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Abstract

Graph mining has become crucial in fields such as social science,
finance, and cybersecurity. Many large-scale real-world networks
exhibit both heterogeneity, where multiple node and edge types
exist in the graph, and heterophily, where connected nodes may
have dissimilar labels and attributes. However, existing benchmarks
primarily focus on either heterophilic homogeneous graphs or ho-
mophilic heterogeneous graphs, leaving a significant gap in under-
standing how models perform on graphs with both heterogeneity
and heterophily. To bridge this gap, we introduceH2GB, a large-
scale node-classification graph benchmark that brings together the
complexities of both the heterophily and heterogeneity properties
of real-world graphs. H2GB encompasses 9 real-world datasets
spanning 5 diverse domains, 28 baseline models, and a unified
benchmarking library with a standardized data loader, evaluator,
unified modeling framework, and an extensible framework for re-
producibility. We establish a standardized workflow supporting
both model selection and development, enabling researchers to
easily benchmark graph learning methods. Extensive experiments
across 28 baselines reveal that current methods struggle with het-
erophilic and heterogeneous graphs, underscoring the need for
improved approaches. Finally, we present a new variant of the
model,H2G-former, developed following our standardized work-
flow, that excels at this challenging benchmark. Both the benchmark
and the framework are publicly available at Github and PyPI, with
documentation hosted at https://junhongmit.github.io/H2GB.

CCS Concepts

• Information systems→ Data mining; Digital libraries and
archives.

Keywords

GraphMining, Graph Transformers, GraphNeural Networks, Large-
scale Graphs, Heterogeneous Graphs, Graph Heterophily

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3737421

ACM Reference Format:

Junhong Lin, Xiaojie Guo, Shuaicheng Zhang, Yada Zhu, and Julian Shun.
2025. When Heterophily Meets Heterogeneity: Challenges and a New Large-
Scale Graph Benchmark. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3711896.3737421

1 Introduction

Graphs are commonly used to model complex relationships across
various domains, such as finance [50], social science [26, 48] and
cybersecurity [16, 52]. Many real-world graphs contain millions or
even billions of nodes and edges, making scalable learning methods
essential. Graph neural networks (GNNs) [15, 23] have achieved
state-of-the-art performance on graph learning tasks. However,
they were designed primarily for homogeneous homophilic graphs,
where the nodes and edges are of a single type [11, 64], and con-
nected nodes are similar, as shown in Figure 1(a).

As real-world graphs grow in scale, they increasingly exhibit
heterogeneity and heterophily. Heterogeneity arises from multiple
entity and relation types, adding structural and semantic complex-
ity. This diversity, in turn, intensifies heterophily, the tendency
for connected nodes to have dissimilar labels or attributes. For ex-
ample, financial networks (Figure 1(d)) [2, 45] contain diverse node
types (e.g., person, business) and edge types (e.g., wire transfer,
check transaction). Furthermore, fraudsters tend to have differ-
ent labels than their innocent neighbors, making these networks
both heterogeneous and heterophilic. These properties, common in
domains such as e-commerce [32], academia [19, 59], and cyberse-
curity [3, 25], pose significant challenges to GNN performance.

In recent years, researchers have actively explored methods to
overcome these challenges in two separate directions. First, to han-
dle graphs with heterophily, there has been a recent line of re-
search on developing heterophilic graph benchmarks [4, 30] and
heterophily-centered GNNs [4, 35, 43, 63, 64] that incorporate long-
range relationships and distinct aggregation mechanisms, such as
distant node exploration [1, 29, 43, 64], signed aggregation [4, 35,
63], and local grouping [29]. However, these heterophilic GNNs are
restricted to homogeneous graphs, as illustrated in Figure 1(b). Sec-
ond, heterogeneous GNNs have been proposed to handle the diverse
information present in heterogeneous graphs [9, 17, 21, 46, 51, 58].
However, most heterogeneous GNNs are implicitly built upon the
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Figure 1: Examples of graphs with different levels of heterophily and heterogeneity. Nodes with different class labels and edges of different

types are represented with different colors (e.g., publications in different subjects or different kinds of financial transactions).

homophily assumption, as illustrated in Figure 1(c), and exhibit
poor performance on heterophilic graphs [14].

While there has been recent progress on handling heterogeneity
and heterophily separately, many large real-world graphs exhibit
both properties simultaneously. A recent research effort, the Het-
erophily Graph Learning Handbook [34], explicitly highlights this
gap, emphasizing that previous research primarily evaluated mod-
els on graphs that focused on either only heterophily or only het-
erogeneity. The following challenges arise when exploring graph
learning in heterophilic and heterogeneous settings. (1) Lack of

benchmarks for graphs with both heterophily and hetero-

geneity [34]: Existing benchmarks either focus exclusively on
homogeneous graphs, neglecting the diversity of node and edge
types found in real-world graphs, or on heterogeneous graphs while
assuming homophily. (2) Limited understanding of heterophily

in heterogeneous Graphs [34]: Heterophily has been largely
studied in homogeneous graphs, leaving its impact on heteroge-
neous structures under-explored. This gap limits our understanding
of how heterophilic patterns interact with diverse node and edge
types. Guo et al. [14] found that heterogeneous GNNs often degrade
in performance under heterophily, highlighting the need for better
modeling strategies. (3) Inadequacy of heterophilic GNNs on

large-scale heterogeneous graphs: Heterophilic GNNs are typi-
cally designed for homogeneous graphs, making them ineffective in
heterogeneous settings where node and edge types vary. They also
struggle to scale with graph size, as many were developed for small
graphs, limiting their applicability to large real-world networks.

To address these challenges, we introduce the Heterophilic and
Heterogeneous Graph Benchmark (H2GB), the first, novel and
comprehensive graph benchmark designed to evaluate graph learn-
ing methods on large-scale heterophilic and heterogeneous graphs
across multiple real-world domains. As shown in Figure 2, H2GB
provides the following contributions:

• Diverse Real-World Datasets: H2GB consists of 4 applica-
tions, and 9 real-world datasets spanning 5 domains: academia,
finance, e-commerce, social science, and cybersecurity.

• Standardized Benchmarking: H2GB establishes a standard-
ized evaluation framework for node classification, providing
an extensive comparison of 28 baseline models implemented
through our previously built modular graph learning frame-
work, UnifiedGT [31], includingmessage-passingGNNs, graph
transformers, and non-GNN baselines, under a unified experi-
mental setup.

