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ABSTRACT

The rise of massive networks across diverse domains necessitates
sophisticated graph analytics, often involving sensitive data and
raising privacy concerns. This paper addresses these challenges
using local differential privacy (LDP), which enforces privacy at
the individual level, where no third-party entity is trusted, unlike
centralized models that assume a trusted curator.

We introduce novel LDP algorithms for two fundamental
graph statistics: k-core decomposition and triangle counting.
Our approach leverages input-dependent private graph proper-
ties—specifically degeneracy and maximum degree—to improve
theoretical utility. Unlike prior methods, our error bounds depend
on the maximum degree rather than the total edge count, yielding
significantly tighter guarantees. For triangle counting, we improve
on the work of Imola, Murakami, and Chaudhury [USENIX
Security ’21, 22], which bounds error in terms of edge count.
Our algorithm instead achieves bounds based on degeneracy by
leveraging a private out-degree orientation, a refined variant of
Eden et al’s randomized response technique [ICALP ’23], and a
novel analysis, yielding stronger guarantees than prior work.

Beyond theoretical gains, we are the first to evaluate local DP
algorithms in a distributed simulation, unlike prior work tested on
a single processor. Experiments on real-world graphs show sub-
stantial accuracy gains: our k-core decomposition achieves errors
within 3x of exact values, far outperforming the 131x error in the
baseline of Dhulipala et al. [FOCS ‘22]. Our triangle counting al-
gorithm reduces multiplicative approximation errors by up to six
orders of magnitude, while maintaining competitive runtime.
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1 INTRODUCTION

Graph statistics such as the k-core decomposition and triangle
count provide important characteristics about the underlying graph,
such as its well-connected communities. These analytics, often per-
formed on sensitive and private graphs, are regularly shared with
a wide audience, including researchers, companies, governments,
and the public. As such, it is vital to investigate techniques that can
safeguard these published graph statistics from privacy attacks.

The k-core decomposition assigns an “importance” value to each
node, roughly representing its influence within the graph. It is
widely used to analyze the structure of real-world graphs, includ-
ing social, email, and disease transmission networks. Formally, a
k-core of a graph is a maximal subgraph where the induced degree
of every vertex in the subgraph is at least k. The k-core decompos-
ition (see Definition 2.5 and Figure 2) assigns a number, denoted
as core(v), to each vertex v. This number, core(v), represents the
largest value of k for which the k-core still includes vertex v. Un-
fortunately, these values pose privacy risks.

Consider the application of k-core decomposition to COVID
transmission data [14, 34, 72, 76, 79] and other disease transmission
networks [15] such as HIV [31,40]. The core numbers are generated
and published, sometimes even with location data [78]. Revealing
the precise core numbers of every individual can lead to privacy
breaches. Consider a scenario where exactly ¢ individuals have a
core number of ¢ — 1. This implies they form a clique of ¢ vertices,
all connected. In disease transmission graphs, this directly exposes
a cluster of sensitive disease transmissions! Therefore, it’s essential
to release privacy-preserving core numbers.

Similarly, triangle counting is widely used in applications that pro-
cess sensitive data. The triangle count, which measures the number
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of three-node cycles in a graph, is a fundamental metric in com-
munity detection [61, 70, 71, 80], recommendation systems [59, 96],
and clustering [87]. In databases, triangle counting is essential for
graph analytics frameworks [67] and is leveraged in query optimiz-
ation [4, 8] and fraud detection [83]. However, exposing triangle
counts without privacy guarantees can lead to inference attacks
that compromise user confidentiality. Recent works in security
and privacy [42, 43, 55, 57, 58] have highlighted the risks associ-
ated with publishing triangle counts, reinforcing the importance of
privacy-preserving graph analytics.

Approximate values for such statistics are widely used to improve
scalability and efficiency with minimal utility impact. In graph data-
bases and uncertain networks, approximate cores enable analysis
under probabilistic edges [10]; in social and recommendation sys-
tems, they support influence detection and improve accuracy [3, 47].
Often, approximate core numbers are used for preprocessing other
algorithms such as clustering [32, 62]. Triangle counts are used in
clustering, fraud detection, and query optimization, where small
errors are tolerable [5, 9, 55]. In dynamic domains like cybersecur-
ity and biology, approximations allow timely insights from noisy
data [53, 81, 91]. Approximate statistics with strong privacy guar-
antees are often practical and effective when these applications use
sensitive data [19, 27, 42, 43, 53, 55].

Differential privacy (DP) [23] is often considered the “gold stand-
ard” in protecting individual privacy. Traditionally, DP has been
studied in the central model, where a trusted curator has ac-
cess to raw data and applies DP mechanisms before releasing
the results. However, this assumption is often impractical, espe-
cially in modern systems that rely on decentralized or federated
architectures. This motivates the local model of differential pri-
vacy, introduced by the seminal works of Evfimievski et al. [28]
and Kasiviswanathan et al. [45], which recently gained much at-
tention in the theoretical computer science [19, 20, 27, 36], cryp-
tography and security [30, 42, 43, 51, 55, 56, 88, 97], data min-
ing [11, 38, 39, 57, 58, 65, 68], query answering [29, 48, 75, 86, 89],
and machine learning 33, 35, 37, 44, 52, 63, 77, 90, 93, 98] communit-
ies. In this model, each user independently applies DP mechanisms
before sharing their privacy-preserving outputs with an untrusted
curator. It offers stronger privacy guarantees by never exposing
raw data and is naturally suited to distributed settings; it has been
used in prominent cases including federated learning [46, 60, 66],
the 2020 U.S. Census [2], and by companies such as Apple [84].

While DP in the traditional database setting focuses on protect-
ing individual records, many real-world datasets are inherently
relational, represented as graphs. In these cases, the sensitive in-
formation are the edges, i.e., the connections between entities. This
motivates the need for local differentially private (LDP) graph al-
gorithms. The local edge differential privacy model (LEDP), as in-
troduced in recent works [19, 42, 73], represents a novel approach
designed to ensure local privacy for graph outputs (Fig. 1). Graph
data is increasingly integral to modern database systems, underpin-
ning applications in knowledge graphs, social networks, cyberse-
curity, and financial fraud detection. Many relational databases now
support graph extensions (e.g., SQL-based graph queries), while
specialized graph databases [7, 67] are widely deployed in industry.
However, applying LEDP algorithms in these settings is challen-
ging: unlike in tabular data, where individual data points can be
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perturbed, perturbing edges within a graph introduces structural

dependencies and high computational cost.

All previous implementations of local differentially private graph
algorithms [41, 43, 73] use Randomized Response (RR) [92], which
independently flips the presence or absence of each edge with a
probability based on the privacy parameter e. While simple and
composable, RR introduces substantial noise, especially for small ¢ €
(0,1], increasing the density! of the input graph and limiting both
the accuracy and scalability of the algorithm. Dhulipala et al. [19]
proposed the first LEDP algorithm that goes beyond RR, leveraging
the geometric mechanism for k-core decomposition. However, their
algorithm is purely theoretical, and their error bounds scale poorly
with graph size. In particular, they give additive error bounds >
bgg# (where n is the number of vertices); on a graph with n = 10°
nodes and ¢ = 0.5, this translates to an additive error of 9164.
Most real-world graphs of this size have max core numbers of 102
magnitude, so the additive error itself leads to a > 91-multiplicative
approximation factor—much too large for any practical use.

