n) average-case work, O(n2) worst-case work, and
O(log n log log n) worst-case span. The space usage is
O(n).

5 Fenwick Tree-based Parallel Dependent Point Finding

We introduce another parallel algorithm for solving the
dependent point finding task, which is based on Fenwick
trees. This algorithm has the same overall span as the priority
search kd-tree algorithm, but has a higher work complexity.
However, the average-case work complexity analysis does not
make assumptions about the density of Pq. It only assumes
that P ’s underlying probability density function is locally
uniform (the standard assumption for a kd-tree’s O(log n)
average-case nearest neighbor query complexity to hold).

This algorithm can be summarized as follows. We first
construct an array P of points in P sorted by descending
order of their density values. Assume that P is indexed from
1 to n. Then, we construct a Fenwick tree decomposition of

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2 Parallel dependent point finding with a Fenwick
tree
1: procedure FENWICK-QUERY(B, i, x)
2: (δ, λ′)← (∞,∞)

3: Build S[i] ▷ build a list of indices whose corresponding sub-ranges
span the range [1, i]

4: parfor all j in S[i] do
5: y ← B[j].QUERY-NN(x)
6: WRITE-MIN((δ, λ′), (dist(x, y), y))
7: return λ′

8: procedure FENWICK-DEPENDENT-POINT(P , ρ)
9: P ← RADIX-SORT(P) ▷ sorting in descending order of density

10: Initialize B as an array of length n

11: Initialize λ as an array of length n, with values all being∞
12: parfor i = 1 to n do
13: B[i]← BUILD-kD-TREE(P [i− LSB(i) + 1, i])
14: parfor xi in P [2 : n] with ρ(xi) ≥ ρmin do
15: λ(xi)← FENWICK-QUERY(B, i− 1, xi)

16: return λ

the range [1, n]. B[i] contains the kd-tree that has points in P
with indices [i − LSB(i) + 1, i]. Recall that S[i] represents
a decomposition of the range [1, i] into sub-ranges that are
inside B. To perform the dependent point query for the ith

point in array P , we simply need to search through every kd-
tree that corresponds to a sub-range in S[i−1]. These queries
can be done in parallel, thus giving a low span complexity.

We provide the pseudocode for the algorithm in Algo-
rithm 2. The main procedure is FENWICK-DEPENDENT-
POINT(P, ρ), which takes as input an array of points P and an
array ρ containing the computed densities of the points. On
Lines 9–11, we first initialize the P array containing points
sorted in descending order of their density values, an array
B to store the n kd-trees in the algorithm, and an array λ to
store the dependent points. On Lines 12–13, we construct the
n kd-trees; the ith kd-tree B[i] is constructed from the range
of points P [i− LSB(i) + 1, i]. Finally, on Lines 14–15, we
perform FENWICK-QUERY for non-noise points in parallel
to find the dependent point for all points. We do not need to
find the dependent point for x1 as it is the point with highest
density.

Now, we will explain procedure FENWICK-QUERY,
which takes as input an array of kd-trees B, an index i, and a
point x; FENWICK-QUERY performs a nearest neighbor query
for point x among the points x1, x2, . . . , xi. On Line 3, we
construct a set S[i] for the input index i, which contains the
indices of the Fenwick tree sub-ranges that form a partition
of [1, i], as described in Section 3.2. Each of these sub-ranges
corresponds to a kd-tree; we perform nearest neighbor queries
QUERY-NN on all of these kd-trees on Line 5. Let λ′ signify
the current dependent point of point x and δ the distance
between x and λ′. On Line 6, the dependent point with the
smallest distance to x (breaking ties using the point ID) is
computed using the concurrent WRITE-MIN function. The
current λ′ is replaced by a newly found nearest neighbor if
the newly found nearest neighbor is closer to x than λ′ is.

Analysis. We first analyze the complexity of the FENWICK-
QUERY subroutine. We show that it takes O(log2 n) average-
case work and O(n) worst-case work. The construction of
S on Line 3 takes O(log n) work [24]. Each call of QUERY-
NN on Line 5 takes O(log n) average-case work [26], which
sums to O(log2 n) work across all iterations of the parallel
for-loop on Line 4. In the worst case, however, each kd-
tree nearest neighbor query takes time linear in the number
of points in the kd-tree [26], meaning that Line 5 takes
O(|B[j]|) work for the jth kd-tree, Tj . Across all iterations
of the parallel for loop, the worst-case work complexity is
O(

∑
j∈S[i] |B[j]|) = O(i) = O(n).

In terms of span, FENWICK-QUERY has a worst-case
span of O(log n). The construction of S[i] takes O(log n)
span. The WRITE-MIN operation on Line 6 takes O(1) span.
The nearest neighbor query on Line 5 takes a worst-case span
of O(log n) since each branch of the kd-tree can be searched
in parallel and kd-trees have O(log n) depth [26]. Since all
nearest neighbor queries are executed in parallel, the span for
the entire FENWICK-QUERY subroutine is O(log n).

Now, we examine the main process FENWICK-
DEPENDENT-POINT. We show that its average-case work
complexity is O(n log2 n) and its worst-case work com-
plexity is O(n2). Line 9 takes O(n) work since the
keys of the sort—the ρ values—are bounded in value by
O(n). On Lines 12–13, constructing the ith kd-tree takes
O(|Bi| log |Bi|) work. Therefore, constructing all kd-trees
takes O(

∑n
i=1 |Bi| log |Bi|) = O(n log2 n) work. Finally,

the FENWICK-QUERY operations performed in the paral-
lel for-loop on Lines 14–15 take O(n log2 n) average-case
work and O(n2) worst-case work. Overall, FENWICK-
DEPENDENT-POINT takes O(n log2 n) average-case work
and O(n2) worst-case work.