• Standardized Workflow: We introduce a standard workflow
supporting bothmodel selection and development. In particular,
we demonstrate a case study usingH2GB for the development
of a new model in Section 5.3.

• New Heterophily Measure: Existing metrics (e.g., edge het-
erophily) provide limited insights into heterogeneous graph
structures. We introduce a new heterophily measure, the H2

index, which better captures complex heterophilic interactions,
addressing a key limitation identified in prior literature [34].

• Scalability Focus:H2GB emphasizes scalability by evaluating
graph learning methods on large-scale heterophilic and het-
erogeneous graphs. Most of our datasets are large, containing
millions of nodes and tens of millions of edges (see Table 1),
which are orders of magnitude larger than existing heterophilic
benchmarks [30, 61]. H2GB evaluates models across large-
scale graphs, identifies the performance bottlenecks of existing
GNNs, and encourages the development of scalable heterophilic
graph learning methods.

• Open-Source Benchmarking Library: H2GB is released as
an extensible and user-friendly Python library consisting of
a unified data loader and evaluator, making it easy to access
datasets, evaluate methods, and compare performance.
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Figure 2: H2
GB offers a complete benchmark workflow for heterophilic and heterogeneous graph learning, featuring a diverse dataset suite

(Section 3), a modular modeling framework (Section 4), and a comprehensive benchmark library, making it easy to evaluate and compare

different methods (Section 5). The green and blue arrows on top highlight two standard workflows for users to interact with H2
GB.

Through comprehensive experiments on our datasets, we draw
the following insights: (1) homogeneous heterophilic GNNs under-
perform heterogeneous homophilic GNNs due to their inability to
account for diverse node and edge types; (2) performance varies
significantly among heterogeneous homophilic GNNs, likely due
to differences in their architectural robustness when exposed to
heterophily; and (3) non-scalable GNNs struggle on our large-scale
heterogeneous heterophilic benchmark. Lastly, following our estab-
lished standard workflow, we developH2G-former, a new effective
model variant by incorporating several new components including
masked label embedding, heterogeneous attention, 𝑘-hop attention
mask, and type-specific FFNs, significantly improving performance
on datasets in H2GB.

2 Preliminaries and Related Work

Definition 1 (Graph Heterogeneity). A heterogeneous graph is
a directed graph G = (V, E,A,R), where each node 𝑣 ∈ V and
edge 𝑒 ∈ E has a type given by 𝜏 (𝑣) : 𝑉 → A and 𝜙 (𝑒) : 𝐸 → R.
Here, A and R are the set of node and edge types, respectively.

Definition 2 (Metapath-Induced Subgraphs). A metapath is a
sequence of edges, defined as P = 𝐴1

𝑅1−−→ 𝐴2
𝑅2−−→ · · ·𝐴𝑛

𝑅𝑛−−→ 𝐴𝑛+1,
where 𝐴𝑖 ∈ A and 𝑅𝑖 ∈ R. Given a metapath P, we can construct
a metapath-induced subgraph GP , which includes edge (𝑢, 𝑣) in
GP if and only if there exists at least one length-𝑛 path between 𝑢
and 𝑣 following the metapath P in the original graph G.
Definition 3 (Graph Heterophily). Graph heterophily quantifies
the dissimilarity between connected nodes based on their attributes
or labels. Common metrics such as edge heterophily [64] and node
heterophily [43] are designed for homogeneous graphs, quantifying
the proportion of connected nodes that have different labels.
Definition 4 (Node Classification Task). Given a graph G =

(V, E,A,R), only a subset of nodes of a specific typeV𝑇 ⊆ V (task
entities) are labeled. The task is to learn a function 𝑓 : (G, 𝑣) ↦→ 𝑦𝑣
that predicts the label 𝑦𝑣 for unlabeled nodes 𝑣 ∈ V𝑇 .
Graph Learning for Heterogeneous and Heterophilic Graphs.
Existing heterogeneous GNNs are classified into metapath-based
methods, which extract structural information fromhomogeneously-
typed subgraphs by predefined metapaths to capture diverse seman-
tic data [9, 46, 51, 58], and metapath-free methods, which process
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Table 1: Statistics of H2
GB datasets. #C is the number of classes, with imbalance ratios provided for binary classification. The train-

ing/validation/test split ratio is indicated under the Split Scheme.

Dataset # Nodes (types) # Edges (types) # Feat. # C (Ratio) Label Split Scheme (Ratio [%]) Metric
ogbn-mag 1,939,743 (4) 42,182,144 (7) 128 349 paper venue Time (85/9/6) Accuracy
mag-year 1,939,743 (4) 42,182,144 (7) 128 5 publication year Random (50/25/25) Accuracy
oag-cs 1,112,691 (4) 27,537,448 (22) 768 3,514 paper venue Time (80/9/11) Accuracy
oag-eng 929,315 (4) 12,346,854 (22) 768 3,956 paper venue Time (88/10/2) Accuracy
oag-chem 1,918,881 (4) 38,098,014 (22) 768 2,985 paper venue Time (90/8/2) Accuracy

RCDD 13,806,619 (7) 157,814,864 (14) 256 2 (11:1) risk commodity Time (70/15/15) F1 score
IEEE-CIS-G 153,880 (12) 2,873,472 (22) 4823 2 (12:1) fraud transaction Time (80/10/10) F1 score
H-Pokec 1,731,977 (16) 51,774,836 (31) 66 2 (1:1) gender Random (50/25/25) Accuracy
PDNS 1,173,558 (2) 76,797,104 (4) 10 2 (1:2) malicious domain Time (70/20/10) F1 score

structural and semantic information simultaneously, enhancing
message aggregation by incorporating node and edge types with-
out relying on predefined paths [17, 21, 36, 65]. While these ap-
proaches take heterogeneity into account, they generally maintain
the homophily assumption. In contrast, existing heterophilic GNNs
have been tailored primarily for homogeneous graphs and lack
mechanisms to address heterogeneity [1, 4, 30]. Recent works aim
to bridge this gap by improving heterophilic learning on hetero-
geneous graphs through augmented graphs and disentangled loss
functions [14, 28]; however, they primarily focus on enhancing ex-
isting models rather than introducing fundamentally new solutions
optimized for both heterophily and heterogeneity.