This work simultaneously develops both new theoretical and im-
plementation techniques that, together with Randomized Response,
enable provably private, accurate, and computationally efficient
LEDP algorithms. We make the following contributions:

e We design a novel LEDP k-core decomposition algorithm that
doesn’t use Randomized Response and provides provable privacy
and error guarantees. Leveraging the input-dependent maximum
degree property of the graph, we achieve improved theoretical
bounds over the LEDP k-core decomposition algorithm of Dhulip-
ala et al. [19] (see Table 1). Two key innovations lie in threshold-
ing the maximum number of levels a node can move up based on
its noisy (private) degree and the use of bias factors to reduce the
impact of noise. Since a node’s core number is upper bounded
by its degree, our algorithm offers stronger theoretical guaran-
tees for most real-world graphs, where the maximum degree is
significantly smaller than the number of nodes.

e We present the first implementation of a private k-core decom-
position algorithm and demonstrate through empirical evalu-
ation that it achieves an average error of 3x the exact values,
markedly improving upon prior approaches. Furthermore, our
LEDP implementation attains error rates that closely align with
the theoretical approximation bounds of the best non-private
algorithms, underscoring its practical efficiency and accuracy.

e We design a novel LEDP triangle counting algorithm that mod-
ifies our k-core decomposition to construct a low out-degree
ordering, minimizing each node’s out-degree. Leveraging this or-
dering, our algorithm achieves improved theoretical error bounds
over the best-known methods of Imola et al. [42, 43] and Eden et
al. [27] for bounded degeneracy graphs, common in real-world
networks (see Table 1). We present a novel analysis to analyze
the non-trivial error bounds based on the Law of Total Expecta-
tion/Variance. Our implementation reduces relative error by up
to 89x and improves the multiplicative approximation by up to
six orders of magnitude over the best previous implementa-
tion [43], while maintaining competitive runtime.

Recognizing that the LEDP model (see Section 2.2) is inherently

decentralized, we present the first evaluation of LEDP graph

The density is the ratio of the number of edges to the number of nodes.
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Table 1: Additive error bounds compared to previous work. Here n : number
of nodes, D,,,qx : maximum degree, ¢ : privacy parameter, d : degeneracy, and

k-Core
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C4 and C 4 is the number of 4-cycles and oriented 4-cycles, respectively.

algorithms in a simulated distributed environment with actual
message passing. Unlike prior studies that relied on a single pro-
cessor, we simulate a distributed environment by partitioning the
graph across multiple processors. This approach provides a more
realistic assessment of both computational and communication
overhead in large-scale distributed scenarios. We demonstrate
the practicality of this evaluation by applying it to our k-core
decomposition and triangle counting algorithms.

e We present the first LEDP graph algorithm implementations that
scale to billion-edge graphs, whereas prior implementations
were tested on graphs with millions of edges [42, 43]. Our evalu-
ation framework (available at [1]) serves as a valuable tool for
designing and testing other LEDP algorithms.

1.1 Related Work

Local differential privacy (LDP) for graph data has been extensively
studied [19, 27, 38, 42, 43, 73, 82, 94, 95], focusing on tasks such as
synthetic graph generation and subgraph counting. Some works [57,
82] explore an extended local view, in which each node knows its full
2-hop neighborhood (i.e., its neighbors’ edges) to improve triangle
counting accuracy. In that model, triangle counting is trivial since
each node sees its entire set of incident triangles—unlike our model,
where nodes see only immediate (one-hop) neighbors; hence, we
require more complex algorithms since nodes cannot see their
incident triangles in LEDP. Moreover, the extended view is often
unrealistic, since users (e.g., in social networks) may not wish to
reveal their private (potentially sensitive) friend lists to their friends.

The LEDP model was introduced by Qin et al. [73] and Imola,
Murakami, and Chaudhury [42], with subsequent theoretical ex-
pansions [19, 27, 43]. Imola et al. [42, 43] provided the first prac-
tical LEDP implementations for triangle and subgraph counting.
Recently, Hillebrand et al. [38] improved LEDP triangle counting
using hash functions, though their method does not scale to large
graphs. All prior LEDP triangle counting algorithms rely on Ran-
domized Response. Imola et al. [42] introduced an LEDP triangle
counting algorithm in both non-interactive (single-round) and in-
teractive (multi-round) settings, bounding the standard deviation

of the additive error by O ("72 + %;2) In a subsequent work, they

reduce the protocol’s communication cost [43] by using a com-
bination of sampling and clipping techniques, and refined their
standard deviation analysis by using the number of 4-cycles, Cy.

VG ﬂ) for the

Xy

& gz
interactive setting and O(n?) for the non-interactive setting. Eden
et al. [27] further enhanced triangle counting accuracy with an
improved post-processing analysis, achieving a standard deviation

3/2
of O (g + "6—3/) for the non-interactive setting and establishing

Their new theoretical standard deviation is O (

lower bounds of Q(n?) and Q (%/2) for the non-interactive and
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interactive settings, respectively. Despite these advancements, prior
work has neither combined Randomized Response with other pri-
vacy mechanisms to improve error bounds nor accounted for input-
dependent properties of graphs in theoretical analyses.

For LEDP k-core decomposition, all known algorithms remain
theoretical [19]. The algorithm by Dhulipala et al. [19] uses a level
data structure, where nodes ascend levels based on their noisy
induced degrees, with noise drawn from a symmetric geometric
distribution to ensure privacy. However, this noise scales with the
number of nodes rather than adapting to input structure, leading to
significant errors in large graphs. Recent concurrent and independ-
ent work by Dhulipala et al. [18] introduces a generalized sparse
vector technique to avoid cumulative privacy budget costs, achiev-
ing improved theoretical guarantees. However, implementing this
approach in a distributed setting is challenging, as it relies on a
peeling algorithm that is difficult to distribute. Additionally, the
practical performance of these algorithms remains unexplored.

2 PRELIMINARIES

Differential privacy on graphs is defined for edge-neighboring inputs.
Edge-neighboring inputs are two graphs which differ in exactly
one edge. Here, we consider undirected graphs.

Definition 2.1 (Edge-Neighboring [69]). Graphs Gy = (V1,E1) and
Gz = (Vo, E2) are edge-neighboring if they differ in one edge, namely,
if Vi = Vy and the size of the symmetric difference of Ey and E is 1.2

With high probability (whp) is used in this paper to mean
with probability at least 1 — % for any constant ¢ > 1.

The local edge differential privacy (LEDP) model assumes that
each node in the input graph keeps their adjacency list private.
The model is defined in terms of ¢-DP algorithms, called ¢-local
randomizers (e-LR), that are run individually by every node. The
&-LRs are guaranteed to be ¢-DP when the neighboring inputs are
adjacency lists that differ in one element. Following [43], we assume
that the curator and all nodes act as honest-but-curious adversaries.
Definition 2.2 (e-Edge Differential Privacy [23, 69]). Algorithm
A(G), that takes as input a graph G and outputs some value in
Range(A),} is e-edge differentially private (c-edge DP) if for all
S C Range(A) and all edge-neighboring graphs G and G’,

1 < Pr[A(G") € 5] <e

e¢ = Pr[A(G) €]
Definition 2.3 (Local Randomizer (LR) [19]). An e-local random-
izer R : a — Y for nodev is an e-edge DP algorithm that takes as
input the set of its neighbors N (v), represented by an adjacency list

£

a=(by,..., b|N(z;)|)- In other words,
1 Pr[R(a’) € Y] .
Sl s St
ef Pr[R(a) € Y]

for all a and a’ where the symmetric difference is 1 and all sets of
outputs Y C Y. The probability is taken over the random choices of
R (but not over the choice of the input).

