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We present parallel lightweight algorithms to construct wavelet trees, rank and select 
structures, and suffix arrays in a shared-memory setting. The work and depth of our 
first parallel wavelet tree algorithm match those of the best existing parallel algorithm 
while requiring asymptotically less memory and our second algorithm achieves the same 
asymptotic bounds for small alphabet sizes. Our experiments show that they are both 
faster and more memory-efficient than existing parallel algorithms. We also present an 
experimental evaluation of the parallel construction of rank and select structures, which 
are used in wavelet trees. Next, we design the first parallel suffix array algorithm based on 
induced copying. Our induced copying requires linear work and polylogarithmic depth for 
constant alphabets sizes. When combined with a parallel prefix doubling algorithm, it is 
more efficient in practice both in terms of running time and memory usage compared to 
existing parallel implementations. As an application, we combine our algorithms to build 
the FM-index in parallel.

© 2017 Published by Elsevier B.V.

1. Introduction

In recent years, compressed full-text indexes [32] have become popular as they provide an elegant way of compressing 
data while at the same time supporting queries on the compressed data efficiently. The most popular indexes all rely on 
three basic concepts: succinct rank and select on bit-vectors, wavelet trees, and suffix arrays. Modern applications need 
algorithms for constructing these data structures that are fast, scalable, and memory-efficient. The Succinct Data Structure 
Library (SDSL) [13] is a state-of-the-art library for constructing these data structures sequentially. Additionally, in recent 
years wavelet tree construction [10,37] and linear-work suffix array construction [19] have been successfully parallelized. 
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However, so far most parallel implementations are not memory-efficient. The goal of this work is to develop parallel algo-
rithms for constructing these data structures that are memory-efficient while at the same time being fast and scalable.

For wavelet tree construction, we reduce the space usage of the algorithm by Shun [37] from O (n log n) to n logσ + o(n)

bits of additional space beyond the input and output for an input size n and alphabet size σ . Our algorithm requires 
O (n logσ) work and O (log n logσ) depth. Our experiments on 32 cores show that our modified algorithm achieves a 
speedup of up to 7x over the original algorithm of [37], and achieves a speedup of up to 28x over the fastest sequen-
tial algorithm. Additionally, we propose a variation of the domain-decomposition algorithm by Fuentes et al. [10], which 
requires the same work, depth and space as our first algorithm when σ/ logσ ∈ O (log n). We also present an experimental 
evaluation of the parallel construction of rank and select structures, which are used in wavelet trees, and show self-relative 
speedups of 10–38x on 32 cores.

For suffix array construction there have been three main classes of algorithms described in the literature [36]: prefix 
doubling, recursive, and induced copying (sorting) algorithms. While prefix doubling [24] and recursive algorithms [19]
have been parallelized in the past, the sequential algorithms that are the fastest and most memory-efficient in practice all 
use induced copying. Induced copying algorithms are hard to parallelize because they use sequential loops with non-trivial 
data dependences. In this work, we develop a parallel algorithm using induced copying. We first use parallel rank and 
select on bit-vectors to develop a more memory-efficient version of the parallel implementation of prefix doubling from 
the Problem Based Benchmark Suite (PBBS) [39]. Then we show how to parallelize an iteration of induced copying for 
constant-sized alphabets in polylogarithmic depth. Finally we combine both techniques to generate a parallel version of a 
two-stage algorithm introduced in [17]. Our experiments show that our algorithm uses only slightly more space than the 
most memory-efficient sequential algorithm, and among parallel algorithms it is the most memory-efficient and usually the 
fastest. On 32 cores, our algorithm is up to 1.7x faster and uses 1.8x less memory than the fastest existing parallel algorithm, 
and achieves a speedup of 5–7x over the fastest sequential algorithm for non-repetitive inputs.

Finally, we use our algorithms to construct FM-indexes [7], a compressed full-text index, in parallel and integrate our 
implementations into the SDSL. Using the algorithms as part of the SDSL for FM-index construction, on 32 cores we achieve 
self-relative speedups of up to 18x and absolute speedups of up to 6x over the sequential SDSL implementation on a variety 
of real-world inputs.

2. Preliminaries

For cost analysis we use the work-depth model, where work W is the number of total operations required and depth D is 
the number of time steps required. Using Brent’s scheduling theorem [18] we can bound the running time by O (W /P + D)

using P processors on a PRAM. We allow for concurrent reading from shared memory locations but no concurrent writing.
We make use of the parallel primitives prefix sum, filter, and split. Prefix sum takes an array A of n elements, an associa-

tive operator ⊕ and an identity element ⊥ with ⊥ ⊕ x = x for all x, and returns the array {⊥, A[0], A[0] ⊕ A[1], . . . , A[0] ⊕
A[1] ⊕ . . .⊕ A[n −2]} as well as the overall sum A[0] ⊕ A[1] ⊕ . . .⊕ A[n −1]. Prefix sum can be implemented with O (n) work 
and O (log n) depth [18]. Filter and split both take an array A of n elements and a predicate function f with f (A[i]) ∈ {0, 1}. 
Split returns two arrays A0 and A1 where Ak holds all elements with f (A[i]) = k. Filter only returns A1. Both filter and split 
preserve the relative order between the elements and can be implemented using prefix sums in O (n) work and O (log n)

depth [18]. By dividing the input into groups of log n elements and processing each group sequentially and in parallel across 
all groups, filter and split can be implemented with n bits of space in addition to the input and output.

A string S is a sequence of characters from a finite ordered set � = [0, . . . , σ − 1], called the alphabet, where σ = |�|. 
|S| = n denotes the length, S[i] denotes the i’th character (zero-based) and S[i, . . . , j] denotes the substring from the i’th 
to the j’th position of S (inclusive). If j = |S| − 1 then S[i, . . . , j] is the i’th suffix of S . The ordering of � induces a 
lexicographical ordering for strings. The suffix array (SA) of a string is an array storing the starting positions of all suffixes 
of S in lexicographic order. As all suffixes of a string are unique, SA is a permutation and the inverse permutation is 
called the inverse suffix array (ISA). The Burrows–Wheeler transform (BWT) of a string S is the permutation BW T of S with 
BW T [i] = S[S A[i] − 1] for i ∈ {0, . . . , n − 1} where S[−1] = S[n − 1].

We define the three following queries on a string S: S[i] accesses the i’th element, rankc(S, i) counts the occurrences of 
character c in S[0, . . . , i − 1] and selectc(S, i) calculates the position of the i’th occurrence of c in S . For bit-vectors (σ = 2), 
there are rank and select structures using n + o(n) bits of space and supporting the queries in O (1) work [12]. Wavelet trees 
(WT) generalize this to larger alphabets [14]. A WT of the string S over the alphabet [a, . . . , b] ⊆ [0, . . . , σ − 1] has root 
node v . If a = b then v is a leaf node labeled with a. Otherwise v has a bit-vector B v where B v [i] = 1 if S[i] > (a + b)/2
and B v [i] = 0 otherwise. Let Sk be the string of all S[i] with B v [i] = k. The left child of v is the WT of the string S0 over 
the alphabet [a, . . . , �(a + b)/2�] and the right child is the WT of the string S1 over the alphabet [�(a + b)/2� + 1, . . . , b]. An 
example WT is shown in Fig. 1. The WT can support the three queries above in O (log σ) work. By changing the definition 
of B v , the shape of the WT can be altered from a balanced binary tree to, for example, a Huffman-shaped tree [27]. We 
refer the reader to [31] for numerous applications of WTs.