Current Datasets. Recent evaluations of heterophilic graph learn-
ing primarily use small-scale datasets from Pei et al. [43]. Lim et
al. [30] have compiled larger non-homophilic graph datasets, which
have become the standard for evaluating heterophilic GNNs, but
their datasets are limited to homogeneous graphs. Several heteroge-
neous academic network datasets have been introduced, including
DBLP [36], ACM [36], ogbn-mag [20], MAG240M [19], and IGB [22].
However, these datasets have not been tested with heterophilic
GNN methods. Moreover, the pure focus on academic networks
narrows their use in addressing graph learning challenges in other
domains.

Conventional Heterophily Metrics. Typical heterophily metrics,
such as edge heterophily (Hedge) [64], node heterophily (Hnode) [43],
and adjusted heterophily (Hadj) [44], are designed for homogeneous
graphs, quantifying different aspects of label mixing among con-
nected nodes. While edge and node heterophily directly reflect
label differences along edges or within local neighborhoods, they
are sensitive to class imbalance [30]. Adjusted heterophily mit-
igates this issue by normalizing based on class distributions. A
common approach to extend these metrics to heterogeneous graphs
is to disregard node and edge types, treating the graph as homoge-
neous. Yet, this simplification overlooks structural dependencies
across different node types. Traditional metrics typically assess
heterophily only among nodes of the same type, failing to account
for homophily that may emerge along metapath-based structures.
Guo et al. [14] empirically showed that heterogeneous GNNs per-
form better when metapath-induced subgraphs are homophilic, a
factor not captured by typical heterophily measures. Consequently,

these metrics can misrepresent a model’s true ability to handle
heterophilic relationships in heterogeneous graphs.

This limitation underscores the need for a better heterophily
measure designed for heterogeneous graphs. Recent works [14,
32] have proposed the metapath-based label heterophily (MLH)
measure, which extends edge heterophily, Hedge, to a metapath-
induced subgraph GP , and is formulated as follows:

MLH(G) = Agg(Hedge (GP ) |P ∈ M𝑘 ), (1)
where M𝑘 denotes a 𝑘-hop metapath set, and Agg ∈ {mean,max}.
However, it suffers from class imbalance [30], leading to artifi-
cially low values (indicating homophily) in datasets that are in-
herently heterophilic. For instance, as shown in Table 2, the RCDD
and IEEE-CIS-G datasets demonstrate significant class imbalance,
which contributes to deceptively low MLH values.

3 Heterophilic and Heterogeneous Graph

Benchmark (H 2
GB)

In this section, we presentH2GB, a benchmark consisting of 9 large-
scale datasets (6 new ones and 3 from existing work), shown in Ta-
ble 1, spanning 5 diverse domains (Figure 2): academia, e-commerce,
finance, social science, and cybersecurity. We also introduce a new
heterophily measure that better captures the heterophilic properties
of heterogeneous graphs. The benchmark standardizes data loading,
data splitting, feature encoding, and performance evaluation, which
together enable open and reproducible research on heterophilic
and heterogeneous GNNs.1

3.1 Key Applications

Real-world graphs exhibit a diverse range of applications, many of
which inherently involve both heterophily and heterogeneity. We
identify four representative key real-world applications where such
graph structures naturally arise: paper venue classification, social
network analysis, financial fraud detection, and malware detection.
They span diverse domains—academia, finance, e-commerce, cy-
bersecurity, and social science—each presenting unique challenges
that demand robust graph learning methods, ensuring that H2GB
captures the complexities of large-scale real-world heterophilic and
heterogeneous graphs across multiple domains.
1As a special case,H2GB can also be useful for systematically evaluating homogeneous
GNNs (by simply applying a learnable type-dependent feature projection and then
ignoring the type information on nodes and edges).
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Table 2: Heterophily measures on each dataset. A value near 0 indicates homophily, where nodes primarily connect to others of

the same class, while values around 1 suggest heterophily, where nodes prefer connections to different classes. 𝑦𝑣 is the label of

node 𝑣 , 𝐶 denotes the number of classes, 𝑑 (𝑣) is the in-degree of node 𝑣 , 𝐷𝑘 =
∑

𝑣:𝑦𝑣=𝑘 𝑑 (𝑣) is the total in-degree of class 𝑘 nodes,

M𝑘 is a 𝑘-hop metapath set, and Agg ∈ {mean,max} is an aggregation function.

Heterophily Metric ogbn-mag mag-year oag-cs oag-eng oag-chem RCDD IEEE-CIS-G H-Pokec PDNS

Edge Heterophily Hedge =
|{(𝑢, 𝑣) ∈ E : 𝑦𝑢 ≠ 𝑦𝑣}|

|E | 0.9205 0.7909 0.9835 0.9586 0.9457 0.5001 0.5917 0.5663 0.4990

Node Heterophily Hnode =
1
|V|

∑︁
𝑣∈V

|{𝑢 ∈ N (𝑣) : 𝑦𝑣 ≠ 𝑦𝑢 }|
|N (𝑣) | 0.9539 0.7946 0.9880 0.9748 0.9696 0.5005 0.5839 0.5667 0.4992

Adjusted Heterophily Hadj = 1 −
1 −∑𝐶

𝑘=1 𝐷
2
𝑘
/(2|E |)2 −Hedge

1 −∑𝐶
𝑘=1 𝐷

2
𝑘
/(2|E |)2

0.9312 0.9977 0.9847 0.9612 0.9496 0.8398 1.3151 1.1350 1.0027

Metapath-based Label Heterophily MLH = Agg
(
Hedge (GP ) |P ∈ M𝑘

)
0.8731 0.7718 0.9623 0.8689 0.8724 0.4912 0.1352 0.3922 0.3916

H2
Index (Ours) H2 = Agg

(
Hadj (GP ) |P ∈ M𝑘

)
0.8773 0.9654 0.9652 0.8729 0.8858 0.9776 0.9846 0.9488 0.7866

Paper Venue Classification. In academic networks, papers are
often connected through citations, co-authorships, or shared top-
ics. While prior studies typically assume a homophilic structure
where related papers belong to the same venue, real-world aca-
demic graphs exhibit heterophily—papers from the same author
often span multiple venues and disciplines. We study this using
one existing dataset, ogbn-mag[20], and 4 new datasets: mag-year,
which re-labels ogbn-mag based on publication years to highlight
temporal label shifts, and oag-cs, oag-eng, and oag-chem, which
are newly constructed from the Open Academic Graph[59], and
reflect disciplinary diversity.