The previous definitions of LEDP [19, 42, 73] are satisfied by
the following Definition 2.4. [19] gives a slightly more general and
complex definition of LEDP in terms of transcripts but all of the

2The symmetric difference of two sets is the set of elements that are in either set, but
not in their intersection.
3Range(-) denotes the set of all possible outputs of a function.



Figure 2: Example k-core decomposition and triangles in a 4-degenerate
graph. Nodes are assigned core numbers based on the highest value core they
belong to; e.g., a node in the 1-core but not in the 2-core is given the core
number of 1. Larger valued cores are contained within all smaller valued cores;
e.g., the 3-core is contained in the 1 and 2-core. Red edges show the triangles,
i.e., 3-cycles in the graph. The degeneracy of this graph is 4.

algorithms in our paper satisfy our definition below, which is also

guaranteed to satisfy their more general transcript-based definition.
Definition 2.4 (Local Edge Differential Privacy (LEDP) [19]). Given
an input graph G = (V,E), for any edge {u,v}, let algorithm A
assign ((R'l‘ (au, p1), €1), - - ., (R (ay, pr), s?)) to be the set of }' -local
randomizers called by vertex u during each interactive round and
((Rf(av,pl), £7), ..., (R (ap, ps)s g;’)) be the set of €] -LRs called by
v. The private adjacency lists of u and v are given by a, and ay,
respectively, and p; are the new public information released in each
round. Algorithm A is e-local edge differentially private (LEDP)
if for every edge, {u,v}:
e+ el <e

For intuition, each LR takes as input the private adjacency list
of the node v and public information released in previous rounds;
then, it releases new public information for » which will inform the
computation of other nodes in the next round. Hence, the algorithm
is interactive. Each time o releases, it loses some amount of privacy
indicated by & for the i-th LR. Since edge-neighboring graphs
differ in exactly one edge, to ensure the privacy of the system, it is
sufficient to ensure that the privacy loss of every edge sums up to
¢. Thus, e-LEDP algorithms also satisfy e-DP (proven in [19]).

We defer descriptions of standard privacy tools to the full version
of our paper [64]. We use implementations by the Google privacy
team [85], which also guarantee cryptographic security.

2.1 Problem Definitions

Below, we define the k-core decomposition, low out-degree order-
ing, and triangle counting problems that we study.

In this paper, we consider undirected graphs G = (V, E) with
n = |V| nodes and m = |E| edges. We use [n] to denote {1,...,n}.
For ease of indexing, we set the IDs of V to be V = [n]. The set of
neighbors of a node i € [n] is denoted by N (i), and the degree of
node i is denoted deg(i).
Definition 2.5 (k-Core Decomposition). Given an input graph,
G = (V,E), a k-core is a maximal induced subgraph in G where
every node has degree at least k. A k-core decomposition assigns a
core number to each nodev € V equal to k ifv is in the k-core but
not the (k + 1)-core. Let k(v) be the core number of v.

See Fig. 2 for an example. No exact k-core decomposition al-
gorithm satisfies the definition of DP (or LEDP). Hence, our al-
gorithms take an input graph G and output an approximate core
number for each node in the graph (Definition 2.6) and an approx-
imate low out-degree ordering (Definition 2.8).
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Definition 2.6 (($, {)-Approximate Core Number [19]). Let k(o)
be an approximation of the core number of v, and let ¢ > 1,{ > 0.
The core estimate k() is a (¢, {)-approximate core number of v if
k(v) - < k(@) < ¢ k() +{.

We define the related concept of an approximate low out-degree
ordering based on the definition of degeneracy.
Definition 2.7 (Degeneracy). An undirected graph G = (V,E) is
d-degenerate if every induced subgraph of G has a node with degree
at most d. The degeneracy of G is the smallest value of d for which
G is d-degenerate.

It is well known that degeneracy d = max,cy {k(v)}.

Definition 2.8 ((¢, {)-Approximate Low Out-Degree Ordering).
Let D = [v1,02,...,0,] be a total ordering of nodes in a graph G =
(V,E). The ordering D is an (¢, {)-approximate low out-degree
ordering if orienting edges from earlier nodes to later nodes in D
produces out-degree at most ¢ - d + (.

Definition 2.9 (Triangle Count). Given an undirected input graph
G = (V,E), the triangle count returns the number of 3-cycles in G.

2.2 Distributed Simulation Model

Local Edge Differential Privacy (LEDP) is inherently decentralized:
each user (or node) independently perturbs their private local data
(adjacency list) before any communication. This model aligns nat-
urally with distributed systems, where data is often siloed across
machines or clients. To evaluate LEDP algorithms in such settings,
we adopt a distributed simulation framework that closely mirrors
real-world deployments. Specifically, we use a coordinator-worker
model in which each worker is assigned a partition of nodes along
with their full adjacency lists. Workers execute LEDP algorithms
locally and communicate only privacy-preserving outputs to a cent-
ral coordinator. The coordinator aggregates these responses and
broadcasts public updates to all workers, proceeding iteratively
over synchronous communication rounds. While assigning one
machine per node is infeasible at scale, this simulation preserves
the privacy and communication structure of LEDP and allows for
practical evaluation of network overhead on large graphs.

3 PRACTICAL k-CORE DECOMPOSITION
ALGORITHM

We present k-CoreD, a novel k-core decomposition algorithm that
addresses key limitations of prior work [19] through principled
algorithmic design. While their framework offers strong theoretical
foundations under the e-LEDP model, its dependence on the total
number of nodes leads to large additive error and excessive com-
munication rounds. Our algorithm replaces this dependency with
input-sensitive parameters—specifically, the graph’s maximum de-
gree—through degree thresholding and bias terms. These techniques
yield improved asymptotic bounds and significantly lower empirical
error, as confirmed by our experiments.