Next, we analyze the span of FENWICK-DEPENDENT-
POINT. The radix sort on Line 9 takes O(log n) span
w.h.p. [51]. Each BUILD-kD-TREE operation on Line 13 takes
span O(log n log log n). Finally, each call to the subroutine
FENWICK-QUERY on Line 15 takes O(log n) worst-case span.
Thus, the overall span of FENWICK-DEPENDENT-POINT is
O(log n log log n) in the worst case.

Finally, we consider the space usage of our algorithm.
The ith kd-tree, Ti, takes space O(|Bi|). Thus, the overall
space usage is O(

∑n
i=1 |Bi|) = O(n log n).

THEOREM 5.1. Constructing a Fenwick tree and finding all
dependent points can be done in O(n log2 n) average-case
work, O(n2) worst-case work, and O(log n log log n) worst-
case span. The space usage is O(n log n).

6 Optimization of Other Steps

6.1 Optimizing Density Computation (Step 1) In our full
paper, we show that the DPC algorithm’s density computation
takes O(min(O(n(n1− 1

d +ϱavg)), nρavg log n)) average-case
work in theory. We now discuss an optimization that improves

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3 Single-linkage clustering with parallel union-
find
1: procedure SINGLE-LINKAGE-CLUSTER(P , λ, δmin, ρmin)
2: parfor all xi in P do
3: if λ(xi) ̸=∞ then δ(xi)← dist(xi, λ(xi))

4: Initialize F to be an empty parallel union-find data structure
5: parfor all xi in P do
6: if δ(xi) < δmin or ρ(xi) < ρmin then ▷ check if xi’s

dependent distance is < threshold
7: F.UNION(xi, λ(xi))

8: return F.cluster-labels

the performance of density computation in practice. Let R
denote the spherical region with radius r and centered at
xcenter. Since we only want the count of points in R, we do not
have to visit every point. If a cell corresponding to a subtree
is contained completely inside R, then we can simply add the
number of points inside that cell to the count and prune the
subtree from the rest of the traversal, instead of visiting every
point. We can check whether a hyper-rectangular region in
coordinate space is contained inside a sphere R by finding
the corner of the region xfar that is farthest from the center of
R and checking if xfar is enclosed in R.

6.2 Optimizing Single-Linkage Clustering (Step 3) In
this subsection, we optimize Step 3 of DPC. We use a
lock-free parallel union-find data structure [39] to solve
single-linkage clustering, thus cutting down the O(n) span
complexity from Amagata and Hara [3]’s algorithm to
O(log n). Our algorithm is shown in Algorithm 3. It takes an
array of points P , an array of their dependent points λ, and
the parameters δmin and ρmin. On Lines 2–3, we compute the
dependent distance of all points in parallel, which takes O(n)
work and O(1) span. On Lines 4–7, we use union-find to
cluster points with their dependent points if their dependent
distance is less than δmin or if their density is less than ρmin.
The initialization on Line 4 takes O(n) work and O(1) span.
On Line 7, performing O(n) unions on a union-find data
structure with n elements takes O(nα(n, n)) work [39] and
O(log n) span, and this is also the overall work and span.

7 Experiments

Finally, in this section, we perform experiments on the
efficiency of our dependent point finding algorithms as well
as our proposed optimizations to density computation.

7.1 Experiment Setup We run experiments on both real-
world and synthetic data sets. The real-world data sets that we
use are GeoLife [74], PAMAP2 [53], Sensor [13, 12], HT [36],
and Gowalla [16, 42]. The synthetic data sets that we use
are produced by the simden and varden random walk based
generators by Gan and Tao [27]. Simden generates multiple
clusters of points with similar density while varden produces
multiple clusters with varying density. We also use synthetic
data sets generated by a uniform sampler. In addition, we
use a synthetic data set Query [1, 4]. Details of these data

Name n d dcut ρmin δmin

uniform 103 to 107 2 30 0 100
simden 103 to 107 2 30 0 100
varden 103 to 107 2 30 0 100
GeoLife 24876978 3 1 1000 10
PAMAP2 259803 4 0.02 20 0.2
Sensor 3843160 5 0.2 5 2
HT 928991 8 0.5 30 10
Query 50000 3 0.01 0 0.05
Gowalla 1256248 2 0.03 0 40

Table 2: The real world data sets used in our experiments, along with
their sizes (n), their dimensionality (d), and the clustering hyper-
parameters that we select for them. The numbers for Query and
Gowalla are after de-duplication.

sets are listed in Table 2 along with the hyper-parameters
that we use for each data set. The dcut hyper-parameter is
selected such that the computed density values based on the
chosen dcut value is nonzero but significantly smaller than
the size of the data set. The ρmin and δmin values are selected
such that the total number of clusters produced by the DPC
algorithm is relatively small. We use Euclidean distances in
our experiments.
Computational Environment. We use c2-standard-60
instances on the Google Cloud Platform. These are 30-core
machines with two-way hyper-threading with Intel 3.1 GHz
Cascade Lake processors that can reach a max turbo clock-
speed of 3.8 GHz.
Algorithms. We implement our algorithms using the Par-
layLib [9] and ParGeo [66] libraries. We use C++ for all im-
plementations, and the gcc compiler with the -O3 flag to com-
pile the code. We evaluate the following algorithms.
• DPC-EXACT-BASELINE: Amagata and Hara [3]’s state-of-
the-art implementation of the partially parallel exact DPC
algorithm, which computes the densities in parallel.