Social Network Analysis. Social networks provide another ex-
ample of graphs with both heterophily and heterogeneity. Unlike
traditional homophilic assumptions, where friends tend to share
similar attributes, real-world social structures reveal connections
across diverse demographic and interest groups. Our new H-Pokec
dataset, derived from the Pokec social network [27], introduces
heterophilic relationships influenced by user demographics and
personal affiliations, such as shared hobbies or cultural interests.

Financial Fraud Detection. Fraudulent activities in financial
transactions and e-commerce platforms often follow heterophilic
patterns: fraudsters attempt to disguise themselves by mimicking
normal behaviors with innocent nodes while still forming distinct
interaction patterns. Meanwhile, financial networks are inherently
heterogeneous, consisting of multiple entity types such as users,
businesses, and transactions. Our dataset collection includes a new
IEEE-CIS-G graph dataset (developed from a Kaggle tabular dataset
[18] for credit card fraud detection in the finance domain) and a
repurposed RCDD [32] dataset (for risk commodity detection in e-
commerce domain), both of which capture the heterophilic and
heterogeneous nature of financial interactions.

Malware Detection. Malicious entities on the Internet, such as
botnets and phishing domains, do not always form homophilic
clusters—they attempt to infiltrate and blend in with legitimate
entities. The repurposed PDNS dataset [25] models such behaviors
in cybersecurity by representing domain name system (DNS) in-
teractions as a heterogeneous graph, where malicious and benign

domains interact with different network entities, making detection
a challenging task.

3.2 Data Standardization

To ensure consistency, we clean, preprocess, and format all datasets
inH2GB following a standardized pipeline. We encapsulate each
dataset in the widely used HeteroData object format, supported
by the PyTorch Geometric (PyG) library, ensuring seamless com-
patibility with existing heterogeneous graph learning frameworks.
Dataset details are provided in Table 1 and Appendix B.2.

3.2.1 Data Formatting and Structure. Each dataset is carefully
processed to maintain diverse node/edge types and meaningful
graph structures. We ensure that (1) node features are consis-

tently structured, meaning they share a common representation
format across datasets (e.g., numerical embeddings or categorical
encodings), facilitating cross-dataset comparisons and model train-
ing; and (2) heterogeneous graph information is retained, with
explicit node and edge type definitions stored in the widely used
PyG HeteroData format, ensuring compatibility with heteroge-
neous GNN models. To facilitate reproducibility and extensibility,
new datasets can be integrated intoH2GB using our dataset con-
struction script templates, allowing users to format and pre-process
data consistently within the framework.

3.2.2 Splitting Strategy. For most datasets, we employ a tempo-
ral split scheme, ensuring that the training set precedes the valida-
tion set in time, and the validation set precedes the test set. This
strategy aligns with real-world prediction scenarios, where models
must generalize to future data rather than relying on randomly
shuffled samples. Two exceptions are mag-year, where publica-
tion year is the prediction target and thus unsuitable for temporal
splitting, and H-Pokec, which lacks timestamp information.

3.3 Data Quantification (H 2
Index)

To better characterize the structural properties of our datasets,
we systematically quantify heterophily in heterogeneous contexts
using several standard heterophily metrics and our new metric, the
H2 index (Table 2).
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Figure 3: The modular modeling framework (UnifiedGT) provided by H2
GB. We choose several example models from the 28

baselines to demonstrate how they can be reproduced via the modular components provided by the modeling framework.

3.3.1 NewHeterogeneousHeterophilyMetric. Inspired by the
adjusted heterophily metric [44, 47], we propose the class-adjusted
heterogeneous heterophily index H2, formulated as follows:

H2 (G) = Agg
(
Hadj (GP ) |P ∈ M𝑘

)
, (2)

where GP denotes a metapath-induced subgraph, Hadj is the ad-
justed heterophily,M𝑘 is a𝑘-hopmetapath set, andAgg ∈ {mean,max}
is an aggregation function. Intuitively, the adjusted heterophily
Hadj quantifies the degree of heterophily relative to what would be
expected in a random graph. Under the random graph configura-
tion model described in [40], where for every node 𝑣 we create 𝑑 (𝑣)
copies of it and then find a random matching among all nodes, the
likelihood of a given edge endpoint connecting to a node of class𝑘 is
approximately 𝐷𝑘/(2|E |) (as assumed in [44]). Thus, the expected
heterophily is the likelihood that two edge endpoints are in dif-
ferent classes, which is 1 −∑𝐶

𝑘=1 𝐷𝑘 (𝐷𝑘 − 1)/((2|E |) (2|E | − 1)) ≈
1−∑𝐶

𝑘=1 𝐷
2
𝑘
/(2|E |)2. As a result, a value ofH2 close to 0 indicates

that nodes predominantly connect to other nodes of the same class,
exhibiting homophily. A value approaching or exceeding 1 suggests
that nodes are more likely to connect to nodes of different classes,
demonstrating heterophily. The set of all possible metapaths P
can potentially be large, and so we introduce an additional con-
straint where only length-2 metapaths are considered. We select
the mean function as the aggregation function to reflect the general
heterophily across all metapaths. The H2 value for each dataset is
presented in Table 2.

3.4 Standard Workflow

We establish a standard workflow for model developers and appli-
cation researchers to use H2GB, as shown in Figure 2.

• Application Researchers can search for effective models for their
new dataset/application domain as follows:

(1) Identify new applications requiring heterophilic and het-
erogeneous graph learning.

(2) Build and integrate dataset into H2GB.
(3) Choose models from our modeling framework.
(4) Benchmark performance.

• Model Developers can perform model development as follows:
(1) Implement new models by modifying models in H2GB.
(2) Evaluate models to understand performance gaps.
(3) Iterate to refine scalable heterophilic and heterogeneous learn-

ing approaches.

4 Modular Modeling Framework

To facilitate standardized benchmarking, H2GB incorporates Uni-
fiedGT [31], a modular modeling framework that we previously
designed that is capable of expressing various GNN architectures,
as shown in Figure 3. UnifiedGT provides a structured approach
to decomposing graph learning models into modular components,
including graph sampling, encoding, attention mechanisms, hetero-
geneous GNN, and feedforward networks (FFN), allowing flexible
integration of different modeling techniques.