3.1 Algorithm Description

Our algorithm operates synchronously over O (log(n) log (Dmax))
rounds, where Dpay is the maximum degree of the graph. The

2
algorithm outputs (2 +1,0 (M)

)—approximate core
numbers with high probability, as well as a low out-degree ordering

with the same approximation guarantee. Throughout this section,
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Figure 3: Node movements in k-CoreD’s Level Data Structure (LDS). Green: active nodes eligible to move; red: thresholded nodes; orange: active nodes that fail
the noisy neighbor check. The LDS and threshold structures are shown alongside the graph. Noise is added during the level-moving step to ensure privacy, and
snapshots illustrate node progression and halted movement due to thresholding.

the term log(n) denotes log; H/,(n), unless explicitly stated other-
wise (where ¢ is a constant). The algorithm uses a level data struc-
ture (LDS) [19], where nodes are assigned levels that are updated
iteratively. Levels are partitioned into groups of equal size, with each

m consecutive levels. We limit the num-

group g; containing
ber of rounds a node participates in, based on its noisy degree, which
we refer to as degree thresholding. This significantly reduces the
number of rounds, from O(log?(n)) [19] to O (log(n) log (Dmax))-
In each round, the algorithm uses a noisy count of a node’s neigh-
bors at the same level to decide if it should move up a level. After
processing all nodes in a round, the updated LDS is published for
use in subsequent rounds. Once all rounds are complete, the al-
gorithm estimates the core numbers of the nodes based on their
final levels, using Algorithm 3.4. Additionally, a low out-degree
ordering is determined by sorting nodes from smaller to larger
levels, breaking ties using node IDs.*. The algorithm is implemen-
ted in a distributed setting, where computation is divided between
a coordinator and multiple workers. The pseudocode is structured
to reflect this division. We now describe their respective roles.
Coordinator. As described in Algorithm 3.1, the coordinator takes
as input the graph size n, number of workers M, constant ¢ > 0,
privacy parameter ¢ € (0, 1], privacy split fraction f € (0, 1), and
bias term b. It first computes the privacy budgets ¢ and ¢; for de-
gree thresholding and noisy neighbor counts, respectively, based
on ¢ and f (Line 5). The coordinator maintains the level data struc-
ture (LDS), where LDS[i] stores the current level of node i, and
a communication channel, channel, for receiving messages from
the workers. All nodes are initialized to level 0 (Line 7) and are
incrementally moved up in later rounds based on signals received
from the workers. It begins by signaling the workers to load their
assigned subgraphs in parallel (Line 10) and then collects the degree
threshold values to determine the total number of rounds (Line 11).
In each round r, it computes the corresponding group index (Line 13)
and launches M asynchronous worker processes (Line 15). Each
worker returns a bit vector indicating whether each node in its sub-
graph should move up a level. After all processes complete (Line 16),
the coordinator processes the responses and updates the LDS ac-
cordingly. It then publishes the new LDS (Line 21) before the next
round begins. After the final round, the coordinator computes the
estimated core numbers using the final LDS.

4This doesn’t leak privacy, as IDs are assigned to nodes and not edges and reveal no
information about the sensitive edge data.
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Worker (Degree Thresholding). As shown in Algorithm 3.2, each
worker begins by loading its assigned subgraph and initializing local
structures. For each node v, it computes a noisy degree (;U =dy+ X,
where dj, is the true degree and X ~ Geom($) is symmetric geo-
metric noise (Line 6). To mitigate large positive noise and reduce
overestimation, a bias term—proportional to the noise’s standard
deviation—is subtracted from d,. The worker then computes a

threshold value for each node as [logz (21:,)] - L, where L is the

number of levels per group in the LDS (Line 8). These thresholds
determine the maximum number of rounds in which each node
participates. The worker keeps track of the maximum threshold
across its subgraph and returns it to the coordinator (Line 11).
Worker (Level Moving). In each round, workers assess whether
nodes in their subgraph should move up a level. As shown in Al-
gorithm 3.3, if a node v has already reached its threshold round r, it
is skipped (Line 5). Otherwise, if v is currently at level r, we count
the number of its neighbors that are also at the same level (Line 9).
To ensure privacy, this count U, is perturbed to produce a noisy es-
timate 171, = Uy + X + B (Line 13), where X is symmetric geometric
noise with parameter s = m and B is an added bias term
to counteract large negative noise. The node moves up a level if
‘L?U > (1+n/5) Fr)| where F(r) is the group index corresponding
to the current level (Line 15). After processing all nodes, the worker
sends the updated level-change bits to the coordinator (Line 18).
Bias Terms. We introduce two analytically derived bias terms,
based on the standard deviation of the symmetric geometric distri-
bution—one for degree thresholding and one for level movement.
The first bias term is subtracted from the computed threshold to
account for situations where a large positive noise is chosen. If a
large positive noise is chosen, we lose privacy proportion to the
new threshold in the level moving step. Hence, our bias term biases
the result to smaller thresholds, resulting in less privacy loss.

The second bias term is added to the computed induced noisy
degree to account for situations where a large negative noise pre-
vents nodes from moving up the first few levels of the structure.
Our added bias allows nodes with non-zero degrees to move up
the first levels of the structure. Since the degree bounds increase
exponentially, this additional bias term accounts for smaller errors
as nodes move up levels. Notably, we observe this behavior in
our experiments when comparing to the baseline implementation
of [19], which omits the bias term: many nodes remain stuck at



level 0, resulting in significantly higher error. This highlights the
practical importance of our bias correction.

Example 3.1. Fig. 3 illustrates node movement in the LDS during
k-CoreD. In each round, nodes compute a noisy count of same-level
neighbors and move up if it exceeds a threshold based on group in-
dex—unless blocked by their degree threshold. In the LDS, green marks
eligible nodes; red in the threshold array marks those blocked; and in
the graph view, green means movement and red/orange means restric-
tion. For instance, node c is blocked in Round 1, a in Round 2, and b in
Round 3. In Round 2, node d is not thresholded but remains at the same
level due to failing the noisy neighbor check (Algorithm 3.3 Line 14).

Algorithm 3.1: k-Core Decomposition and Ordering (Coordinator)

1 Input: graph size n; number of workers M; approx constant ¢ € (0,1);
privacy parameter ¢ € (0, 1]; split fraction f € (0, 1); bias term b.

2 Output: Approximate core numbers and low out-degree ordering of each
node in G.

3 Function k-CoreD(n, {, ¢, f, b)

set = G-t = foerl

Setey =f-cande,=(1—-f) - ¢

Set C « new Coordinator (LDS, channel)

Coordinator initializes C.LDS with C.LDS[i] « 0 Vi € [n].

Set maxDegreeThresholds « []

parfor w=1 toM do

L maxDegreeThresholds[ w] =

4

e ® N o @

DegreeThresholdWorker(w, &1, L, b)
Set numOfRounds=

min (4 log(n) log(z;max) — 1, max (maxDegreeThresholds))
for r = 0 to numOfRounds do
Set F(r) « [ £]
parfor w=1toM do

L LevelMovingWorker (w,r, &,y, F(r), C.LDS)
C.wait()
nextLevels < C.channel

fori=1tondo
L if nextLevels[i] = 1 then

L C.LDS levellncrease (i)
| Coordinator publishes updated C.LDS
Coordinator calls cores « C.EstimateCoreNumbers(C.LDS, L, A, {)
Coordinator produces D, a total order of all nodes, using levels from

C.LDS (from smaller to larger) breaking ties by node ID
Return (cores, D)

11

> coordinator waits for workers to finish

21

22
23

24

3.2

Memory Analysis & Communication Cost. Let M be the number
of workers and n the graph size. Each worker processes S nodes,
where S = |n/M] for M — 1 workers, and the last worker handles
n—(M-1)|n/M]. The coordinator maintains the level data structure
(LDS) and a communication channel, both requiring O(n) space,
resulting in a total memory usage of O(n). Each worker processes
O(S) nodes, requiring O(Sn) space for the graph and an additional
O(S) space for auxiliary structures, leading to a total of O(Sn). In
terms of communication, workers send one bit per node per round,
incurring a per-worker cost of O(S) and an overall round cost of
O(n). The coordinator receives and distributes the updated LDS,
adding another O(n) cost. Thus, the total communication overhead
for the algorithm is O (nlog(n) log (Dmax))-

Theoretical Analysis

Privacy Guarantees. Our privacy guarantees depend on the fol-
lowing procedures. First, we perform degree-based thresholding,
which upper bounds the number of levels a node can move up.