• DPC-APPROX-BASELINE: Amagata and Hara [3]’s fastest
parallel approximate DPC algorithm.

• DPC-INCOMPLETE: our partially parallel DPC algorithm
that uses the incomplete kd-tree based dependent point
finding algorithm in Section 4.1 along with the optimizations
in Section 6.

• DPC-PRIORITY: our parallel DPC algorithm that uses
the priority search kd-tree based dependent point finding
algorithm in Section 4.3 along with the optimizations in
Section 6.

• DPC-FENWICK: our parallel DPC algorithm that uses the
Fenwick tree based dependent point finding algorithm in
Section 5 along with the optimizations in Section 6.

We also compare with Rasool et al. [52]’s sequential
DPC algorithm. We could not obtain their source code, so we
compare with the numbers they reported in their paper on the
same data sets and similar machines.

7.2 Runtime Comparison In this subsection, we compare
the DPC algorithms’ overall performance, and the runtimes of

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm DPC-EXACT-BASELINE DPC-APPROX-BASELINE DPC-FENWICK DPC-INCOMPLETE DPC-PRIORITY

Datasets density dep. total density dep. total density dep. total density dep. total density dep. total

uniform2 30.70 91.30 125.44 – – – 7.65 7.07 15.43 7.58 18.26 28.50 7.59 1.69 9.30
simden2 3.39 290.30 296.81 2.23 6.36 8.74 1.29 3.86 5.85 1.31 11.27 13.12 1.27 1.39 2.94
varden2 1.82 250.23 256.28 5.25 2072.96 2078.41 1.28 3.87 5.63 1.26 8.93 10.60 1.28 1.35 2.86
GeoLife – – – 21.08 5.19 28.12 10.20 12.25 22.48 10.04 14.95 25.03 10.18 2.59 12.80
PAMAP2 1.76 4.65 6.41 0.83 0.026 0.86 0.037 0.11 0.15 0.052 5.13 5.18 0.037 0.56 0.59
Sensor 11850.20 2000.41 13852.72 202.95 115.50 318.60 2.97 1.77 4.75 2.94 4.33 7.29 2.95 0.98 3.94
HT 5836.56 814.50 6652.43 2144.31 0.61 2144.93 0.31 0.52 0.85 0.46 1.21 1.63 0.32 0.17 0.51
Query 0.08 0.30 0.38 0.014 13.31 13.58 0.01 0.019 0.03 0.01 0.039 0.05 0.01 0.007 0.02
Gowalla 0.82 13.57 14.72 – – – 0.23 0.49 0.78 0.23 1.09 1.48 0.24 0.16 0.40

Table 3: The running times (seconds) of the 5 DPC algorithms on real-world and synthetic data sets, decomposed into the density
computation step (density) and the dependent point finding step (dep.). ”–” means that the algorithm did not terminate within 48 hours.

uniform simden varden GeoLife PAMAP2 Sensor5 HT Query Gowalla
Data set

0.0001

0.01

1

100

10000
INF

Ru
nt

im
e

(s
)

DPC-EXACT-BASELINE
DPC-APPROX-BASELINE

DPC-FENWICK
DPC-INCOMPLETE

DPC-PRIORITY

(a) Total running time of DPC algorithms

uniform simden varden GeoLife PAMAP2 Sensor5 HT Query Gowalla
Data set

0.0001

0.01

1

100

10000
INF

Ru
nt

im
e

(s
)

(b) Running time of density computation

uniform simden varden GeoLife PAMAP2 Sensor5 HT Query Gowalla
Data set

0.0001

0.01

1

100

10000
INF

Ru
nt

im
e

(s
)

(c) Running time of dependent point finding

Figure 3: Running times (seconds) of DPC algorithms in log-scale.
All algorithms are run on a 30-core machine with hyper-threading.
Some algorithms time out and do not terminate within 48 hours.
These algorithms have time “INF”. Our proposed dependent point
finding algorithms and density computation optimizations achieve
significant improvement in comparison to other methods. For
uniform, simden, and varden, we used n = 107.

the density computation task separately from the dependent
point finding task in order to study the effectiveness of our
proposed optimizations for those tasks. The single linkage
clustering task is not studied separately as it takes up a
negligible percentage of the overall runtime in all algorithms.
Figure 3 and Table 3 show the runtime comparison across the
DPC algorithms.

As shown in Table 3, the portion of time that density
computation and dependent point finding take is highly
dependent on the data set and dcut parameters we use. For our
experiments, dcut is chosen such that the computed density
values are nonzero but are much less than n.
Comparison across exact DPC algorithms. From Fig-

ure 3, we can see that all of our proposed algorithms con-
sistently outperform DPC-EXACT-BASELINE on all data sets.
Only DPC-INCOMPLETE is slightly slower than DPC-EXACT-
BASELINE for PAMAP2 in the dependent point finding step.
Overall, DPC-PRIORITY is the fastest on almost all data
sets, and achieves a 10.8–13169x speedup over DPC-EXACT-
BASELINE (Figure 3a).

On a single thread, DPC-PRIORITY also outperforms
Rasool et al. [52]’s state-of-the-art sequential exact DPC
algorithm. Rasool et al. [52] reported their sequential R-
tree based algorithm’s running time for Query and Gowalla.
To compare with their results, we performed experiments on
Query and Gowalla using a machine with the same processor
specifications as the one they used, and found that our
algorithms are 1.1–1.4x faster.