The modeling framework enables flexible experiments and per-
formance comparisons across 28 state-of-the-art baseline models,
reducing implementation variability and simplifying the process
of integrating new models intoH2GB. The modeling framework
provides simple baselines and three categories of state-of-the-art
GNN and graph transformer models. The simple baselines include
models that only consider node features, such as MLP [12], and
models that only consider graph topology, such as label propagation
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Table 3: Benchmark results of various GNN methods. Standard deviations are calculated over 5 runs with different random

seeds. We highlight the first and second best results. Label propagation (LP) has deterministic results. Out-of-memory (OOM)

indicates the method ran out of memory on an Nvidia V100 GPU with 32GB of memory. §§: Heterogeneous Heterophilic.

Datasets→
(H2 Index)

Avg.
Rank

Accuracy F1 score
ogbn-mag mag-year oag-cs oag-eng oag-chem H-Pokec RCDD IEEE-CIS-G PDNS

Methods↓ (0.8773) (0.9654) (0.9652) (0.8729) (0.8858) (0.9488) (0.9776) (0.9846) (0.7866)
MLP 23.2 27.27 ± 0.50 26.52 ± 0.64 09.26 ± 0.51 20.18 ± 0.92 13.61 ± 0.41 62.75 ± 0.34 75.87 ± 1.38 04.26 ± 8.52 73.92 ± 0.66

Gr
ap
h
O
nl
y LP+1Hop 18.9 38.36 26.61 19.79 36.07 22.48 45.42 67.07 0.00 81.53

LP+2Hop 14.8 37.38 39.45 20.98 36.73 21.54 76.72 67.84 0.00 82.13
SGC+1Hop 24.6 16.46 ± 0.24 26.48 ± 0.17 06.42 ± 0.17 10.93 ± 3.18 07.02 ± 1.72 52.91 ± 0.43 05.47 ± 6.92 13.04 ± 3.53 74.24 ± 1.90
SGC+2Hop 25.2 14.28 ± 0.28 26.46 ± 0.05 06.09 ± 0.50 08.77 ± 1.22 05.00 ± 1.10 59.55 ± 1.75 06.07 ± 5.29 07.98 ± 8.54 61.34 ± 1.14

H
om

og
en
e o
us

H
om

op
hi
lic

GCN 14.3 42.90 ± 0.50 32.91 ± 0.50 18.22 ± 0.60 29.09 ± 0.52 18.57 ± 1.06 70.63 ± 0.36 85.81 ± 0.87 28.79 ± 1.07 81.22 ± 0.30
GraphSAGE 8.4 40.80 ± 0.56 36.28 ± 0.19 22.92 ± 0.29 36.16 ± 0.20 24.66 ± 0.48 77.29 ± 0.30 85.02 ± 0.83 31.49 ± 1.23 91.44 ± 0.32
GAT 11.7 48.60 ± 0.29 33.50 ± 0.62 19.12 ± 0.25 28.74 ± 0.60 14.05 ± 0.44 70.89 ± 0.20 86.71 ± 1.27 28.51 ± 0.45 93.97 ± 0.27
GIN 15.6 37.32 ± 0.33 31.15 ± 0.54 16.33 ± 1.34 29.62 ± 1.15 17.86 ± 0.62 74.72 ± 0.32 84.22 ± 0.34 28.53 ± 0.54 87.91 ± 0.46
APPNP 18.3 37.64 ± 0.31 29.79 ± 0.61 17.90 ± 0.60 28.63 ± 0.40 17.19 ± 1.06 57.27 ± 1.22 82.95 ± 0.67 27.27 ± 1.47 80.70 ± 0.73
NAGphormer 11.7 42.47 ± 0.74 32.60 ± 0.06 16.49 ± 0.55 31.85 ± 0.80 23.78 ± 0.35 80.59 ± 0.15 85.46 ± 0.50 17.07 ± 0.34 92.37 ± 0.22
GraphTrans 13.7 47.25 ± 1.54 36.14 ± 0.41 02.39 ± 0.22 06.55 ± 3.53 02.23 ± 0.20 77.80 ± 0.17 86.00 ± 0.56 30.53 ± 1.60 93.00 ± 0.39
Gophormer 16.6 42.87 ± 0.64 35.17 ± 0.27 03.68 ± 1.24 10.42 ± 3.73 04.26 ± 2.85 71.55 ± 2.04 80.56 ± 6.13 30.79 ± 1.06 91.58 ± 0.05

H
om

og
en
e o
us

H
et
er
op

hi
lic

MixHop 6.4 46.99 ± 0.41 36.36 ± 0.28 23.04 ± 0.24 36.88 ± 0.73 25.03 ± 0.90 78.78 ± 0.27 85.43 ± 1.22 30.13 ± 0.86 92.78 ± 0.18
LINKX 12.0 40.83 ± 0.18 42.81 ± 0.14 15.32 ± 0.08 32.85 ± 0.38 22.98 ± 0.24 79.66 ± 0.94 OOM 31.42 ± 1.20 87.74 ± 0.52
FAGCN 20.9 33.06 ± 0.59 27.10 ± 0.66 10.46 ± 0.44 22.75 ± 0.94 13.01 ± 0.44 67.15 ± 0.09 81.06 ± 1.24 10.09 ± 5.09 82.84 ± 1.07
ACM-GCN 21.1 33.50 ± 1.13 23.20 ± 1.21 11.23 ± 0.75 22.27 ± 0.77 13.81 ± 0.43 66.69 ± 0.09 75.52 ± 1.74 16.98 ± 0.29 88.48 ± 0.48
LSGNN 13.6 38.87 ± 0.83 40.47 ± 0.58 15.20 ± 0.60 29.43 ± 0.74 19.96 ± 0.69 78.37 ± 0.49 83.84 ± 0.91 14.68 ± 1.86 88.91 ± 0.17
GOAT 10.3 41.59 ± 0.09 32.92 ± 0.41 20.74 ± 0.39 35.82 ± 0.52 21.75 ± 0.17 76.55 ± 0.71 87.13 ± 0.45 30.31 ± 0.73 91.71 ± 0.27
PolyFormer 17.2 35.58 ± 0.24 31.13 ± 0.50 09.22 ± 0.24 21.4 ± 0.62 15.26 ± 0.50 70.74 ± 0.10 83.61 ± 0.69 17.26 ± 0.07 94.81 ± 0.09

H
et
er
og

en
eo
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H
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lic