The FM-index is a compressed full-text index using the BWT of a text [7]. By supporting efficient rank and select queries 
on the BWT of a text S (for example, with a wavelet tree), the FM-index can efficiently count the number of occurrences 
of a pattern P in the text S . By additionally sampling the SA of S , the exact locations of the occurrences in S can be 
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Fig. 1. Example of a balanced binary wavelet tree over the string acbgfgdehdeb.

calculated. In this work we refer to the FM-index of S as the wavelet tree over the BWT of S augmented with rank and 
select structures.

3. Related work

Fuentes et al. [10] describe two O (n logσ) work and O (n) depth algorithms to construct WTs. The first uses the ob-
servation that the levels of the WT can be built independently; the second splits the input among processors, then builds 
WTs over each part sequentially and finally merges the WTs. Shun [37] introduces the first polylogarithmic-depth WT 
construction algorithms and also describes how to build the rank and select structures on the bit-vectors in parallel. The 
algorithm performing best in practice constructs the WT level-by-level. Each level is computed from the previous level in 
O (log n) depth. Recently, Ferres et al. [8] describe how to construct range min–max trees in parallel. Their structure can 
support rank/select queries on bit-vectors in O (log n). Recently, sequential algorithms with O (n logσ/

√
log n) work have 

been described [1,30] and have recently been parallelized [38], but none of these algorithms have been implemented.
Suffix arrays were first introduced by Manber and Myers [28] as a space-efficient alternative to suffix trees. Since then, 

many different suffix array construction algorithms have been developed, including the difference cover (DC3) algorithm [19]
and the induced sorting algorithm (SA-IS) [33]. DC3 was one of the first linear-work suffix array algorithms, and it can be 
efficiently parallelized in various computational models. There are parallel implementations of DC3 available for shared 
memory [39], distributed memory [9,21], and GPUs [5,35,42]. SA-IS is a lightweight linear-work algorithm and one of the 
fastest in practice. Unfortunately, it is hard to parallelize as the SA-IS algorithm consists of multiple sequential scans with 
non-trivial data dependences. Recently, Kärkkäinen et al. [20] introduced a new divide and conquer algorithm Scan. The 
algorithm first constructs SAs over chunks of the input text using an existing algorithm and then merges the partial SAs in 
parallel.

Many bioinformatics applications use compressed SAs, and thus there have been many frameworks with parallel SA 
implementations optimized for DNA inputs [16,25]. For example, PASQUAL [25] has a fast implementation using a combi-
nation of prefix-doubling and string sorting algorithms. For certain applications, only the BWT is needed so there has been 
significant work on constructing the BWT in parallel [15,26].

4. Parallel wavelet tree construction

In this section, we develop space-efficient parallel algorithms for WT construction. In addition to the tree structure and 
bit-vectors per node, each node of the WT also requires a rank/select structure. We describe our parallel implementation of 
rank/select structure construction at the end of this section.

Recursive WT. The levelWT algorithm proposed by Shun [37] uses prefix sums over the bit-vectors of a level of the WT to 
calculate the bit-vectors for the next level, allocating two integer arrays each of length n. As a result the algorithm has a 
memory requirement of O (n log n) bits. We reduce the memory requirement by substituting the prefix sums with the paral-
lel split operation, reducing the memory down to n logσ bits of additional space excluding the input and output. A further 
optimization is to implement the algorithm recursively instead of strictly level-by-level as done in [37]. In particular, the 
two children of a node are constructed via two recursive calls in parallel. This approach is more cache-friendly and avoids 
explicitly computing the node boundaries per level, which requires O (σ log n) bits of space, and instead each processor 
computes the boundaries when it launches the two recursive calls, requiring O (log n logσ) bits of stack space per processor 
(one pointer for each level of the tree). We refer to this algorithm as recursiveWT, and the pseudocode is shown below. 
Note that Lines 8 and 9 can proceed in parallel, and is implemented with fork-join. This algorithm has O (n log σ) work and 
O (log n logσ) depth, matching that of the original levelWT algorithm.

1 recursiveWT (S , � = [a, b]):
2 if a = b: return leaf labeled with a
3 v := root node
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Fig. 2. Example execution of the ddWT algorithm with k = 3. Displayed is the decomposition of the input S = acdbaabdabbc into chunks S0, S1 and S2

(line 2), the constructed wavelet trees B0, B1 and B2 (line 4) and the final result B (line 14). The bits of the wavelet trees are marked with the corre-
sponding colors S0 (purple), S1 (red) and S2 (green) of the input chunks. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

4 v.bitvector := bitvector of size |S|
5 parfor i := 0 to |S| − 1:

6 v.bitvector[i] =
{

0, if S[i] ≤ (a + b)/2,

1,else
7 (S0, S1) = parallelSplit ( S, v.bitvector)
8 pardo:
9 v.le f tChild = recursiveWT (S0, [a, � a+b

2 �])
10 v.rightChild = recursiveWT (S1, [� a+b

2 � + 1, b])
11 return v

Domain decomposition WT. Our second algorithm for WT construction (ddWT) is a modified version of the domain decom-
position algorithm introduced by Fuentes et al. [10]. The first part of our algorithm is the same as the original algorithm: 
the input string is split into k chunks, and a WT is constructed for each chunk independently in parallel. The second part 
of the algorithm involves merging the WTs. Fig. 2 illustrates how in general the ddWT algorithms works with an example. 
In the original algorithm of [10], the bit-vectors of each level are merged sequentially, leading to linear depth. We ob-
serve that merging the WTs essentially requires reordering the bit-vectors. Initially, the bit-vectors of the k WTs are stored 
consecutively in the bitmaps Bk . By calculating the prefix sum over the lengths of all bit-vectors belonging to each node 
in the final WT, we obtain the corresponding positions in the final bit-vector for each of the bit-vectors from the first 
part of the algorithm. Then the final bit-vector can be constructed by copying the input bit-vectors to it in parallel. We 
refer to this algorithm as ddWT, and the pseudocode is shown below. The first part of the algorithm requires O (n logσ)

work and O (n log(σ )/k) depth, and the second part of the algorithm requires O (kσ) work and O (log(kσ)) depth giving 
an overall work of O (kσ + n logσ) and depth of O (log(kσ) + n log(σ )/k). By choosing k ∈ �(n/ log n) the overall work is 
O (σn/ log n + n logσ) and the depth is O (log n logσ). If σ/ logσ ∈ O (logn) then our algorithm requires O (n logσ) work, 
O (log n logσ) depth and uses O (n logσ) bits of additional space. Subsequent to the initial publication of this algorithm [22,
23], Fuentes et al. [11] published a parallel domain decomposition algorithm very similar to ours.