Our optimized density computation method from Sec-
tion 6 (which is the same for all three of our algorithms)
outperforms DPC-EXACT-BASELINE’s density computation
step by 1.4–18586.3x, with a geometric mean of 31.5x (Fig-
ure 3b). Our method is faster than DPC-EXACT-BASELINE
because we do not need to iterate over all points in the range.
Moreover, we pre-allocate memory for all nodes in our kd-
tree, while the nodes in DPC-EXACT-BASELINE’s kd-tree are
allocated dynamically, which can lead to more cache misses.

For dependent point finding (Figure 3c), DPC-FENWICK
outperforms DPC-EXACT-BASELINE by 12.9–1551.7x, with
a geometric mean of 81.9x. DPC-INCOMPLETE achieves a
speedup of 0.9–675.9x, with a geometric mean of 23.6x. DPC-
PRIORITY attains a speedup of 8.3–4666.3x, with a geometric
mean of 168.7x. Our fully parallel algorithms DPC-FENWICK
and DPC-PRIORITY are faster than DPC-EXACT-BASELINE
mainly because they can find dependent points for all points
in parallel. Our DPC-INCOMPLETE algorithm, which inserts
points iteratively like DPC-EXACT-BASELINE, is still faster
because our kd-tree is more balanced, does not need to insert
points, and has a more cache-friendly layout.

Among our new algorithms, DPC-FENWICK and DPC-
PRIORITY are faster than DPC-INCOMPLETE because the
former two are fully parallel. DPC-PRIORITY is faster than
DPC-FENWICK on most data sets, due to its lower average-
case work bound, but DPC-FENWICK can sometimes be faster

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

(e.g., on PAMAP2) depending on the data set distribution.
Comparison with approximate DPC baseline. DPC-
PRIORITY is able to achieve running times that are superior
to DPC-APPROX-BASELINE on all data sets. DPC-FENWICK
and DPC-INCOMPLETE can also achieve competitive results
when compared to DPC-APPROX-BASELINE. Across all data
sets, our optimized density computation method attains a
1.7–6828.5x speedup over DPC-APPROX-BASELINE; the geo-
metric mean speedup is 17.6x (Figure 3b).

Considering just the dependent point finding step
(Figure 3c), DPC-FENWICK outperforms DPC-APPROX-
BASELINE by 0.2–536.2x, with a geometric mean of 3.4x;
DPC-INCOMPLETE outperforms DPC-APPROX-BASELINE by
0.005–232.2x, with a geometric mean of 1.0x; and DPC-
PRIORITY outperforms DPC-APPROX-BASELINE by 0.05–
1534.1x, with a geometric mean of 6.7x. The range of
speedups varies significantly across data sets primarily be-
cause DPC-APPROX-BASELINE’s performance is highly de-
pendent on the distribution of points on each data set. DPC-
PRIORITY’s dependent point finding step is only slower than
that of DPC-APPROX-BASELINE on one data set (PAMAP2),
and achieves considerable speedup on all others.

In total (Figure 3a), DPC-PRIORITY achieves a 1.5–4206x
speedup against DPC-APPROX-BASELINE, with a geometric
mean speedup of 55.4x. DPC-FENWICK achieves a 1.3-2523x
speedup over DPC-APPROX-BASELINE, with a geometric
mean speedup of 43.7x. DPC-INCOMPLETE obtains a 0.7–
1316x speedup against DPC-APPROX-BASELINE, with a
geometric mean speedup of 16.8x.
Effect of parameters on running time. δmin is only used in
Step 3 of DPC. Since Step 3 takes negligible percentage of
the overall runtime, using different δmin values has little effect
on the total runtime. Increasing ρmin increases the number of
noise points, and hence the overall running time decreases
because noise points are skipped in Steps 2 and 3. For dcut,
the effect on total running time depends on the distribution
of data sets. We show the effect of dcut in our full paper. In
general, a higher dcut leads to increased running time.

7.3 Scalability Analysis We analyze the scalability of our
algorithms by performing experiments on synthetic datasets
of varying sizes and running the algorithms on different
numbers of threads. We use datasets generated by simden for
scalability analysis because DPC-APPROX-BASELINE, when
running on a single thread, does not terminate for the largest
uniform and varden datasets within 48 hours.
Scalability over the size of the dataset. Figure 4a shows
the runtime of all DPC algorithms over simden datasets of
different sizes (from 103 points to 107 points). Our DPC-
PRIORITY outperforms both DPC-EXACT-BASELINE and DPC-
APPROX-BASELINE for simden data sets of all sizes tested.
Furthermore, we see that the running time of our proposed
algorithms increases much more slowly than DPC-EXACT-

103 104 105 106 107

Size of data set

10 3
10 2
10 1
100
101
102

Ru
nt

im
e

(s
)

DPC-EXACT-BASELINE
DPC-APPROX-BASELINE

DPC-FENWICK
DPC-INCOMPLETE

DPC-PRIORITY

103 104 105 106 107

Size of data set

10 3
10 2
10 1
100
101
102

Ru
nt

im
e

(s
)

(a) Running time (seconds) across
data sets of different sizes.

1 2 4 8 16 30 60
Thread

1

2

4

8

16

Pa
ra

lle
l S

pe
ed

up

(b) Speedup across different num-
bers of threads.

Figure 4: Running time of DPC algorithms on simden data sets
of different sizes and the parallel speedup of the DPC algorithms
across different number of threads (“60 threads” means 30 cores
with two-way hyper-threading) on the simden data set of size 107.
All axes use logarithmic scale.