4204

Algorithm 3.2: Degree Thresholding (Worker)

1 Input: worker ID w; privacy parameter ¢ € (0, 1]; levels per group L; bias
term b.

2 Function DegreeThresholdWorker (w, ¢, L, b)

3 Set maxThreshold«— 0

4 for node v := localGraph do

5 Sample X ~ Geom (%)

6 Ju —d,+X > noised degree
7 ;i-z,<—(z,+1—min(b~ 622'::,(;0)

v.threshold «— [log2 (t;u)] -L > thresholding

v.permZero < 1
maxThreshold= max (maxThreshold, v.threshold)

11

| w.send (maxThreshold)

Algorithm 3.3: Level Moving (Worker)

1 Input: worker id w; round number r; privacy parameter ¢ € (0, 1]; constant
¥; group index F(r); pointer to the coordinator LDS.

2 Function LevelMovingWorker (w,r, & ¢, ¥(r),LDS)

3 Set nextLevels < [0,...,0]

4 for node v := localGraph do

5 if v.threshold = r then

6 L v.permZero = 0

7 vLevel « LDS.getLevel (v)

8 if vLevel = r and v.permZero # 0 then

9 Let U, be the number of neighbors j € a, where

LDS.getLevel (j) =r.

10 Set scale s «—

2- (v.thfeshold)
Sample X ~ Geom(s).
6e’
(er5-1)°
Compute Uy «— U, + X + B.
if Uy > (1+15/5)77) then
| nextLevels[v] = 1

else
L v.permZero =0

11

12 Set extra bias B «—

w.send (w, nextLevels)
| w.done ()

18
19

Algorithm 3.4: Estimate Core Number (Coordinator) [54]

1 Function EstimateCoreNumbers(LDS, L, A, n)
2 fori=1tondo

N L
L k() « @+ (1+ q/s)‘"“u
Return {(i,k(i)) :i € [n]}

DS[i]+1
L

o)

3

4

Second, we subtract and add bias terms to the results of our mech-
anisms. And finally, we scale our noise added in Line 10 of Al-
gorithm 3.3 by the noisy threshold. We show that our algorithm
can be implemented using local randomizers (Definition 2.3). Then,
we show that the local randomizers have appropriate privacy para-
meters to satisfy e-LEDP (Definition 2.4).

Lemma 3.2 (Degree Threshold LR). Our degree thresholding pro-
cedure run with privacy parameter ¢’ is a (¢’ /2)-local randomizer.

Proor. Our degree-thresholding procedure upper bounds the
number of levels that we iterate through using the (private) degree
of each node. Specifically, it adds symmetric geometric noise to the
degree Ju =dy, + Geom(¢’/2) and then computes |'log1+,7(r7u)'| - L,
where L is the number of levels per group. The sensitivity of the
degree of any node is 1 and by the privacy of the geometric mechan-
ism ([6, 13, 23, 24]), the output dy is (¢’ /2)-DP. Then, producing the



final level upper bound uses post-processing ([12, 23]) where pri-
vacy is preserved. Hence, our output is (¢//2)-DP and the algorithm
can be implemented as a (¢’ /2)-local randomizer. O

Using Lemma 3.2, we prove Theorem 3.3.
Theorem 3.3. Algorithm 3.1 is ¢e-LEDP.

PRrROOF. Our algorithm calls the local randomizers in Lemma 3.2
with ¢1 = ¢ - f, where f € (0,1) is a fraction which splits some
portion of the privacy budget, and then iterates through the levels
one-by-one while adding noise to the induced degree of each node
consisting of all neighbors of the node on the same or higher level.
We showed in Lemma 3.2 that the degree thresholding procedure
can be implemented as (¢1/2)-local randomizers.

The key to our better error bounds is our upper bound on the
number of levels we iterate through, bounded by our threshold.
Since the thresholds are public outputs from the local randomizers,
we can condition on these outputs. Let the threshold picked for
node v be denoted as t,. Then, we add symmetric geometric noise to
the induced degree of the node (among the neighbors at or above v’s
current level) drawn from Geom (e2/(2 - t,)) where ez = ¢- (1 — f).
Conditioning on the public levels of each node, the sensitivity of the
induced degree of any node is 1. By the privacy of the geometric
mechanism, we obtain a (e2/(2 - t,))-local randomizer for v. By
composition ([22, 23, 25]) over at most ¢, levels, the set of all local
randomizers called on v, is (e/2)-differentially private. For any
edge, the sum of the privacy parameters of the set of all local
randomizers called on the endpoints of the edge is 2-¢1 /2+2-¢2/2 =
&1+ =f e+ (1-f)- e By Definition 2.4, this is e-LEDP.

Finally, our bias terms, added or subtracted after applying the
geometric mechanism, preserve privacy due to the post-processing
invariance of differential privacy ([12, 23]). O

Approximation Guarantees. Our algorithm given in the previous
section contains several changes that results in better theoretical
bounds and optimizes the practical performance on real-world
datasets. Due to space constraints, we omit the proofs here and
refer the reader to the full version of our paper [64]. Below, we
formally state the approximation factor of our algorithm.
Theorem 3.4. Our algorithm returns (2+7, O(log(Dmay) log? (n) /¢))-
approximate k-core numbers, with high probability, in
O (log(n) log (Dmax)) rounds of communication.

4 TRIANGLE COUNTING USING LOW
OUT-DEGREE ORDERING

We present our novel triangle counting algorithm, EdgeOrient,,
which leverages the low out-degree ordering obtained from the k-
CoreD algorithm along with randomized response (RR). Prior works
rely on either all or a sample of neighboring edges after applying
RR, and often suffer from error bounds that scale poorly with graph
size. To address these limitations, our algorithm exploits a new
input-dependent graph property, the degeneracy (maximum core
number), to upper bound the number of oriented 4-cycles (Fig. 5),
yielding significantly tighter error bounds in theory and practice.