1 ddWT (S, � , k = �(n/ logn)):
2 decompose S into k strings Si

3 parfor i := 0 to k−1:
4 (Bi , Nodes[i]) = serialWT(Si )
5 offsets := array of size 2 · |�| · k
6 parfor n := 0 to 2 · |�| − 1:
7 parfor i := 0 to k−1:
8 offsets[n · k + i] = Nodes[i][n].length
9 perform prefix sum on offsets

10 parfor i := 0 to k−1
11 parfor n := 0 to 2 · |�| − 1:
12 // destination: bv and offset , source: bv and offset , number of bits to copy
13 copy(B, offsets[n · k + i ], Bi , Nodes[i][n].start , Nodes[i][n].length)
14 return B

Both recursiveWT and ddWT can easily be adapted to construct different shapes of WTs, such as Huffman-shaped 
WTs [27]. For recursiveWT only the case distinction in Line 6 has to be changed. For ddWT on Line 4, the sequential 
algorithm for the desired shape is used. As part of a parallel version of the SDSL, we provide implementations of recur-
siveWT for constructing various shapes of WTs. For Huffman-shaped WTs, we assume that the shape of the Huffman tree is 
given as input. Note that the Huffman tree can be computed in parallel using the algorithm of [6]. Changing the shape of the 
wavelet tree has impact on the runtime analysis. Let h be the maximum height of the wavelet tree (previously logσ ) and 
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1 parallelRange (S ,n):
2 S A , I S A := integer arrays of size n
3 parfor i := 0 to n − 1:
4 I S A[i] = S[i]
5 S A[i] = i
6 ranges := {(0, n − 1)}
7 of f set := 0
8 while ranges not empty:
9 nranges := {}

10 parfor (s, e) in ranges:
11 sort all i ∈ S A[s, . . . , e] by the values at I S A[S A[i] + of f set]
12 parfor (s, e) in ranges:
13 scan S A[s, . . . , e] in parallel , update I S A and add equal ranges to nranges
14 ranges = nranges
15 of f set = max(1, 2 · of f set )
16 return S A

Fig. 3. Parallel range algorithm for parallel suffix-array construction.

m the total wavelet tree size in bits (previously n log σ ). For the Huffman shaped wavelet trees we can bound h ∈ O (log n)

using the results of Buro [3] and m ∈ O (nH0(s)). The recursiveWT, without the construction of the Huffman tree, then has 
O (log2 n) depth and O (nH0(s)) work.

In both algorithms recursiveWT and ddWT we write to the bits of shared words in parallel. These writes can be executed 
sequentally in log n depth. As both algorithms already need O (log n) depth per level this does not change the runtime 
analysis. In practice we use the compare-and-swap instruction to write to shared words in parallel.

Parallel rank. We now describe our parallel implementation of constructing rank and select structures on bit-vectors based 
on the ideas of [37]. The answers to the rank queries are pre-computed and stored in first and second-level lookup tables. 
In theory the first level dictionary stores the answer for every log2 n query in O ( n

log2 n
log n) bits. The second level stores 

relative answers to every log n
2 query in O ( n

log n log log n) bits. With the first and second level lookup tables every log n
2 query 

can be answered. For all other queries an additional relative rank has to be computed in a block of length log n
2 . These are 

pre-computed and stored in an additional lookup table. As there are only 2
log n

2 = √
n different types of blocks this table also 

has sublinear space.
In practice, we chose to parallelize the broadword implementation in SDSL [40]. The rank structure uses 25% additional 

space for the bit-vector and has a cache-friendly memory layout. The construction can be parallelized using prefix sums.

Parallel select. For select, we parallelize the SDSL implementation of a variant of the structure by Clark [4]. Similar to the 
rank structure, the first level stores the answers to every log2 n query in O ( n

log2 n
log n) bits. If two pre-computed query 

results differ by more than log4 n all queries in-between are also precomputed and stored explicitly. We call this block of 
queries a long block, all other blocks are called short blocks. There can be at-most n

log4 n
long blocks, thus all answers of 

these blocks can be stored in O ( n
log4 n

log3 n) bits. For the short blocks the relative answer to every log2 n query is stored in 

O ( n
log2 n

log log n) bits. If two pre-computed querys differ by more than log n
2 the relative answers of the queries in between 

are stored explicitly. This can be done in O ( n
log n log log n) bits. The relative answers to the remaining queries are part of 

blocks of size log n
2 . As there are only 2

log n
2 = √

n different type of blocks, these answers can be stored in a look-up table. 
For a more detailed analysis, see [4].

Prefix sums can be used to categorize the blocks into long and short blocks. After categorizing the blocks, they can be 
initialized independently. As short blocks are only of polylogarithmic size, they can be initialized sequentially in polyloga-
rithmic depth. Long blocks are also initialized with prefix sums.

5. Parallel suffix array construction

Previous parallel SA algorithms either use the recursive [19] or prefix doubling [24] approach. However the fastest and 
most space-efficient sequential SA algorithms use induced copying [36], so our goal here is to parallelize such an algorithm. 
We first describe a simple parallel prefix doubling algorithm, which in practice needs little more than n log n bits of memory 
in addition to the input and output. We then introduce a parallel algorithm which uses induced copying, and uses the prefix 
doubling algorithm as a subroutine. The algorithm uses n + o(n) additional bits of space.

Parallel range. Parallel Range algorithm (shown in Fig. 3) from the PBBS [39] is a parallel version of the suffix array con-
struction algorithm described by Larsson and Sadakane [24]. The algorithms starts by approximating the ISA array with the 
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1 bucket A := Starting positions of the A buckets
2 bucket B := Ending position of the B buckets
3 for i := n − 1 to 0:
4 if S A[i] has been initialized and S A[i] − 1 is a B−type suffix:
5 S A[bucket B[S[S A[i] − 1]]] = S A[i] − 1
6 bucket B[S[S A[i] − 1]] = bucket B[S[S A[i] − 1]] − 1
7 for i := 0 to n − 1:
8 if S A[i] − 1 is an A−type suffix:
9 S A[bucket A[S[S A[i] − 1]]] = S A[i] − 1

10 bucket A[S[S A[i] − 1]] = bucket A[S[S A[i] − 1]] + 1

Fig. 4. Induced sorting of all A and B-type suffixes by using the already sorted B∗-type suffixes.

Fig. 5. Example of induced sorting of B suffixes using B∗ suffixes. The SA entries corresponding to the B∗ suffixes are circled, and the order in which SA is 
filled in is denoted by the arrows. Each chain of arrows corresponds to a run of B suffixes ending with a B∗ suffix.

1 bucket B := Ending position of the B buckets
2 for α := σ − 1 to 0:
3 [s, e] := interval in S A of all suffixes starting with α
4 bucket Sums := array of arrays to count number of suffixes put into buckets
5 parfor i := e to s:
6 if S A[i] has been initialized and S A[i] − 1 is a B−type suffix:
7 bucket Sums[S[S A[i] − 1]][i] = bucket Sums[S[S A[i] − 1]][i] + 1
8 parfor α := 0 to σ − 1:
9 perform prefix sum on bucket Sums[α]

10 parfor i := e to s:
11 if S A[i] has been initialized and S A[i] − 1 is a B−type suffix:
12 b := S[S A[i] − 1]
13 S A[bucket B[b] − bucket Sums[b][i]] = S A[i] − 1

Fig. 6. Parallel induced sorting of all B-type suffixes for inputs with no repetitions of characters.