BASELINE as the data size increases. We use a linear fit on
the logarithm of runntime and log n to get the slopes of the
lines in Figure 4a. The slope for DPC-EXACT-BASELINE is
1.31, for DPC-APPROX-BASELINE is 0.94, for DPC-FENWICK
is 1.02, for DPC-INCOMPLETE is 1.05, and for DPC-PRIORITY
is 0.94. This demonstrates that our algorithm has superior
scalability across different graph sizes.
Parallel scalability. Finally, we investigate the parallel scala-
bility of our algorithms. Figure 4b shows that all of our pro-
posed DPC algorithms obtain better parallel scallability than
DPC-EXACT-BASELINE. DPC-FENWICK is able to achieve
a 8.8x self-relative speedup and DPC-PRIORITY achieves a
13.2x self-relative speedup. Both are superior to the 1.3x self-
relative speedup attained by DPC-EXACT-BASELINE and are
competitive against the 14.4x self-relative speedup achieved
by DPC-APPROX-BASELINE. DPC-FENWICK and DPC-
INCOMPLETE have smaller speedups on 60 hyper-threads than
on 30 threads due to the extra overhead of hyper-threading.

8 Conclusion

In this paper, we developed efficient parallel algorithms
for density peaks clustering, and proved strong work and
span bounds for them. We performed experiments of our
algorithms, showing that they outperform previous state-of-
the-art DPC algorithms and achieve good parallel scalability
on large data sets. For future work, we are interested in
exploring distributed versions of DPC.
Acknowledgements. This research is supported by MIT
PRIMES, Siebel Scholars program, DOE Early Career Award
#DE-SC0018947, NSF CAREER Award #CCF-1845763,
Google Faculty Research Award, Google Research Scholar
Award, cloud computing credits from Google-MIT, Fin-
Tech@CSAIL Initiative, DARPA SDH Award #HR0011-18-
3-0007, and Applications Driving Architectures (ADA) Re-
search Center, a JUMP Center co-sponsored by SRC and
DARPA.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

References

[1] Query analytics workloads dataset data set, note = ht
tps://archive.ics.uci.edu/ml/dataset
s/query+analytics+workloads+dataset.

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunop-
ulos, and Prabhakar Raghavan. Automatic subspace
clustering of high dimensional data for data mining ap-
plications. page 94–105, 1998.

[3] Daichi Amagata and Takahiro Hara. Fast density-peaks
clustering: Multicore-based parallelization approach.
In Proceedings of the International Conference on
Management of Data, page 49–61, 2021.

[4] Christos Anagnostopoulos, Fotis Savva, and Peter
Triantafillou. Scalable aggregation predictive analytics.
Applied Intelligence, 48(9):2546–2567, 2018.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter
Kriegel, and Jörg Sander. OPTICS: Ordering points
to identify the clustering structure. In Proceedings of
the ACM SIGMOD International Conference on Man-
agement of Data, page 49–60, 1999.

[6] Liang Bai, Xueqi Cheng, Jiye Liang, Huawei Shen, and
Yike Guo. Fast density clustering strategies based on the
k-means algorithm. Pattern Recognition, 71:375–386,
2017.

[7] Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18(9):
509–517, sep 1975.

[8] Jon Louis Bentley and Jerome H Friedman. Data
structures for range searching. ACM Computing Surveys
(CSUR), 11(4):397–409, 1979.

[9] Guy E. Blelloch, Daniel Anderson, and Laxman Dhuli-
pala. ParlayLib - a toolkit for parallel algorithms on
shared-memory multicore machines. In Proceedings of
the ACM Symposium on Parallelism in Algorithms and
Architectures, page 507–509, 2020.

[10] Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing. J.
ACM, 46(5):720–748, September 1999.

[11] Bhogeswar Borah and Dhruba K. Bhattacharyya. An
improved sampling-based DBSCAN for large spatial
databases. In International Conference on Intelligent
Sensing and Information Processing, pages 92–96,
2004.

[12] Javier Burgués and Santiago Marco. Multivariate
estimation of the limit of detection by orthogonal partial
least squares in temperature-modulated mox sensors.
Analytica Chimica Acta, 1019:49–64, 2018.

[13] Javier Burgués, Juan Manuel Jiménez-Soto, and Santi-
ago Marco. Estimation of the limit of detection in semi-
conductor gas sensors through linearized calibration
models. Analytica Chimica Acta, 1013:13–25, 2018.

[14] Ricardo Campello, Davoud Moulavi, Arthur Zimek, and
Jörg Sander. Hierarchical density estimates for data
clustering, visualization, and outlier detection. TKDD,
pages 5:1–5:51, 2015.

[15] Yewang Chen, Xiaoliang Hu, Wentao Fan, Lianlian
Shen, Zheng Zhang, Xin Liu, Jixiang Du, Haibo Li,
Yi Chen, and Hailin Li. Fast density peak clustering
for large scale data based on kNN. Knowledge-Based
Systems, 187, 07 2020.

[16] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friend-
ship and mobility: user movement in location-based
social networks. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 1082–1090, 2011.

[17] David Coe, Mathew Barlow, Laurie Agel, Frank Colby,
Christopher Skinner, and Jian-Hua Qian. Clustering
analysis of autumn weather regimes in the northeast
United States. Journal of Climate, 34(18):7587 – 7605,
2021.