4.1 Algorithm Description

Our algorithm consists of three additional computation rounds after
computing the low out-degree ordering (Z) using k-CoreD. In the
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Algorithm 4.1: ¢-LEDP Triangle Counting (Coordinator)

1 Input: graph size n; number of workers M; constant ¢ € (0, 1); privacy
parameter ¢ € (0, 1]; split fraction f € (0, 1); bias term b;

2 Output: Noisy Triangle Count

3 Function EdgeOrienty (n, M, {, ¢, f, b)

1 Set Z « k-CoreD(n, , §, f, b) (Algorithm 3.1)
5 Set C «— new Coordinator (¢RR, cTCount, cMaxOut, X)
6 > Round 1: Randomized Response
7 parfor w =1 to M do
8 L RRWorker (w, n, £)
9 C.wait() > coordinator waits for workers to finish
10 C .publishNoisyEdges(cRR, X)
11 > Round 2: Max Out-degree
12 parfor w =1 to M do
13 L MaxOutDegreeWorker (w, i,Z)
14 C.wait()
15 dax — max ({C.cMaxOut[i] | i € [M]}) + 28
16 > Round 3: Count Triangles
17 parfor w =1 to M do
18 L CountTrianglesWorker (w, g,Z,X, Jmax)
19 C.wait()
20 A« X1, C.cTCount [i]
21 | Return A

Algorithm 4.2: Randomized Response (Worker)

1 Input: worker id w; graph size n; privacy parameter ¢ € (0, 1];
2 Function RRWorker (w, n, €)

3 Set neighborsRR «— [][]

4 for node v := localGraph do

5 For all ngh, « {j : j € [n] A j > v}

6 L neighborsRR[v] = RandomizedResponse, (nghy)

<

w.sendRR (w, neighborsRR)
8 w.done ()

Algorithm 4.3: Noisy Max Out-Degree (Worker)

1 Input: worker id w; graph size n; privacy parameter € € (0, 1];
2 Function MaxOutDegreeWorker(w, &, Z)

3 Set outmax < 0.

1 for node, adjacency list v, ngh := localGraph do
5 Set ngh, < {j:j € nghAZ[j] > Z[v]}
6 B ~ Geom(¢)

7 OUtmax < max(0Utmax, |[nghy| + B)

w.sendMaxOutdegree (0Ufmay )
w.done ()

©

Noisy Edges
760
“?ispo“se ~

Low o e 0
Ut-De,
Original Graph Ordering ree. /. /éoun;[Triangles
A =2 ) ;

= =1
blue Aque

Outgoing Edges
Figure 4: EdgeOrient, for blue node: true triangle count is 2, but due to
Randomized Response and low out-degree ordering, estimate is 1.
first round, each node perturbs its adjacency list using Randomized
Response (RR) [92], producing a privacy-preserving set of noisy
edges for subsequent computations. In the second round, we cal-
culate the maximum noisy out-degree, Jmax, by determining each



Algorithm 4.4: Triangle Counting (Worker)

1 Input: worker id w; privacy parameter ¢ € (0, 1]; low out-degree ordering

Z, published noisy edges X; public maximum noisy out-degree c?max;

2 Function CountTrianglesWorker(w, ¢, Z, X, dmax)

3 Set workerTCount < 0.0

4 for node, adjacency list v, ngh := localGraph do

5 Set A « 0.0

6 OutEdges, = {j:j € ngh AZ[j] > Z [v]}

7 fori; € {1,..., min(gmax, |OutEdges,|) } do

8 fori, € {i;+1,..., min(Jmax, |OutEdges,|) } do

j < OutEdges,[i]
k < OutEdges, [i,]

x{j'k}~(ef+1)f1
ef-1
Sample R ~ Lap ( )

A—A+R

workerTCount «— workerTCount + A

Ae—A+

£

2-dmax

w.sendTCount (w, workerTCount)
| w.done ()

node’s outgoing edges based on Z. While the first two rounds can be
combined, we separate them for clarity. In the final round, we com-
pute the number of triangles incident to each node, using the noisy
edges and the maximum noisy out-degree, dmax. The algorithm is
implemented in a distributed setting, where computation is divided
between a coordinator and multiple workers. The pseudocode is
structured to reflect this division.

Coordinator As shown in Algorithm 4.1, the coordinator receives
the graph size n, number of workers M, constant parameter i > 0,
privacy parameter ¢ € (0, 1], privacy split fraction f € (0, 1), and
bias term b. It initializes three channels, cRR, cMaxOut, cT Count, to
receive RR noisy edges, maximum noisy out-degrees, and local noisy
triangle counts from workers (Line 5). The coordinator manages
the algorithm’s execution, collecting worker outputs and publishing
updates each round. It first computes the low out-degree ordering,
Z, using k-CoreD. In the first round, it launches M asynchronous
worker processes (Line 6), each computing and sending noisy edges
after RR. Before the second round, the coordinator aggregates and
stores them in X, then publishes X for global access (Line 10),
enabling workers to utilize the noisy public edges in subsequent
computations. In the second round (Line 11), workers compute noisy
maximum out-degrees for their subgraphs using Algorithm 4.3. The
coordinator then determines Jmax, the maximum noisy out-degree
across all workers (Line 15). Finally, in the third round (Line 16),
each worker counts the triangles incident to its nodes using the low
out-degree ordering, published noisy edges, and dmax. Workers send
noisy local triangle counts to the coordinator, which aggregates
them to compute the overall noisy triangle count (Line 20).
Worker (Randomized Response) As specified in Algorithm 4.2,
workers maintain a neighborsRR data structure to store noisy edges.
For each node v, noisy edges are computed via Randomized Re-
sponse (RR) with parameter ¢, processing only the upper triangular
part of the adjacency matrix (Line 5), as the graph is undirected.
Specifically, for a node v, all indices greater than v are processed
using RandomizedResponse, (ngh,), which flips the existence of
each edge (v, ngh,) with probability es—lﬂ (Line 6). Once computed,
workers send noisy edges to the coordinator (Line 7).
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Worker (Noisy Max Out-Degree) In Algorithm 4.3, workers main-
tain a variable outy,qx which stores the maximum noisy out-degree
of their subgraph. For each node v, the worker first computes the
out-degree d, using the order provided in Z, where an edge (v, j)
is considered outgoing if Z[j] > Z[v] (Line 5). The out-degree dy,
is the number of outgoing edges from v. Then, the worker adds
symmetric geometric noise with parameter ¢ to d,, computes the
max noisy out-degree, and sends outmax to the coordinator (Line 8).
Worker (Count Triangles) As shown in Algorithm 4.4, each
worker computes the number of triangles incident to each node in
its respective subgraph. For each node v, the outgoing edges are
identified and sorted in ascending order by node IDs. The triangle
count is determined by iterating over all unique pairs of outgoing
neighbors {j, k} of v, up to r;max (Line 7,8). For each pair, the tri-
angle contribution is calculated as: M, where X{; 1y
represents the noisy presence (1) or absence (0) of an edge between
Jj and k (Line 11). To ensure privacy, additional noise is added to

the triangle counts using the Laplace distribution® with parameter
£

5 , where dpay is the global maximum noisy out-degree. Upon

completing the computation, each worker aggregates and returns
the noisy triangle count for its entire subgraph (Line 15).

Example 4.1. In Fig. 4, we apply EdgeOrient, to estimate the number
of triangles incident to the blue node. The algorithm first orients the
edges using a low out-degree ordering, so each node only considers
neighbors with higher order. Randomized Response is then applied
to the original adjacency list, and the resulting noisy edges are used
in combination with the oriented edges to count triangles. As shown
in the figure, while the blue node is part of two true triangles in the
original graph, only one triangle is preserved under the noisy edges.