1 [e′, e] := interval of S A values that already are initialized
2 α := first character of all the suffixes in S A[s, e]
3 while [e′, e] not empty:
4 m := ∣∣{i ∈ [e′, e] | S[S A[i] − 1] = α}∣∣
5 S A[e′ − m − 1, e′ − 1] = {x ∈ S A[e′, e] | S[S A[x] − 1] = α} // using filter
6 e := e′ − 1
7 e′ := e′ − m − 1
8 parfor i := e′ to e:
9 S A[i] = S A[i] − 1

Fig. 7. Subroutine of parallel induced sorting of B-type suffixes for inputs with repetitions (insert after Line 3 of the pseudocode in Fig. 6).

characters of the text, here the one-to-one correspondence of the alphabet with integers smaller σ is used (Lines 3–5 in 
Fig. 3). A series of at most log n refinement steps are then applied, where after step d, the suffixes are sorted by their first 2d

characters and the ISA array is updated to reflect this order. Afters step d the ISA array holds the ranks of the suffixes first 
2d characters. Note that ISA array is not a valid permutation until all suffixes have been sorted correctly. More precisely on 
step d groups of suffixes with the same ISA value from the previous step are sorted by their first 2d characters by accessing 
I S A[S A[i] +2d−1] for suffix i (Lines 10–11 in Fig. 3). Then the groups and I S A values are updated (Lines 12–13). Each group 
of S A elements that compared equal during the sorting forms a new group. The I S A values of a new group (s, e) are all 
set to s. Singleton elements are not stored as group (s, s), however the I S A value is set to I S A[S A[s]] = s. In the original 
implementation, two integer arrays (one for reading and one for writing) are used to keep track of groups of same ISA value, 
occupying an additional 2n log n bits. To reduce memory consumption, we mark the boundaries of groups with a bit-vector. 
Using a parallel select structure allows us to iterate over all groups of the same ISA value efficiently. Thus the algorithm 
only needs n log n additional bits for the ISA array, 2n +o(n) bits for two bit-vectors with select structures, and the space for 
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Table 1
Collection statistics: number of characters, alphabet size and average LCP value.

Input n σ Average LCP

non-repetitive real inputs
sources 210,866,603 229 371.8
pitches 55,814,376 132 262.4
proteins 1,184,051,855 27 1,421.6
dna 403,927,746 16 2,420.7
english.1024MB 1,073,741,816 236 36,886.5
dblp.xml 296,135,874 97 44.9

repetitive real inputs
Escherichia_Coli 112,689,515 15 11,322.4
cere 461,286,644 5 7,080.1
coreutils 205,281,760 235 149,625.9
einstein.de.txt 92,758,441 117 35,248.1
influenza 154,808,555 15 774.7
kernel 257,961,544 159 173,308.1
para 429,265,758 5 3,275.2
world_leaders 46,968,181 89 8,837.2

fib41 267,914,296 2 70,711,161.3
rs.13 216,747,218 2 44,038,468.6
tm29 268,435,456 2 32,156,331.2

dblp.xml.00001.1 104,857,600 89 94,981.5
dblp.xml.00001.2 104,857,600 89 95,781.4
dblp.xml.0001.1 104,857,600 89 9,844.8
dblp.xml.0001.2 104,857,600 89 9,865.6
dna.001.1 104,857,600 5 993.0
english.001.2 104,857,600 106 987.3
proteins.001.1 104,857,600 21 991.4
sources.001.2 104,857,600 98 992.2

artificial inputs
aaa 104,857,600 1 52,428,799.5
abab 104,857,600 2 52,428,798.5
aabbaabb 104,857,600 2 51,388,088.8

rnd-8 104,857,600 28

rnd-12 104,857,600 212

rnd-16 104,857,600 216

rnd-20 104,857,600 220

the sorting routine. Using a parallel integer sorting algorithm with O (n) work and O (nε) depth for 0 < ε < 1 [41], Parallel 
Range has O (n log n) work and O (nε log n) depth.

Parallel DivSufSort. Using Parallel Range, we can parallelize the DivSufSort implementation [29] by Mori of the two-stage 
algorithm [17].

In the first step the suffixes are categorized into A, B , and B∗ suffixes. A suffix S[i, . . . , n − 1] is of type A if S[i + 1,

. . . , n − 1] < S[i, . . . , n − 1] and of type B otherwise. B∗ suffixes are all B-type suffixes that are followed by an A-type suffix. 
This step can be parallelized using two parallel loops and prefix sums in O (n) work and O (log n) depth. In the first parallel 
for loop the boundaries of continuous ranges of either category type are computed. With the prefix sums these positions 
are propagated across the suffix array. With the second parallel loop the actual categorization takes place.

The second step lexicographically sorts all of the B∗ substrings. B∗ substrings are all substrings formed by the characters 
between two consecutive B∗ suffixes. Then each B∗ substring can be replaced by its rank among the B∗ substrings, forming a 
reduced text. Note that there are very efficient parallel string sorting algorithms available [2]. Our implementation, however, 
only parallelizes an initial bucket sort and uses a sequential multikey quicksort for the resulting buckets.

The third step constructs the SA of the reduced text. As the text size has been reduced by at least half, since there can 
be at most n/2 B∗ suffixes, the unused part of the SA can be used for the ISA. Thus Parallel Range can be applied with only 
n + o(n) bits additional space, plus the space needed for the sorting routine.

In the final step, the sorted order of the B∗ suffixes is used to induce the sorting of the remaining suffixes. We describe 
induced sorting next, and introduce a linear-work polylogarithmic-depth algorithm for induced sorting on constant-sized 
alphabets.

Induced sorting. The sequential algorithm for induced sorting (shown in Fig. 4) consists of two sequential loops, one sorting 
the B suffixes and one sorting the A suffixes. At the beginning, the SA entries corresponding to B∗ suffixes are initialized. 
The order in which the SA is traversed is crucial to guarantee a correct sorting. B-type suffixes are defined such that if a 
B-type suffix is directly preceded (in text order) by another B-type suffix, then the preceding suffix has to be lexicograph-
ically smaller. Fig. 5 shows an example of how induced sorting inserts B-type suffixes into the SA. The arrows indicate the 
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Table 2
Running times (seconds) sequential, parallel and self-relative speedup of WT construction algorithms on 32 cores. The 
fastest parallel running times are marked in bold.