[18] G.B. Coleman and H.C. Andrews. Image segmentation
by clustering. Proceedings of the IEEE, 67(5):773–785,
1979.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms
(4. ed.). MIT Press, 2022.

[20] Hui Du, Yanting Hao, and Zhihe Wang. An improved
density peaks clustering algorithm by automatic deter-
mination of cluster centres. Connection Science, pages
1–17, 12 2021.

[21] Bernardt Duvenhage. Using an implicit min/max kd-
tree for doing efficient terrain line of sight calculations.
In Proceedings of the International Conference on
Computer Graphics, Virtual Reality, Visualisation and
Interaction in Africa, pages 81–90, 2009.

[22] Levent Ertöz, Michael Steinbach, and Vipin Kumar.
Finding clusters of different sizes, shapes, and densities
in noisy, high dimensional data. In Proceedings of the
SIAM International Conference on Data Mining, pages
47–58, 2003.

[23] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Pro-
ceedings of the International Conference on Knowledge
Discovery and Data Mining, page 226–231, 1996.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://archive.ics.uci.edu/ml/datasets/query+analytics+workloads+dataset
https://archive.ics.uci.edu/ml/datasets/query+analytics+workloads+dataset
https://archive.ics.uci.edu/ml/datasets/query+analytics+workloads+dataset

[24] Peter M. Fenwick. A new data structure for cumulative
frequency tables. Software: Practice and Experience,
24, 1994.

[25] Dimitris Floros, Tiancheng Liu, Nikos Pitsianis, and
Xiaobai Sun. Sparse dual of the density peaks algo-
rithm for cluster analysis of high-dimensional data. In
IEEE High Performance extreme Computing Confer-
ence (HPEC), pages 1–14, 2018.

[26] Jerome H. Friedman, Jon Louis Bentley, and
Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Trans-
actions on Mathematical Software, 3(3):209–226, 09
1977.

[27] Junhao Gan and Yufei Tao. On the hardness and
approximation of Euclidean DBSCAN. ACM Trans.
Database Syst., 42(3), jul 2017.

[28] José Carlos Garcı́a-Garcı́a and Ricardo Garcı́a-Ródenas.
A methodology for automatic parameter-tuning and
center selection in density-peak clustering methods. Soft
Computing, 25:1543–1561, 2021.

[29] S. Gong and Yanfeng Zhang. EDDPC: An efficient
distributed density peaks clustering algorithm. Journal
of Computer Research and Development, 53:1400–1409,
06 2016.

[30] Markus Götz, Christian Bodenstein, and Morris Riedel.
HPDBSCAN: highly parallel DBSCAN. In Proceed-
ings of the Workshop on Machine Learning in High-
Performance Computing Environments, pages 1–10,
2015.

[31] Matthias Groß, Carsten Lojewski, Martin Bertram,
and Hans Hagen. Fast implicit kd-trees: Accelerated
isosurface ray tracing and maximum intensity projection
for large scalar fields. In Proceedings of the IASTED
International Conference on Computer Graphics and
Imaging, pages 67–74, 2007.

[32] Xinyi Guo, Yuanyuan Zhang, Liangtao Zheng, Chun-
hong Zheng, Jintao Song, Qiming Zhang, Boxi Kang,
Zhouzerui Liu, Liang Jin, Rui Xing, Ranran Gao, Lei
Zhang, Minghui Dong, Xueda Hu, Xianwen Ren, Den-
nis Kirchhoff, Helge Gottfried Roider, Tiansheng Yan,
and Zemin Zhang. Global characterization of T cells
in non-small-cell lung cancer by single-cell sequencing.
Nature Medicine, 24(7):978—985, July 2018.

[33] B. Hanmanthu, R. Rajesh, and Priyanshul Niranjan.
Parallel optimal grid-clustering algorithm exploration
on MapReduce framework. International Journal of
Computer Applications, 180:35–39, 05 2018.

[34] Alexander Hinneburg and Daniel A. Keim. An efficient
approach to clustering in large multimedia databases
with noise. In Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining,
page 58–65, 1998.

[35] Erik G. Hoel and Hanan Samet. Data-parallel R-tree
algorithms. In International Conference on Parallel
Processing, volume 3, pages 47–50, 1993.

[36] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa,
Nikolai F Rulkov, and Irene Rodriguez-Lujan. Online
decorrelation of humidity and temperature in chemical
sensors for continuous monitoring. Chemometrics and
Intelligent Laboratory Systems, 157:169–176, 2016.

[37] J. Jaja. Introduction to Parallel Algorithms. Addison-
Wesley Professional, 1992.

[38] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle.
DBDC: Density based distributed clustering. volume
2992, pages 88–105, 03 2004.

[39] Siddhartha V Jayanti and Robert E Tarjan. Concurrent
disjoint set union. Distributed Computing, 34(6):413–
436, 2021.

[40] Janu Jiang, Xiyu Liu, and Minghe Sun. A density peak
clustering algorithm based on the k-nearest shannon en-
tropy and tissue-like p system. Mathematical Problems
in Engineering, 2019:1–13, 07 2019.

[41] H.-P. Kriegel and M. Pfeifle. Hierarchical density-based
clustering of uncertain data. In IEEE International
Conference on Data Mining, 2005.

[42] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

[43] Fengfu Li, Hong Qiao, and Bo Zhang. Discriminatively
boosted image clustering with fully convolutional auto-
encoders. Pattern Recognition, 83:161–173, 2018.