R-GCN 5.3 46.93 ± 0.46 35.60 ± 0.48 23.10 ± 1.09 37.10 ± 0.49 25.80 ± 0.32 78.05 ± 0.28 87.00 ± 1.35 31.44 ± 0.96 92.55 ± 0.44
R-GraphSAGE 6.0 50.94 ± 0.44 38.07 ± 0.41 22.81 ± 0.63 36.11 ± 0.45 26.00 ± 0.59 77.00 ± 0.32 86.81 ± 1.74 29.85 ± 0.47 92.81 ± 0.37
R-GAT 11.0 41.51 ± 0.47 35.40 ± 0.88 21.03 ± 0.59 35.90 ± 0.60 26.14 ± 0.34 67.17 ± 0.24 80.37 ± 0.62 22.09 ± 0.94 94.29 ± 0.16
HAN 19.1 39.00 ± 0.22 29.66 ± 0.43 13.14 ± 1.96 27.81 ± 0.69 17.03 ± 0.66 54.04 ± 2.17 78.56 ± 1.42 23.15 ± 0.43 84.58 ± 0.76
HGT 5.9 50.23 ± 0.48 39.47 ± 1.66 22.51 ± 0.40 35.51 ± 0.52 25.48 ± 0.76 78.91 ± 0.43 86.05 ± 1.01 30.89 ± 0.80 92.76 ± 0.15
HINormer 27.7 OOM OOM OOM OOM OOM OOM OOM OOM OOM
SHGN 11.0 43.39 ± 0.28 34.43 ± 1.23 22.03 ± 0.46 36.93 ± 0.67 24.07 ± 0.94 50.50 ± 0.89 79.67 ± 2.53 31.66 ± 0.86 89.33 ± 0.21

§§ H2G-former 1.1 55.67 ± 0.35 52.55 ± 0.66 28.47 ± 0.93 46.63 ± 0.65 30.62 ± 0.31 82.45 ± 0.19 87.35 ± 0.80 31.55 ± 0.92 96.43 ± 0.21

(LP, one and two hops) [42, 62], as well as a simple GNN model that
focuses on aggregation of neighborhood information with reduced
nonlinearities and weight matrices, SGC [53]. The first class of GNN
baselines, designed for homogeneous homophilic graphs, includes
GCN [23], GraphSAGE [15], GAT [49], GIN [55], APPNP [10], NAG-
phormer [5], GraphTrans [54], and Gophormer [60]. The second
class of baselines, optimized for homogeneous heterophilic graphs,
includes MixHop [1], LINKX [30], FAGCN [4], ACM-GCN [35],
LSGNN [6], GOAT [24], and PolyFormer [37]. The third class of
baselines, designed for heterogeneous homophilic graphs, includes
relational GCN (R-GCN) [46], GraphSAGE (R-GraphSAGE), GAT
(R-GAT), HAN [51], HGT [21], HINormer [38], and SHGN [36].
Lastly, we present a new modelH2G-former designed for hetero-
geneous heterophilic graphs, developed following our established
workflow (Section 5.3). The detailed descriptions of each model can
be found in Appendix C.1.

5 Experiments

In this section, we conduct comprehensive experiments to evaluate
existing and proposed methods in H2GB using an Nvidia V100
GPU with 32GB of memory. The homogeneous methods ignore the
node and edge types.

5.1 General Setup

5.1.1 Training and Evaluation. The dataset splits can be found
at Table 1, where most of the split strategy is based on timestamps
on the nodes. Test performance is reported for the learned parame-
ters corresponding to the highest validation performance. We use
F1 score as the metric for the datasets with large class imbalance,
as it is less sensitive to class imbalance than accuracy. For the other
datasets, we use classification accuracy as the metric.

5.1.2 Minibatching Sampling. Most existing heterophilic GNNs
are designed for small graphs and struggle to scale to large graphs.
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Figure 4: Model group performance versus heterophily. The

coefficient of variation is the standard deviation of model

accuracy in each group normalized by the mean accuracy.

The H2
index is indicated under each dataset name.

To enable training on large graphs, our framework supports op-
tional minibatching, where models process sampled local neigh-
borhoods instead of the full graph. In our experiments, we adopt
minibatching for scalability, using a consistent sampling strategy
across all models within each dataset to ensure fair comparison.
While some models may benefit from specialized sampling, vary-
ing strategies would introduce confounding factors that obscure
model-level effects.

5.2 Experimental Results

Table 3 lists the results of each method across the datasets proposed
in H2GB. We make the following observations:
(1) H2

G-former consistently outperforms baselines across di-

verse graph structures. It achieves the best average rank (1.1)
and consistently outperforms or matches the existing methods
on all of the datasets. This highlights its ability to effectively cap-
ture both heterophilic and heterogeneous structures, reinforcing
the need for models tailored to such real-world graphs.

(2) Homogeneous heterophilic GNNs struggle with hetero-

geneous graphs. While methods like MixHop and GOAT out-
perform homogeneous homophilic GNNs in our benchmark,
achieving a better average rank, their advantage diminishes
when compared to heterogeneous homophilic GNNs. This per-
formance degradation primarily stems from their inability to
effectively incorporate diverse node and edge types. For exam-
ple, the semantic meaning of each type of node can be different,
resulting in different distributions in the node features. These
homogeneous heterophilic GNNs cannot adjust their parameters
to learn from node features of different distributions.

(3) Performance of heterogeneous homophilic GNNs depends

on their ability to handle heterophily. The performance of
heterogeneous models varies significantly, likely due to differ-
ences in their architectural robustness when exposed to het-
erophily. For instance, models relying on local attention mech-
anisms (e.g., R-GAT, HAN, and SHGN compute attention over
1-hop neighbors) generally underperform. We quantitatively
illustrate this in Figure 4, where we select three datasets from a

single domain (academic networks), with similar heterogeneity
(number of nodes/edge types) but different heterophily. We eval-
uate the performance variations within each model group, and
can clearly observe that datasets with higher heterophily (e.g.,
oag-cs) show greater variations across models within the group.
Consistent with observation (2), we also observe that heteroge-
neous models perform better, with lower variations and higher
mean accuracy, emphasizing the importance of effectively han-
dling the different node and edge types in achieving good task
performance. Building on this insight, ourH2G-former incorpo-
rates 𝑘-hop attention, instead of 1-hop attention, and considers
the graph heterogeneity, leading to improved performance.

(4) Scalability issues in existing GNNs. A significant gap ex-
ists between the best and worst-performing homogeneous het-
erophilic GNNs, particularly as the graph size increases. Many
of these GNNs were designed for small-scale datasets and full-
graph training and struggle when trained on large-scale graphs
using mini-batching. For example, FAGCN and ACM-GCN show
degraded performance, consistent with observations in the pre-
vious work [30]. This underscores the need for scalable archi-
tectures that can handle both heterophily and heterogeneity.