Input levelWT recWT ddWT serWT sdslWT

T1 T64
T1
T64

T1 T64
T1
T64

T1 T64
T1
T64

T1 T1

non-repetitive real inputs
sources 8.97 1.02 8.76 4.75 0.15 31.87 6.78 0.28 24.54 3.88 5.80
pitches 2.63 0.27 9.56 1.70 0.05 33.35 2.22 0.09 24.13 1.26 1.96
proteins 36.28 3.32 10.92 26.96 0.72 37.42 33.93 1.12 30.32 18.77 36.60
dna 9.49 0.85 11.11 7.43 0.20 36.44 8.97 0.33 26.92 4.95 12.50
english.1024MB 47.54 5.30 8.97 26.73 0.83 32.24 53.55 1.46 36.75 21.61 33.40
dblp.xml 10.84 1.23 8.83 5.34 0.17 31.49 7.92 0.33 24.20 4.61 6.91

repetitive real inputs
Escherichia_Coli 2.12 0.23 9.02 1.19 0.04 32.00 1.65 0.09 18.38 0.96 2.46
cere 5.52 0.65 8.53 2.69 0.09 28.84 4.11 0.21 19.65 2.34 8.84
coreutils 8.12 0.99 8.17 3.60 0.12 28.84 5.57 0.24 23.40 3.32 4.11
einstein.de.txt 3.12 0.39 8.08 1.35 0.05 27.88 2.12 0.10 20.41 1.26 1.76
influenza 2.68 0.32 8.30 1.21 0.04 27.91 1.82 0.12 14.75 1.07 2.97
kernel 10.06 1.25 8.07 4.34 0.15 28.25 6.57 0.30 21.75 3.94 5.01
para 5.17 0.60 8.59 2.57 0.09 29.19 3.84 0.19 19.82 2.21 8.33
world_leaders 1.57 0.20 8.01 0.69 0.03 27.18 1.06 0.05 19.63 0.63 0.91

fib41 0.34 0.01 30.06 0.34 0.01 31.04 0.62 0.03 18.88 0.32 4.99
rs.13 0.31 0.01 31.47 0.30 0.01 32.79 0.56 0.03 20.20 0.29 4.04
tm29 0.39 0.01 32.36 0.38 0.01 33.86 0.70 0.05 15.40 0.36 4.99

dblp.xml.00001.1 3.60 0.43 8.33 1.56 0.05 28.79 2.49 0.12 20.14 1.48 1.99
dblp.xml.00001.2 3.60 0.43 8.30 1.57 0.06 28.45 2.49 0.12 20.60 1.48 1.99
dblp.xml.0001.1 4.18 0.44 9.61 1.57 0.05 28.69 2.49 0.12 20.34 1.48 1.99
dblp.xml.0001.2 3.60 0.44 8.27 1.57 0.05 28.65 2.49 0.12 20.27 1.48 2.00
dna.001.1 1.25 0.15 8.51 0.61 0.02 28.29 0.89 0.07 13.62 0.53 2.00
english.001.2 3.57 0.43 8.22 1.57 0.06 28.37 2.45 0.12 20.50 1.44 2.04
proteins.001.1 2.45 0.29 8.40 1.11 0.04 28.72 1.71 0.10 17.49 1.02 2.02
sources.001.2 3.58 0.43 8.27 1.59 0.05 29.19 2.50 0.12 20.13 1.48 2.04

artificial inputs
rnd-8 7.98 0.81 9.80 8.18 0.35 23.63 9.25 0.44 21.26 4.92 215.00
rnd-12 12.08 1.23 9.86 12.48 0.49 25.46 13.90 0.62 22.40 7.43 226.00
rnd-16 15.94 1.46 10.89 16.68 0.55 30.15 18.58 0.85 21.75 9.92 237.00
rnd-20 19.85 1.69 11.76 21.17 0.66 31.91 23.31 1.83 12.74 12.40 252.00

insert operations in Line 5 of the induced sorting algorithm. Intuitively, induced sorting works because insert operations 
into a bucket are made in decreasing lexicographical order. For A-type suffixes the observation is analogous. For a full proof 
that this algorithm induces the correct SA, we refer the reader to [33]. Now we describe how to parallelize the induced 
sorting of the B-type suffixes. Sorting the A-type suffixes can be done analogously.

Parallel induced sorting. Inspecting Lines 3–6 of Fig. 4 reveals dependences in S A and bucket B among iterations. We say that 
S A position bucket B[S[S A[i] − 1] is being initialized by position i. To perform the iteration i of the for-loop independently 
from the other iterations, we need to know the value of S A[i] and of bucket B[S[S A[i] − 1] before the for-loop executes. 
Assuming an interval of S A values have already been initialized, the size of the buckets can be pre-computed using prefix 
sums, enabling the for-loop to be executed in parallel. If we make the simplifying assumption that consecutive characters 
are always different in the input string (an assumption which we will remove later), then S[S A[i] − 1] < S[S A[i]] holds on 
Line 5. Hence, no B-type suffix will be initialized by a suffix in the same bucket. Thus, once the loop has been executed for 
all B-type suffixes with lexicographical larger first characters than α, all B-type suffixes starting with character α have been 
initialized. This gives us a way to parallelize induced sorting for the case of no consecutive repeated characters in the input 
string by executing the for-loop σ times, each time processing all suffixes starting with a particular character in parallel. 
The pseudocode for this algorithm is shown in Fig. 6. Note that the intervals [s, e] on Line 3 have already been computed 
as a byproduct of determining the B∗ suffixes.

The complexity of the algorithm is dominated by the prefix sums (Line 9 of Fig. 6), leading to an O (σ log n) depth and 
O (σn) work algorithm. To make the algorithm linear-work, we compute bucket Sums[α][i] only for every σ log n’th position 
of i. We can easily compute bucket Sums[α][i − 1] from bucket Sums[α][i] in constant work. So we can fill in the gaps by 
executing blocks of size σ log n of the loop in Line 10 sequentially, but in parallel across all blocks, thus resulting in an 
O (σ 2 log n) depth and O (n) work algorithm. To store only every σ log n’th value of bucketSums we need n bits of space.

Dealing with repetitions in the input text. The previous algorithm assumes that there are no repeated consecutive characters. 
However, this does not hold in general. We now generalize the algorithm. We present a linear-work algorithm with depth 
O (σ log n 

∑
α∈� Rα), where Rα is the longest run of the character α in T . For general inputs, the property S[S A[i] − 1] <
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Table 3
Memory consumption (bytes per input character) of WT construction on 
32 cores. The algorithm with the lowest memory consumption among the 
parallel algorithms is marked in bold.

Input levelWT recWT ddWT serWT sdslWT

non-repetitive real inputs
sources 12.13 4.14 5.10 4.00 4.28
pitches 12.42 4.43 5.64 4.02 4.25
proteins 11.66 3.66 4.27 3.63 4.82
dna 11.57 3.56 4.05 3.50 4.34
english.1024MB 12.04 4.04 5.02 4.00 4.00
dblp.xml 11.97 3.97 4.82 3.88 4.82

repetitive real inputs
Escherichia_Coli 11.70 3.68 4.13 3.51 4.22
cere 11.43 3.43 3.77 3.38 4.17
coreutils 12.13 4.13 5.08 4.00 4.33
einstein.de.txt 12.13 4.17 4.95 3.89 4.48
influenza 11.64 3.64 4.10 3.51 4.75
kernel 12.11 4.11 5.05 4.00 4.05
para 11.43 3.44 3.80 3.38 4.26
world_leaders 12.32 4.33 4.98 3.91 4.53

fib41 1.20 1.19 1.37 1.13 4.01
rs.13 1.21 1.20 1.35 1.13 4.25
tm29 1.20 1.20 1.34 1.13 5.01

dblp.xml.00001.1 12.11 4.10 4.88 3.89 4.30
dblp.xml.00001.2 12.14 4.13 4.90 3.89 4.30
dblp.xml.0001.1 12.10 4.13 4.86 3.89 4.31
dblp.xml.0001.2 12.11 4.17 4.86 3.89 4.32
dna.001.1 11.59 3.55 3.88 3.39 4.31
english.001.2 12.11 4.13 4.88 3.89 4.31
proteins.001.1 11.83 3.88 4.36 3.64 4.31
sources.001.2 12.11 4.12 4.89 3.89 4.30

artificial inputs
rnd-8 47.43 39.37 39.11 39.17 54.86
rnd-12 49.69 41.70 41.43 41.49 57.19
rnd-16 51.90 43.91 47.91 43.69 69.95
rnd-20 54.11 46.13 138.06 45.92 72.19

Table 4
Sequential and parallel running times (seconds), and self-relative speedup of rank and select 
structure construction algorithms on 32 cores.