4.2 Theoretical Analysis

Memory Analysis & Communication Cost. Let M be the number
of workers and n the graph size. Each worker processes S nodes,
where S = |n/M] for M — 1 workers, and the last worker handles
n — (M — 1)|n/M] nodes. The coordinator manages three com-
munication channels and publishes the noisy edges for the entire
graph. The cRR structure, which aggregates noisy edges, requires
0O(n?) space, while cTCount and cMaxOut, which collect triangle
counts and maximum noisy out-degree, require O(M) space each.
Storing published noisy edges further adds O(n?) space, resulting
in a total coordinator memory requirement of O(n® + M). Each
worker processes O(S) nodes, requiring O(Sn) space for the graph.
The neighborsRR structure for storing noisy edges demands O(Sn)
space, while computing the maximum noisy out-degree requires
O(S). The final triangle count computation takes O(S - Jmax) space,
where d~max is the maximum noisy out-degree, leading to an overall
worker memory requirement of O(Sn). The algorithm runs three
communication rounds beyond those for low out-degree ordering.
Workers first send noisy edges, incurring O(Sn) communication
cost, followed by sending the maximum noisy out-degree and tri-
angle counts, each requiring O(M) communication. Thus, the total
communication overhead for the algorithm is O(n® + M).

Privacy Guarantees. As before, our privacy guarantees are proven
by implementing our triangle counting algorithm using local ran-
domizers.

SWe use Laplace noise here as it offers a smoother tradeoff for smaller parameters.



Figure 5: Oriented cycle of length 4; two non-adjacent black nodes
have edges oriented toward the remaining red nodes.

Lemma 4.2. Our triangle counting algorithm is e-LEDP.

ProoF. Our triangle counting algorithm calls Algorithm 3.1,
which by Theorem 3.3 is (¢/4)-LEDP. Additionally, we release three
sets of information, each of which we show to be (¢/4)-LEDP.

First, each node applies Randomized Response to the upper tri-
angular adjacency matrix to generate a privacy-preserving set of
edges. By [23], this adjacency list output is a (¢/4)-local randomizer.

Second, each node releases its privacy-preserving out-degree.
By Line 7, the sensitivity of the out-degree (conditioning on Z) is
1 for neighboring adjacency lists. By the privacy of the geometric
mechanism ([6, 13, 23, 24]), each node uses a (¢/4)-local randomizer
to output its noisy degree.

Third, each node releases a privacy-preserving triangle count us-
ing its outgoing edges from the low out-degree ordering. To bound
the sensitivity, we truncate the outgoing adjacency list (computed
using Z) of each node by dmax. Given neighboring adjacency lists a
and a’, assume a’ contains one additional neighbor w (without loss
of generality). Let @ and a’ be the truncated adjacency lists. In the
worst case, a contains a node u not in a’, while a’ contains w (not
in a). Let j be defined as in Line 9. If j = u, the first for-loop (Line 7)
counts at most Jmax additional triangles for u (symmetrically for
w). Assuming u returns Jmax triangles and w returns none, then
for all other nodes j # u, the second for-loop (Line 8) encounters at
most Jmax additional triangles. Thus, the total difference in counted
triangles between a and a’ is ngax, giving a sensitivity of ngax.
By the privacy of the Laplace mechanism ([23]), outputting local
triangle counts is an (&/4)-local randomizer.

Since the differing edge between neighboring graphs G and
G’ affects at most one node’s out-degree, applying composition
([22, 23, 25]) over all four (¢/4)-local randomizers results in an
e-LEDP triangle counting algorithm. O

Approximation Guarantees. One of the major novelties in our
proofs is via a new intricate use of the Law of Total Expectation
and Law of Total Variance for the events where the out-degrees
of each node is upper bounded by the noisy maximum out-degree
dmax (which is, in turn, upper bounded by the degeneracy O(d)).
Such use cases were unnecessarily in [27, 43] because they did not
use oriented edges. Below, we first upper bound the out-degree
by O (%) and formally state the approximation guarantees of our
algorithm. Due to space constraints, we omit some of the proofs
here and refer the reader to the full version of our paper [64].
Lemma 4.3. Given a graph where edges are oriented according
to Algorithm 4.4, the maximum out-degree of any node is at most
0 (d + 108 (D) log’ () )

Lemma 4.4. Given a graph where edges are oriented according

N
to Algorithm 4.4, the number of oriented 4-cycles, denoted by C4,
where each cycle contains two non-adjacent nodes with outgoing
n*d?
62

>

edges to the remaining two nodes (see Fig. 5), is at most 5(

with high probability, where d is the degeneracy of the graph.
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PRroOOF. There are O(n?) unordered pairs of vertices {w, x} that
may serve as the black nodes in an oriented 4-cycle (see Fig. 5). For a
fixed pair {w, x}, define Sy, x = {u € V:w — uand x — u} to be
the set of vertices that are the outgoing endpoints of the outgoing
edges from both w and x.

Under the low out-degree orientation and by Lemma 4.3,

log (Dmax) logz (n) )
£

each vertex has at most O (d + out-neighbors

2
and thus can have at most O((d+ w) )

old?+ log? (szxz) log*(n)
{u,0} C Sy forms an oriented 4-cycle with {w,x}, con-
tributing at most this many cycles per black pair of vertices.
Summing over all O(n?) black vertex pairs yields a total of at most

0 (nz (dz + log? (Dmaxz) log* (n) )) (

&
Theorem 4.5. With high constant probability, our triangle counting
Ioorith 0 vndlog® n \5 . .
algorithmreturnsa {1+ 1,0 | ——=— + 4| |-approximation of

the true triangle count.
See Table 2 for the d values of real-world graphs; when d = O(1)

is constant, as is the case for real-world graphs, then C4 = O(n?)
and T = O(n). We improve previous theoretical additive errors

3
from O (‘/Ci4 "3/2) [43]to O (\/ Cy+ %), an improvement

—_ + —_—
of at least a Q(+/n) factor, translating to massive practical gains.

outgoing red pairs. Each pair

=0

2 J2
%) oriented 4-cycles. O

& gz

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance and accuracy of our k-
core decomposition (k-CoreD) and triangle counting (EdgeOrient, )
algorithms under Local Edge Differential Privacy (LEDP) using a dis-
tributed simulation. We benchmark against prior LEDP algorithms,
and to highlight the limitations of Randomized Response (RR), we
additionally implement RR-based baselines for both problems. All
RR baselines are evaluated purely in terms of accuracy, as they
are centralized algorithms and not directly comparable in runtime
to our distributed setting. Furthermore, RR introduces significant
computational overhead due to increased graph density from edge
perturbation. Consequently, we omit RR results on many large
graphs: k-core baselines fail due to out-of-memory (OOM)
errors, while triangle counting exceeds timeout limits. These
failures occur independently, underscoring the instability
and inefficiency of naive RR methods on large-scale graphs.
k-Core Baselines. We compare k-CoreD against the LEDP k-core
decomposition algorithm of [19] (denoted k-Core), which we im-
plement. Additionally, we construct an RR-based baseline (denoted
k-CoreRR) that runs the standard peeling algorithm on the RR-
perturbed graph and applies a scaling factor to correct the induced
degrees, ensuring unbiased estimates. Our method achieves sig-
nificantly better accuracy, reducing approximation error by up to
two orders of magnitude over k-CoreRR and outperforming k-
Core [19] in both accuracy and efficiency—reducing the number
of rounds by nearly two orders of magnitude across all graphs.
k-CoreRR consistently fails on larger datasets due to memory ex-
haustion caused by increased graph density.



Table 2: Graph size, maximum core number, and number of triangles.