(5) Dataset-specific insights: how performance varies by do-

main. Our results demonstrate that certain model types per-
form well in specific domains but fail in others, emphasizing
the importance of a diverse benchmark. In academic networks
(e.g., ogbn-mag and oag-cs), R-GraphSAGE and R-GCN perform
well, leveraging hierarchical information from paper-author-
affiliation relationships. Homogeneous heterophilicmodels strug-
gle, as they lack relational reasoning over entity types. In e-
commerce and security networks (e.g., RCDD and PDNS), GOAT
and PolyFormer perform well, suggesting that effective han-
dling of long-range dependencies and robust graph structure
encoding are crucial in fraud and security applications. In social
networks (e.g., H-Pokec), the homophilic model NAGphormer
performs surprisingly well, likely due to its ability to aggregate
information from multi-hop neighborhoods, effectively captur-
ing long-range homophilic signals. We also observe that models
leveraging heterophilic signals, such as MixHop and LSGNN,
achieve relatively strong performance by addressing heterophily
among labeled users. However, they still underperform com-
pared to H2G-former, as they fail to exploit the rich metapath
information embedded in the graph.

5.3 Case Study: H 2
GB for Model Development

H2GB provides user-friendly examples (Figure 5) and facilitates
research following our standardized workflow. We present a case
study on the construction of the oag-cs dataset and the develop-
ment of the H2G-former model.
• Step 1: Identifying Application. We aim to predict which
venue a computer science paper will be published in, a challeng-
ing task due to the diverse paper-author-affiliation interactions
and interdisciplinary nature of research.

• Step 2: Building and Standardizing Dataset. Using the Open
Academic Graph (OAG), we extract papers in the computer
science field to construct an academic network. We represent
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Figure 5: H2
GB has a user-friendly website and provides an

introduction with examples.

node features using paper abstract embeddings and define mul-
tiple node types, including papers, authors, affiliations, and top-
ics, along with their interactions as edge types. Publication
venues serve as node labels. This dataset is integrated intoH2GB
as oag-cs and made accessible through our standardized data
loader.

• Step 3: Evaluating Baselines and Identifying Limitations.

We evaluated all baselines and found the best accuracy to be
23.10%, meaning that fewer than a quarter of papers are correctly
classified. This suggests room for improvement.

• Step 4: Iterative Model Development using Modular Com-

ponents. To demonstrate how our benchmark can facilitate
principled model design, we use UnifiedGT to systematically
enhance a strong baseline, HGT (22.51%). As shown in Figure 3,
HGT consists of: HGSampling (Graph Sampling), Heterogeneous
Attention (Graph Attention), and 1-Hop Mask (Attention Mask-
ing). We experiment with component-level modifications: replac-
ing the 1-Hop Mask with k-Hop Mask (enabling better context
capture), enhancing graph encoding with masked label embed-
dings (which assists in predicting node labels), and introducing
a Type-Specific FFN since HGT lacks a dedicated FFN before the
output. This modular modification process results in our new
method, H2G-former, illustrating how H2GB enables targeted
model development through interpretable architecture changes.

• Step 5: Results. With these modifications, the accuracy im-
proves to 28.47% shown in Table 3, a 5.37% improvement over
the best baseline. This demonstrates how H2GB enables sys-
tematic model evaluation and component-wise experimentation,
making it a powerful toolbox for benchmarking and research.

6 Conclusion

We introduceH2GB, a comprehensive benchmark for evaluating
graph learning models on large-scale real-world heterophilic and
heterogeneous graphs. We provide a unified benchmarking library
with a standardized data loader, evaluator, and extensible frame-
work for systematic experimentation. Our comprehensive bench-
marking on 28 baseline models highlights the challenges posed by
heterophilic and heterogeneous graphs and provides insights into
model performance. Through a case study, we demonstrate how
H2GB facilitates model selection and guides the development of

improved methods such as H2G-former. We believe H2GB serves
as a vital resource for advancing scalable and realistic graph learn-
ing research. Directions for future work include incorporating more
datasets into H2GB and extending datasets and models to other
tasks such as link prediction and node regression.
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A Dataset Documentation, Metadata, and

Intended Use

All datasets in H2GB are intended for academic use, and their cor-
responding licenses are described in Appendix B.1. We release our
H2GB as an open-source library under the MIT license. For ease
of access, we provide the following links to the H2GB benchmark
suite and UnifiedGT framework:
• The open-source library is at https://github.com/junhongmit/
H2GB/.

• The H2GB Python package is at https://pypi.org/project/H2GB.
• Datasets and documentation are at https://junhongmit.github.
io/H2GB/.

Croissant Metadata. Croissant metadata records documenting
each dataset can be found at
• ogbn-mag, mag-year: Croissant metadata.
• oag-cs, oag-eng, oag-chem: Croissant metadata.
• RCDD: Croissant metadata.
• IEEE-CIS: Croissant metadata.
• H-Pokec: Croissant metadata.
• PDNS: Croissant metadata.

B Additional Dataset Details

B.1 Licenses

In this section, we indicate the licenses of the collected datasets:
• ogbn-mag, mag-year, oag-cs, oag-eng, oag-chem:ODC-BY. Li-
censed via Open Graph Benchmark [20] and Open Academic
Graph [59].

• RCDD: CC BY 4.0. Publicly released [32]. Node/edge type names
are redacted for confidentiality; features are numeric.

• IEEE-CIS: Released via the IEEE CIS Kaggle challenge [18], with
anonymized transaction records and numeric-only features. To
the best of our knowledge, it was not released with a license.

• Pokec: BSD. Provided via SNAP [27, 48]. Text features are re-
moved; only numeric features are retained for privacy.

• PDNS: Publicly released [25], with anonymized graphs and numeric-
only features. To the best of our knowledge, the dataset was not
released with a license.

B.2 Dataset Details.

All datasets inH2GB are formatted as HeteroData objects compat-
ible with PyTorch Geometric. We summarize each dataset below.

• ogbn-mag [20]: A heterogeneous academic graph with papers,
authors, institutions, and fields of study, connected via four re-
lation types. Paper nodes have 128-dimensional Word2Vec [39]
features; others are initialized via mean aggregation. Labels de-
note paper venues. We adopt the official temporal split: training
(pre-2018), validation (2018), testing (post-2018).

• mag-year [20]: Same structure as ogbn-mag, but paper labels
correspond to publication year buckets (5 balanced classes).