Input parallelRank SDSL-Rank parallelSelect SDSL-Select

T1 T64 T1/T64 T1 T1 T64 T1/T64 T1

sources 0.93 0.028 33.2 0.5 2.5 0.22 11.4 4.4
pitches 0.24 0.0077 31.2 0.13 0.67 0.061 11.0 1.1
proteins 3.4 0.09 37.8 1.8 13 0.88 14.8 48
dna 0.88 0.027 32.6 0.49 3.9 0.3 13.0 24
english 4.9 0.13 37.7 2.7 13 1.2 10.8 28
dblp.xml 1.1 0.034 32.4 0.63 3.4 0.3 11.3 7.1

S[S A[i]] is relaxed to S[S A[i] − 1] ≤ S[S A[i]] when S A[i] − 1 is a B-type suffix. This means that even after executing the 
loop for all B-type suffixes with lexicographical larger first character than α, not all SA values in the interval [s, e] (refer 
to Fig. 6) have been initialized. In particular, all B-type suffixes with multiple repetitions of α have not been initialized. 
We observe that the B-type suffixes that begin with multiple repetitions of α are lexicographically smaller than those with 
only a single α. Thus [s, e] can be divided into two contiguous parts [s, e′ − 1] and [e′, e] where all SA values in [e′, e]
have already been initialized and all values [s, e′ − 1] still need to be initialized. The algorithm shown in Fig. 7 initializes 
in the k’th iteration of the while loop all suffixes that have (k + 1) repetitions of α, which would be done after Line 3 of 
the algorithm in Fig. 6. At most Rα iterations of the while loop in Line 3 of Fig. 7 are needed until all B-type suffix starting 
with α are initialized. Calculating m and the filter primitive require O (log n) depth. The overall depth of the algorithm 
is therefore O (σ log n 

∑
α∈� Rα). 

∑
α∈� Rα has an upper bound of O (n), but is much smaller for most real-world inputs. 

The overall work is O (n), as constant work is spent for each i ∈ [e′, e] and all intervals [e′, e] are disjoint. As filter can be 
implemented using n bits of additional space the space requirement is unchanged.

Polylogarithmic depth. Theoretically, we can reduce the depth to O (σ 2 log n + σ log2 n) while maintaining linear work by 
processing suffixes with between 2k and 2k+1 repetitions in parallel, for each value of k ∈ {0, . . . , log Rα}. For each character, 
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Fig. 8. Absolute speedup of wavelet tree construction compared to serWT as function of number of threads.

this requires O (log n) rounds, each with O (log n) depth, leading to the O (σ log2 n) term. First, we calculate and store the 
number of repetitions of the character α for each suffix. This can be done in linear work and O (log n) depth by marking the 
end of runs in a bit-vector and constructing the rank/select structures. Then each suffix simply looks up this information 
by performing some arithmetic in O (1) work. Now we initialize all suffixes in [s, e] which have [2k, . . . , 2k+1] repetitions of 
the character α, for increasing k = 0, . . . , log M , where M is the maximum number of repetitions. For each value of k, the 
suffixes which have at least p repetitions of α can be initialized independently by filtering out the suffixes with less than 
p repetitions from the suffixes with 2�log2 p� repetitions. Note that to use the filter primitive in linear work, the number 
of repetitions of the character α has to be pre-calculated. A suffix with p repetitions of α will contribute O (p) to the 
overall work because it will be involved in at most 2p filter calls. However, a suffix with p repetitions also contributes to 
p suffixes in [s, e]. Thus the B-type suffixes starting with a character α can be initialized in O (log2 n) depth and constant 
work per suffix.

For a constant alphabet size, this results in a polylogarithmic-depth and linear-work parallelization of the induced sorting 
approach used by DivSufSort or by the SA-IS algorithm (note that for polylogarithmic depth, this approach is only used for 
the first iteration, as σ may increase afterward). We did try an implementation of this theoretically-efficient algorithm but 
found that the simpler O (σ log n 

∑
α∈� Rα) depth algorithm was much faster in practice due to 

∑
α∈� Rα being small and 

large overheads in the theoretically-efficient version. We report experimental results for the simpler version.
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Table 5
Sequential and parallel running times (seconds), and speedup of SA construction on 32 cores.

Input KS Range parDss Scan serDss

T1 T64
T1
T64

T1 T64
T1
T64

T1 T64
T1
T64

T1 T64
T1
T64

T1

non-repetitive real inputs
sources 99.92 6.45 15.48 68.87 4.38 15.74 44.46 2.79 15.94 19.92 20.89 0.95 19.17
pitches 20.69 1.28 16.15 16.64 1.03 16.07 8.36 0.58 14.46 4.19 17.52 0.24 3.76
proteins 608.03 38.32 15.87 512.01 26.24 19.51 452.75 23.23 19.49 181.77 38.17 4.76 178.08
dna 182.15 12.30 14.81 90.22 6.65 13.57 85.37 9.23 9.25 50.55 23.75 2.13 49.72
english.1024MB 566.10 35.60 15.90 849.91 41.04 20.71 549.60 26.99 20.36 149.55 36.74 4.07 151.42
dblp.xml 134.43 8.87 15.15 85.61 6.61 12.95 61.30 4.53 13.53 29.27 21.70 1.35 28.83

repetitive real inputs
Escherichia_Coli 49.30 3.06 16.10 80.67 3.90 20.66 40.23 3.01 13.37 12.68 19.21 0.66 12.43
cere 204.47 13.63 15.00 320.33 18.28 17.52 188.72 16.25 11.61 52.71 24.74 2.13 52.77
coreutils 95.34 6.13 15.56 221.76 11.78 18.83 100.86 5.58 18.09 21.24 21.17 1.00 20.89
einstein.de.txt 39.94 2.48 16.12 74.02 4.61 16.05 37.03 2.31 16.06 9.07 20.30 0.45 8.75
influenza 65.24 4.19 15.58 76.28 4.49 17.00 47.44 4.28 11.09 16.27 20.70 0.79 16.10
kernel 121.94 7.97 15.30 254.53 15.67 16.24 127.85 7.45 17.16 27.76 21.99 1.26 26.68
para 192.48 12.87 14.96 284.89 15.04 18.94 158.99 14.87 10.69 51.30 22.89 2.24 50.79
world_leaders 17.54 1.16 15.12 26.04 1.94 13.42 4.65 0.53 8.72 2.10 18.71 0.11 1.92