[44] Qiuzhen Lin, Songbai Liu, Ka-Chun Wong, Maoguo
Gong, Carlos A. Coello Coello, Jianyong Chen, and
Jun Zhang. A clustering-based evolutionary algorithm
for many-objective optimization problems. IEEE Trans-
actions on Evolutionary Computation, 23(3):391–405,
2019.

[45] Zhuojin Liu, Shufeng Gong, Yuxuan Su, Changyi Wan,
Yanfeng Zhang, and Ge Yu. Improving density peaks
clustering through GPU acceleration. Future Generation
Computer Systems, 141:399–413, 2023.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

http://snap.stanford.edu/data
http://snap.stanford.edu/data

[46] Songrit Maneewongvatana and David M Mount. It’s
okay to be skinny, if your friends are fat. In Center
for Geometric Computing Workshop on Computational
Geometry, volume 2, pages 1–8, 1999.

[47] Antonio Marco and Roberto Navigli. Clustering and
diversifying web search results with graph-based word
sense induction. Computational Linguistics, 39:709–
754, 09 2013.

[48] Edward M. McCreight. Priority search trees. SIAM
Journal on Computing, 14(2):257–276, 1985.

[49] Rashid Mehmood, Saeed El-Ashram, Rongfang Bie,
Hussain Dawood, and Anton Kos. Clustering by
fast search and merge of local density peaks for gene
expression microarray data. Scientific reports, 7(1):1–7,
2017.

[50] Robert J. Peters and Laurent Itti. Beyond bottom-up:
Incorporating task-dependent influences into a computa-
tional model of spatial attention. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8,
2007.

[51] Sanguthevar Rajasekaran and John H. Reif. Optimal
and sublogarithmic time randomized parallel sorting
algorithms. SIAM Journal on Computing, 18(3):594–
607, 1989.

[52] Zafaryab Rasool, Rui Zhou, Lu Chen, Chengfei Liu, and
Jiajie Xu. Index-based solutions for efficient density
peak clustering. IEEE Transactions on Knowledge and
Data Engineering, 2020.

[53] Attila Reiss and Didier Stricker. Introducing a new
benchmarked dataset for activity monitoring. In In-
ternational Symposium on Wearable Computers, pages
108–109, 2012.

[54] John T. Robinson. The KDB-tree: a search structure for
large multidimensional dynamic indexes. In Proceed-
ings of the ACM SIGMOD international conference on
Management of data, pages 10–18, 1981.

[55] Alex Rodriguez and Alessandro Laio. Clustering by fast
search and find of density peaks. Science, 344(6191):
1492–1496, 2014.

[56] F James Rohlf. 12 single-link clustering algorithms.
Handbook of Statistics, 2:267–284, 1982.

[57] Gholamhosein Sheikholeslami, Surojit Chatterjee, and
Aidong Zhang. WaveCluster: A wavelet-based cluster-
ing approach for spatial data in very large databases.
The VLDB Journal, 8(3–4):289–304, 02 2000.

[58] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman,
and Phillip B. Gibbons. Reducing contention through
priority updates. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 152–163,
2013.

[59] Sami Sieranoja and Pasi Fränti. Fast and general density
peaks clustering. Pattern Recognition Letters, 128:551–
558, 2019.

[60] Abir Smiti and Zied Eloudi. Wave DBSCAN: Improving
DBSCAN clustering method using fuzzy set theory. In
International Conference on Human System Interactions
(HSI), pages 380–385, 2013.

[61] Apinya Tepwankul and Songrit Maneewongwattana. U-
DBSCAN: A density-based clustering algorithm for
uncertain objects. In IEEE International Conference on
Data Engineering Workshops, pages 136–143, 2010.

[62] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp
Slusallek, and H-P Seidel. Faster isosurface ray
tracing using implicit kd-trees. IEEE Transactions on
Visualization and Computer Graphics, 11(5):562–572,
2005.

[63] Peng Wang, Bo Xu, Jiaming Xu, Guanhua Tian, Cheng-
Lin Liu, and Hongwei Hao. Semantic expansion
using word embedding clustering and convolutional
neural network for improving short text classification.
Neurocomputing, 174:806–814, 2016.

[64] Wei Wang, Jiong Yang, and Richard R. Muntz. STING:
A statistical information grid approach to spatial data
mining. In Proceedings of the International Conference
on Very Large Data Bases, page 186–195, 1997.

[65] Yi Wang, Qixin Chen, Chongqing Kang, and Qing Xia.
Clustering of electricity consumption behavior dynam-
ics toward big data applications. IEEE Transactions on
Smart Grid, 7(5):2437–2447, 2016.

[66] Yiqiu Wang, Rahul Yesantharao, Shangdi Yu, Laxman
Dhulipala, Yan Gu, and Julian Shun. ParGeo: A library
for parallel computational geometry. In Proceedings of
the European Symposium on Algorithms (ESA), pages
88:1–88:19, 2022.

[67] Renzhi Wu, Nilaksh Das, Sanya Chaba, Sakshi Gandhi,
Duen Horng Chau, and Xu Chu. A cluster-then-label
approach for few-shot learning with application to
automatic image data labeling. ACM Journal of Data
and Information Quality (JDIQ), 14(3):1–23, 2022.

[68] Xiao Xu, Shifei Ding, Yanru Wang, Lijuan Wang, and
Weikuan Jia. A fast density peaks clustering algorithm
with sparse search. Information Sciences, 554:61–83,
2021.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

[69] Miin-Shen Yang, Yu-Jen Hu, Karen Chia-Ren Lin,
and Charles Chia-Lee Lin. Segmentation techniques
for tissue differentiation in MRI of ophthalmology
using fuzzy clustering algorithms. Magnetic Resonance
Imaging, 20(2):173–179, 2002.