• oag-cs, oag-eng, and oag-chem [59]: Subsets of OAG for com-
puter science, engineering, and chemistry, respectively. Entities
and relations match ogbn-mag. Paper nodes use 768-dim XL-
Net [56] embeddings of their titles. Labels are paper venues. We
apply a temporal split: train (pre-2017), val (2017), test (post-
2017).

• RCCD (Risk Commodity Detection Dataset) [32]: A large-scale het-
erogeneous e-commerce graph from Alibaba. Node/edge types
(except for items) are anonymized. Item nodes have 256-dimemsional
features (BERT [7] + BYOL [13]). Labels indicate risk commodi-
ties (binary). We follow the official split, where the validation
set is split from the training set, and the test set is obtained over
time.

• IEEE-CIS-G [18]: A bipartite financial graph from a Kaggle fraud
detection dataset. Nodes include transactions and 11 types of
transaction metadata (e.g., card info, email domains). Edges link
transactions to metadata (22 relation types). Each transaction has
a 4823-dimensional feature vector. Fraud labels are binary; 4%
are positive. A temporal split is used for evaluation.

• H-Pokec [48]: A social network graph with users and hobby club
entities. Edges capture friendships and affiliations. User nodes
have 66-dimensional profile-based features and gender labels.
We apply a random split.

• P-DNS [25]: A cybersecurity graph of domain and IP nodes from
passive DNS logs. Edges include resolutions and domain similar-
ity. Domain nodes have 10-dimensional features (e.g., subdomain
count, impersonation flags) and binary labels for maliciousness.
We use a temporal split based on resolution time.
Figure 6 illustrates the heterogeneous graph schema for each

dataset. Each schema is a type-level graph, where nodes represent
node types and edges denote relation types. Legends indicate the
number of nodes and edges per type.

C Experiment Setup

Experiments are implemented in Python 3.9 using PyTorch 2.0.1 [41]
(BSD-3 license) and PyTorch Geometric 2.5.0 [8] (MIT license).
UnifiedGT builds on GraphGym [57] (MIT license), offering mod-
ular components and flexible configuration. We provide experiment
configurations for full reproducibility. All training and preprocess-
ing were conducted on an Nvidia V100 GPU (32GB memory).

C.1 Additional Details of Baselines

Baselines include five groups: (1) node-only methods, (2) structure-
only methods, (3) homogeneous homophilic GNNs, (4) homoge-
neous heterophilic GNNs, and (5) heterogeneous homophilic GNNs.
(1) Node-only. MLP [12] ignores the graph structure.
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Figure 6: The schema and node/edge information of each dataset in H2
GB.

(2) Structure-only. Label propagation [42, 62]: Spreads labels
based on graph connectivity. SGC [53]: Linearizes GCN by
collapsing weight matrices and removing nonlinearities.

(3) Homogeneous Homophilic GNNs. GCN [23]: A GNN that
uses a localized first-order approximation of spectral graph
convolutions. GraphSAGE [15]: A GNN that employs a sam-
pling and aggregation framework to efficiently generate node
embeddings. It concatenates the self-node features with neigh-
bors’ features and has been shown to perform well when the
graph exhibits some heterophily [64]. GAT [49]: A GNN that
employs the attention mechanism to weight the significance of
neighbors. GIN [55]: A GNN designed to capture the power of
the Weisfeiler-Lehman graph isomorphism test by using a sum
aggregator to update the node representations. APPNP [10]:
A GNN that combines the propagation of labels throughout
a graph with a personalized PageRank scheme for effective
learning. NAGphormer [5]: A transformer-based GNN that
integrates node features and graph topology through attention
mechanisms.

(4) HomogeneousHeterophilic GNNs.MixHop [1]: A heterophilic
GNN that aggregates features from a node’s neighbors at vari-
ous distances, allowing the model to learn more complex pat-
terns of heterophily. FAGCN [4]: A heterophilic GNN with
improved aggregation mechanisms considering the influence
of neighboring nodes based on their label discrepancy. ACM-

GCN [35]: A heterophilic GNN designed to discriminate be-
tween different types of node relationships. LINKX [30]: A
heterophilic GNN that decouples structure and feature trans-
formation, making it simple and scalable. LSGNN [6]: A het-
erophilic GNN that models heterophily using local similarity
and has been shown to outperform powerful heterophilic GNNs,
such as GloGNN [29].

(5) Heterogeneous Homophilic GNNs. RGCN [46]: A heteroge-
neous GNN that introduces relation-specific transformations
to separately aggregate neighbors based on relations. RGraph-
SAGE: GraphSAGE extended to handle heterogeneous graphs
by incorporating edge-type information into the aggregation

process. RGAT: GAT extended to heterogeneous graphs by in-
tegrating relational attention into its computation.HAN [51]: A
GNN that applies both node-level and semantic-level attention,
focusing on information aggregation along different metapaths.
HGT [21]: A heterogeneous GNN that introduces a type-aware
attention mechanism to learn node and edge type-dependent
representations. SHGN [36]: A heterogeneous GNN that im-
proves node representation learning by leveraging type-specific
embeddings, incorporating attention mechanisms and resid-
ual connections, and applying an ℓ2-norm to the output for
regularization and stability. HINormer [38]: A heterogeneous
GNN that uses a long-range aggregation mechanism for node
representation learning by using a local structure encoder and
a heterogeneous relation encoder.

C.2 Implementation Details

(1) Experiment Configurations. Hyperparameters are initialized
based on official settings and tuned for each dataset. All configu-
rations are available at https://github.com/junhongmit/H2GB/.

(2) Minibatching. Many heterophilic GNNs are not scalable to
large graphs. We apply minibatching using fixed sampling pa-
rameters across models to avoid OOM errors and ensure fair
comparisons.

(3) Graph Encoding. Featureless Nodes: Learnable embeddings
are assigned to node types lacking input features, such as in
H-Pokec and IEEE-CIS. Feature Projection: All features are
projected into a shared embedding space.

(4) Model Adaptation. Relational Extensions:We adapt Graph-
SAGE and GAT to heterogeneous graphs via PyG’s relational
wrappers, creating R-GraphSAGE and R-GAT. Optimized At-

tention: We provide an efficient cross-type heterogeneous
attention implementation using sparse operations to handle
fragmented edge representations in PyG/DGL.

(5) Optimization.We use the AdamW optimizer with cosine an-
nealing and warmup [33], with weight decay set to 10−5.
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