fib41 75.49 5.74 13.16 367.91 28.91 12.73 235.78 20.69 11.39 45.41 28.57 1.59 44.55
rs.13 66.56 4.64 14.33 299.86 21.76 13.78 194.69 17.07 11.41 35.29 26.51 1.33 35.29
tm29 78.85 6.07 13.00 365.04 25.88 14.10 238.87 18.83 12.69 53.92 24.53 2.20 53.04

dblp.xml.00001.1 44.59 2.85 15.67 67.40 5.96 11.31 35.07 2.49 14.10 10.26 21.23 0.48 9.77
dblp.xml.00001.2 43.74 2.82 15.53 91.47 6.44 14.20 43.44 2.71 16.04 10.06 20.80 0.48 9.70
dblp.xml.0001.1 44.47 2.83 15.71 55.82 4.69 11.90 29.21 2.13 13.71 9.90 19.02 0.52 9.67
dblp.xml.0001.2 43.79 2.79 15.67 79.76 5.19 15.38 38.37 2.39 16.03 9.82 19.96 0.49 9.61
dna.001.1 42.61 2.64 16.12 33.99 2.68 12.66 25.71 2.67 9.63 10.77 19.15 0.56 10.49
english.001.2 44.77 2.79 16.06 64.63 3.77 17.15 39.14 2.44 16.03 11.53 19.10 0.60 11.10
proteins.001.1 46.40 2.78 16.68 37.65 2.87 13.10 31.74 1.80 17.60 12.22 18.50 0.66 11.89
sources.001.2 43.83 2.83 15.47 62.09 3.79 16.37 31.45 2.52 12.50 9.46 19.18 0.49 9.12

artificial inputs
aaa 11.17 1.08 10.36 96.13 9.59 10.02 0.34 0.54 0.64 0.85 20.85 0.04 0.48
abab 12.40 1.17 10.59 102.34 11.49 8.91 38.11 4.46 8.55 2.28 20.31 0.11 2.12
aabbaabb 17.29 1.28 13.50 81.80 8.17 10.02 1.44 1.86 0.77 1.55 22.57 0.07 1.34

6. Parallel FM-index construction

By combining our parallel algorithms for WTs, rank and select structures, and SA construction, we can construct FM-
indexes [7] in parallel. The BWT required by the FM-index is computed from the SA in the naive way, using BW T [i] =
S[S A[i] − 1]. Our parallelization of induced sorting can also be applied to algorithms computing the BWT without first 
computing the SA. To compute the number of occurrences of a pattern in the text, only the WT of the BWT is needed. 
To compute the actual position of matches in the text, a sample of the SA is generated in parallel at the beginning and 
stored.

7. Experiments

We present experimental results of our implementations of the parallel algorithms described in this paper. We use a 
32-core machine with two 16 core Intel(R) Xeon(R) E5-2683 v4 @ 2.10 GHz CPUs with enabled hyper-threading, and 512 GB
main memory. We use Cilk Plus to express parallelism, and the code is compiled with the gcc 5.2.0 passing the -O2 flag. We 
use the Pizza&Chili corpus http :/ /pizzachili .dcc .uchile .cl, random integer sequences with alphabet sizes 2k (rnd-2k) and the 
generated files aaa, abab and aabbaabb for testing. The file aaa contains the string a104857600, abab the string (ab)52428800

and aabbaabb the string (a524288b524288)100. The file sizes, alphabet sizes and average LCP value of the input files are listed 
in Table 1, grouped according to their characteristics. For example, some inputs are highly repetitive while others are not. 
We report both running times and memory consumption of the algorithms. Memory consumption includes the input and 
the output. The fastest or most memory-efficient parallel implementations are marked in bold in the tables. In addition, we 
provide plots of absolute speedup versus thread count.

Wavelet tree. Table 2 compares the 32-core running time of our algorithms ddWT and recursiveWT to the parallel levelWT
implementation, the serial serWT implementation from [37] and the SDSL implementation sdslWT, and Table 3 compares 
their memory consumption. The reported times do not include the construction times of the rank/select structures on the 
bit-vectors of the wavelet tree. ddWT and recursiveWT clearly outperform levelWT on byte alphabets. On the non-repetitive 

http://pizzachili.dcc.uchile.cl


JID:JDA AID:676 /FLA [m3G; v1.213; Prn:7/04/2017; 11:50] P.12 (1-16)

12 J. Labeit et al. / Journal of Discrete Algorithms ••• (••••) •••–•••
Fig. 9. Absolute speedup of suffix array construction compared to serDss as a function of number of threads.

real inputs recursiveWT is around 4–7x faster than levelWT while using around 3x less memory. Both recursiveWT and ddWT
achieve good self-relative speedups on 32 cores, and compared to serWT, they are 25–27x and 13–16x faster, respectively 
on these inputs. RecursiveWT outperforms the other algorithms for all input files. Fig. 8 compares the speedup relative to 
serWT of the parallel algorithms on selected input files as a function of thread count.

Rank and select. Table 4 compares the construction times of our parallel implementation of rank/select structures on 32 
cores to the sequential times from the SDSL. As input the concatenated levels of the WTs of the input files were used. 
The self-relative speedup is 31–38x for rank and 10–15x for select. Compared to the sequential SDSL times, we are 16–21x 
faster for rank and 18–80x faster for select (note that our parallel select on a single thread outperforms the sequential SDSL 
implementation). We speculate that speedups for rank are higher than for select due to the simpler memory layout of the 
rank structure.

Suffix array. Tables 5 and 6 compare the running time and memory usage of our parallel DivSufSort algorithm (parDss) 
to several existing parallel algorithms. Range is an implementation of the prefix doubling algorithm [24] from the PBBS 
(without the changes described in this work), KS is an implementation of the DC3 algorithm [19] from the PBBS, Scan is 
the in-memory version of the recently published divide and conquer algorithm by Kärkkäinen et al. [20], and serDss is 
the original DivSufSort implementation of the two-stage algorithm [17] implemented by Mori [29]. On 32 cores and the 
non-repetitive inputs, parDss achieves a self-relative speedup of 9–20x and outperforms Scan, Range, and KS on almost all 
non-repetitive inputs. Compared to serDss, parDss is 5–7x faster on 32 cores for the non-repetitive inputs. Additionally, 
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Table 6
Memory consumption (bytes per input character) of SA construction on 32 cores.