[70] Rahul Yesantharao, Yiqiu Wang, Laxman Dhulipala,
and Julian Shun. Parallel batch-dynamic kd-trees. CoRR,
abs/2112.06188, 2021.

[71] Lifeng Yin, Yingfeng Wang, Huayue Chen, and
Wu Deng. An improved density peak clustering al-
gorithm for multi-density data. Sensors, 22(22):8814,
2022.

[72] Xiaoning Yuan, Hang Yu, Jun Liang, and Bing Xu. A
novel density peaks clustering algorithm based on k
nearest neighbors with adaptive merging strategy. Inter-
national Journal of Machine Learning and Cybernetics,
12(10):2825–2841, 2021.

[73] Yanfeng Zhang, Shimin Chen, and Ge Yu. Efficient
distributed density peaks for clustering large data sets
in MapReduce. IEEE Transactions on Knowledge and
Data Engineering, 28(12):3218–3230, 2016.

[74] Yu Zheng, Like Liu, Longhao Wang, and Xing Xie.
Learning transportation mode from raw GPS data for
geographic applications on the web. In International
Conference on World Wide Web, pages 247–256, 2008.

[75] Carly G.K. Ziegler, Samuel J. Allon, Sarah K. Nyquist,
Ian M. Mbano, Vincent N. Miao, Constantine N.
Tzouanas, Yuming Cao, Ashraf S. Yousif, Julia Bals,
Blake M. Hauser, Jared Feldman, Christoph Muus,
Marc H. Wadsworth, Samuel W. Kazer, Travis K.
Hughes, Benjamin Doran, G. James Gatter, Marko
Vukovic, Faith Taliaferro, Benjamin E. Mead, Zhiru
Guo, Jennifer P. Wang, Delphine Gras, Magali Plaisant,
Meshal Ansari, Ilias Angelidis, Heiko Adler, Jen-
nifer M.S. Sucre, Chase J. Taylor, Brian Lin, Avinash
Waghray, Vanessa Mitsialis, Daniel F. Dwyer, Kath-
leen M. Buchheit, Joshua A. Boyce, Nora A. Barrett,
Tanya M. Laidlaw, Shaina L. Carroll, Lucrezia Colonna,
Victor Tkachev, Christopher W. Peterson, Alison Yu,
Hengqi Betty Zheng, Hannah P. Gideon, Caylin G.
Winchell, Philana Ling Lin, Colin D. Bingle, Scott B.
Snapper, Jonathan A. Kropski, Fabian J. Theis, Her-
bert B. Schiller, Laure-Emmanuelle Zaragosi, Pascal
Barbry, Alasdair Leslie, Hans-Peter Kiem, JoAnne L.
Flynn, Sarah M. Fortune, Bonnie Berger, Robert W.
Finberg, Leslie S. Kean, Manuel Garber, Aaron G.
Schmidt, Daniel Lingwood, Alex K. Shalek, Jose
Ordovas-Montanes, Nicholas Banovich, Pascal Barbry,
Alvis Brazma, Tushar Desai, Thu Elizabeth Duong,

Oliver Eickelberg, Christine Falk, Michael Farzan,
Ian Glass, Muzlifah Haniffa, Peter Horvath, Deborah
Hung, Naftali Kaminski, Mark Krasnow, Jonathan A.
Kropski, Malte Kuhnemund, Robert Lafyatis, Haeock
Lee, Sylvie Leroy, Sten Linnarson, Joakim Lunde-
berg, Kerstin Meyer, Alexander Misharin, Martijn
Nawijn, Marko Z. Nikolic, Jose Ordovas-Montanes,
Dana Pe’er, Joseph Powell, Stephen Quake, Jay Ra-
jagopal, Purushothama Rao Tata, Emma L. Rawlins,
Aviv Regev, Paul A. Reyfman, Mauricio Rojas, Orit
Rosen, Kourosh Saeb-Parsy, Christos Samakovlis, Her-
bert Schiller, Joachim L. Schultze, Max A. Seibold,
Alex K. Shalek, Douglas Shepherd, Jason Spence,
Avrum Spira, Xin Sun, Sarah Teichmann, Fabian Theis,
Alexander Tsankov, Maarten van den Berge, Michael
von Papen, Jeffrey Whitsett, Ramnik Xavier, Yan Xu,
Laure-Emmanuelle Zaragosi, and Kun Zhang. SARS-
CoV-2 receptor ACE2 is an interferon-stimulated gene
in human airway epithelial cells and is detected in spe-
cific cell subsets across tissues. Cell, 181(5):1016–
1035.e19, 2020.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/1

9/
23

 to
 1

2.
18

7.
13

.2
50

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Related Work
	kd-trees and K-nearest neighbor queries
	Density Peaks Clustering (DPC)
	Density-based Clustering Algorithms

	Preliminaries
	Model of Computation
	Relevant Techniques

	Priority Search kd-tree-based Dependent Point Finding
	Sequential Dependent Point Finding
	Priority Search kd-tree
	Priority Search kd-tree Definition
	Priority Nearest Neighbor Query

	Parallel Dependent Point Finding with Priority Search kd-tree

	Fenwick Tree-based Parallel Dependent Point Finding
	Optimization of Other Steps
	Optimizing Density Computation (Step 1)
	Optimizing Single-Linkage Clustering (Step 3)

	Experiments
	Experiment Setup
	Runtime Comparison
	Scalability Analysis

	Conclusion