Input KS Range parDss Scan serDss

non-repetitive real inputs
sources 21.57 28.94 6.83 13.06 5.01
pitches 21.76 28.82 7.27 20.36 5.03
proteins 21.42 28.01 6.79 10.82 5.00
dna 22.95 27.93 6.74 11.75 5.00
english.1024MB 23.26 29.12 6.84 10.96 5.00
dblp.xml 21.50 28.78 7.07 12.30 5.01

repetitive real inputs
Escherichia_Coli 23.08 28.58 6.96 14.57 5.02
cere 22.61 28.96 6.56 11.57 5.00
coreutils 21.56 29.56 6.87 12.47 5.01
einstein.de.txt 21.69 28.85 7.17 15.76 5.02
influenza 21.59 28.18 6.92 12.94 5.01
kernel 25.10 29.07 6.81 12.20 5.01
para 21.47 28.48 6.67 11.65 5.00
world_leaders 21.86 33.15 6.79 19.56 5.02

fib41 21.74 39.06 9.82 12.03 5.01
rs.13 21.48 39.91 9.93 12.29 5.01
tm29 22.43 40.84 9.00 12.05 5.00

dblp.xml.00001.1 21.64 29.21 7.27 14.40 5.01
dblp.xml.00001.2 21.62 30.65 7.30 14.41 5.01
dblp.xml.0001.1 21.66 29.31 7.21 14.99 5.01
dblp.xml.0001.2 21.64 30.62 7.46 14.11 5.01
dna.001.1 21.66 27.84 6.97 13.91 5.01
english.001.2 21.68 29.51 7.13 14.40 5.01
proteins.001.1 20.36 27.79 6.96 13.84 5.01
sources.001.2 21.65 29.62 6.99 15.02 5.01

artificial inputs
aaa 21.66 33.20 5.49 13.02 5.01
abab 23.03 37.82 10.24 13.10 5.01
aabbaabb 20.33 37.15 5.37 14.94 5.01

Input T1 T64
T1
T64

T1

non-repetitive real inputs
sources 130.00 7.29 17.83 33.80
pitches 32.10 1.76 18.24 6.62
proteins 705.00 40.50 17.41 249.00
dna 171.00 15.60 10.96 73.90
english.1024MB 721.00 44.40 16.24 224.00
dblp.xml 176.00 10.50 16.76 47.90

repetitive real inputs
Escherichia_Coli 62.20 4.90 12.69 17.70
cere 276.00 23.20 11.90 74.70
coreutils 182.00 9.93 18.33 30.40
einstein.de.txt 70.90 4.15 17.08 12.80
influenza 76.20 6.71 11.36 23.00
kernel 228.00 12.80 17.81 39.00
para 244.00 21.20 11.51 71.10
world_leaders 16.40 1.38 11.88 3.80

fib41 261.00 24.70 10.57 58.60
rs.13 219.00 20.20 10.84 46.70
tm29 268.00 22.60 11.86 65.90

dblp.xml.00001.1 74.30 4.63 16.05 15.20
dblp.xml.00001.2 81.80 4.95 16.53 15.60
dblp.xml.0001.1 69.00 4.38 15.75 15.20
dblp.xml.0001.2 77.10 4.57 16.87 14.80
dna.001.1 44.50 4.31 10.32 14.90
english.001.2 73.70 4.51 16.34 15.50
proteins.001.1 63.90 3.82 16.73 16.20
sources.001.2 71.80 4.81 14.93 13.40

artificial inputs
aaa 3.33 2.09 1.59 3.47
abab 48.30 5.57 8.67 5.60
aabbaabb 11.30 2.95 3.83 5.33

Input par ser

non-repetitive real inputs
sources 8.11 6.01
pitches 8.36 6.03
proteins 7.84 6.00
dna 7.72 6.00
english.1024MB 7.84 6.00
dblp.xml 8.05 6.01

repetitive real inputs
Escherichia_Coli 7.90 6.01
cere 7.66 6.00
coreutils 8.15 6.01
einstein.de.txt 8.37 6.01
influenza 7.84 6.01
kernel 8.08 6.01
para 7.73 6.00
world_leaders 7.64 6.03

fib41 10.72 6.01
rs.13 10.60 6.01
tm29 10.46 6.00

dblp.xml.00001.1 8.28 6.01
dblp.xml.00001.2 8.37 6.02
dblp.xml.0001.1 8.44 6.01
dblp.xml.0001.2 8.37 6.01
dna.001.1 8.05 6.01
english.001.2 8.35 6.01
proteins.001.1 8.37 6.01
sources.001.2 8.20 6.01

artificial inputs
aaa 6.52 6.01
abab 11.41 6.01
aabbaabb 6.38 6.01

Fig. 10. Left: Sequential and parallel running times (seconds), and self-relative speedup of FM-index construction on 32 cores. Right: Memory consumption 
(bytes per input character) of FM-index construction on 32 cores.
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Fig. 11. Absolute speedup of FM-index construction compared to sequential sdsl construction as function of number of threads.

parDss is almost in-place, so it reduces memory consumption by around 4x compared to KS, 5x compared to Range, and 
1.8x compared to Scan. For the other inputs parDss is one of the fastest algorithms for the inputs were the average LCP value 
is below one million. For inputs with very large average LCP values KS is the fastest algorithm. Fig. 9 compares the speedup 
relative to serDss of the parallel algorithms on selected input files as a function of thread count. Scan outperforms parDss
for smaller thread counts. However, Scan does not scale to more than 20 threads.

We also compare with results reported in the literature for other algorithms on two files, namely chr1 and HG19, 
downloaded from the UCSC Genome Browser. chr11 is the first chromosome from the HG19 dataset in FASTA format. HG192

are all concatenated chromosomes from the HG19 dataset in FASTA format. parDss takes 7.9 seconds to build the SA for the 
chr1 file on 16 threads, which is 14x faster than the times reported for computing the BWT in [15], 8x faster than the times 
reported for computing the SA with mkESA [16], and 2.8x faster than the bwtrev algorithm [34]. parDss takes 236 seconds 
to build the SA for the complete HG19 file on 12 threads, which is 4x faster than the 12-thread running time reported for 
the ParaBWT algorithm [26]. Note that these numbers should only be used as a very rough performance estimation. The 
different machines and experimental settings used do not allow an accurate direct comparison.

FM-index. Fig. 10 shows that by plugging our algorithms into the SDSL we can get parallel speedups for almost all but the 
artificial inputs of 10–18x constructing FM-indexes and reduce the absolute construction time by up to 6x (using a Huffman-

1 http :/ /hgdownload .soe .ucsc .edu /goldenPath /hg19 /chromosomes /chr1.fa .gz.
2 http :/ /hgdownload .soe .ucsc .edu /goldenPath /hg19 /bigZips /chromFa .tar.gz.

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/chr1.fa.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz
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shaped WT). For constructing the FM-index, our parallel performance is comparable to the parallel PASQUAL framework [25], 
but PASQUAL is designed to handle only DNA inputs. Fig. 11 compares the speedup relative to the sequential SDSL imple-
mentation as a function of thread count. The figure shows that for all input and at least 8 available threads there is a clear 
performance benefit of using the parallel over the sequential implementation.

8. Conclusion

In this work, we showed how to parallelize a number of basic construction algorithms needed for compressed full-text 
indexes. We covered rank and select structures on bit-vectors, wavelet trees and suffix arrays. Additionally, we showed how 
to use the parallelized algorithms to construct FM-indexes in parallel. Our experiments show that our implementations 
are memory-efficient, achieve good parallel scalability, and outperform existing implementations for the same problem. 
Our work shows that a focus on memory efficiency can also improve the performance of algorithms. Implementations are 
available to the public as part of the Problem Based Benchmark Suite (PBBS) [39] and the Succinct Data Structure Library 
(SDSL) [13].3
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