Graph Name ‘ Num. Vertices | Num. Edges | Max. Degree ‘ Max. Core Num. (d) ‘ Num. Triangles

986

7115
36,692
58,228
81,306
107,614
281,903
317,080
784,262
3,072,441
4,846,609
41,652,230
65,608,366

345
1065
1,383
1,134
3,383
20,127
38,625
343
21,743
33,313
20,333
2,997,487
5214

email-eu-core 1,329,336 34
100,761
183,830
214,078

1,342,296
12,238,285
1,992,635
1,049,866
267,844,669
117,185,083
42,851,237
1,202,513,046
1,806,067,135

105,461
608,387
727,044
494,728
13,082,506
1,073,677,742
11,329,473
2,224,385

wiki

enron
brightkite
ego-twitter
gplus
stanford
dblp

brain
orkut
livejournal
twitter
friendster

2488 -
304

Triangle Counting Baselines. We compare EdgeOrient, against
two LEDP triangle counting algorithms: ARROneNS, (Lap)[43]
and GroupRR[38]. For the RR baseline (denoted as TCountRR),
we follow the approach from [26]. Our algorithm achieves up to
six orders of magnitude improvement in multiplicative accuracy
while providing substantial speedups in larger graphs.
Experimental Setup. To evaluate our algorithms in a distributed
simulation, we partition the input graph across M worker pro-
cessors and a single coordinator processor. Each worker handles
a subset of nodes and their full adjacency lists, running LEDP al-
gorithms locally. Workers communicate their privacy-preserving
outputs to the coordinator, which aggregates the data and broad-
casts new public information. This proceeds over multiple syn-
chronous rounds, simulating a real-world distributed setting. We
use 80 worker processors and a single coordinator. Each value
is averaged over 5 runs, with a 4-hour wall-clock limit per run.
Parameters We use ¢ = 1.0, bias term = 8, approximation factor
(2 + 1) = 5.625 (matching non-private k-core experiments [54]),
and privacy split fraction f = 0.8 (allocating 0.8 - ¢ to thresholding
and 0.2 - ¢ to level moving step). We also conduct an ablation study
on key parameters ¢ and f, and our theoretical proofs show the
approximation falls within a (2 + n)-multiplicative factor.
Compute Resources We run experiments on a Google Cloud
c3-standard-176 instance (3.3 GHz Intel Sapphire Rapids CPUs,
88 physical cores, 704 GiB RAM) with hyper-threading disabled.
The code, implemented in Golang [21], is publicly available [1].
Datasets We test our algorithms on a diverse set of 13 real-world
undirected graphs from SNAP [50], the DIMACS Shortest Paths
Challenge road networks [16], and the Network Repository [74]:
email-eu-core, wiki, enron, brightkite, ego-twitter, gplus,
stanford, dblp, orkut, livejournal, and friendster. We also use
twitter, a symmetrized version of the Twitter network [49], and
brain, a highly dense human brain network from NeuroData
(https://neurodata.io/). We remove duplicate edges, zero-degree
vertices, and self-loops. Table 2 reflects the graph statistics after
this removal. Exact triangle counts for some graphs are omitted
due to time or memory constraints.

5.1 k-Core Decomposition

Response Time. Fig. 7 shows the response times of k-CoreD across
all datasets. Our algorithm efficiently processes large-scale graphs,
including billion-edge datasets like twitter and friendster, within
four hours. These results validate the scalability and practicality of
k-CoreD, demonstrating the impact of degree thresholding and bias
terms in delivering both theoretical and practical improvements.
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While measuring response time, a direct runtime comparison
with the k-Core algorithm [19] is not meaningful. That algorithm
does not include bias correction, which often results in large negat-
ive noise causing most nodes to remain stuck at level 0. Since the
algorithm proceeds for a fixed number of communication rounds
(matching the levels in the LDS), but no nodes move beyond the first
level, negligible work is performed in subsequent rounds—making
the runtime unrealistically low while returning (the same) poor
approximation for many nodes. Instead, we compare the number
of communication rounds. As shown in Fig. 8, k-CoreD reduces
the number of rounds by two orders of magnitude compared
to the baseline, aligning with our theoretical bound of O(log(n) -
log(Dmax))- This translates to significantly lower communication
overhead and improved scalability in distributed settings.

Accuracy We calculate the approximation factor for each node
max(sy,ty)

min(sy,ty) ’
ty is the true core number. We use this metric to be consistent

with the best-known non-private k-core decomposition implement-
ations [17, 54]. These individual node approximation factors facilit-
ate the computation of aggregate metrics: the average, maximum,
80" and 95th percentile approximation factors for each graph. The
theoretical approximation bound in the absence of noise is calcu-
lated as (2 + ), which is 5.625 for all graphs (labeled Theoretical
Bound). Additionally, we adjust this bound to account for noise by
logl, s (Dmax)

asay = where s, is the approximate core number and

incorporating the additive error term , where n is the
number of nodes, Dyqx is the maximum degree (labeled Theoretical
Bound (With Noise)). For this bound, we compute the effect of the
log},, /s (Dmax)
£+ Kmax
where kpax is the maximum core number, to 5.625. Note that such

a theoretical bound is a lower bound on the effect of the additive
error on the multiplicative factor; for smaller core numbers, e.g.
kmin << kmax, the additive error leads to a much greater factor.

Figs. 6a to 6c present the approximation factors achieved by our
approach (k-CoreD) compared to the baseline k-core algorithm (k-
Core) from [19], and the randomized response baseline (k-CoreRR),
along with theoretical bounds across various datasets. On average,
our method maintains approximation factors below 4x across all
datasets, with the 80" percentile staying under 5.5x, as illustrated
in Fig. 6a and Fig. 6b, demonstrating significantly lower variance
compared to the baselines. These results remain well within the the-
oretical bounds without noise. Compared to k-Core [19], k-CoreD
consistently achieves better or comparable performance. Notably,
for graphs such as brain and gplus, k-CoreD reduces the approxim-
ation factors from 131.55 to 4.11 and from 52.71 to 3.27, improve-
ments of over 31x and 16x, respectively. Similarly, for orkut and
wiki, our algorithm improves the approximation factors by 6.6x and
1.9x, respectively. Compared to k-CoreRR, our algorithm achieves
consistently better performance across all datasets—often by two to
three orders of magnitude. Notably, on the dblp graph, k-CoreD
improves the approximation factor by over 47x. These results un-
derscore the limitations of naive RR-based methods, which suffer
from inflated graph density due to edge perturbation.

However, for many graphs, the difference between k-Core [19]
and our approach is less pronounced. This is due to the k-Core al-
gorithm’s inability to move nodes up levels in the LDS, which results

additive noise on the multiplicative factor by adding

5
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Figure 8: k-Core Decomposition Number of Rounds

in an approximate core number of 2.5 for most nodes. Given that
real-world graphs often exhibit small core numbers (Table 2), the
average approximation factor for k-Core becomes skewed, particu-
larly for graphs with a significant proportion of low-core nodes. In
contrast, for graphs with larger core numbers, such as gplus, brain,
and orkut, our method demonstrates significant improvements. The
advantages of our algorithm become more evident when examin-
ing the 80" and 95 percentile approximation factors. As shown
in Fig. 6b, our method consistently achieves a notable reduction
in the 80th percentile error compared to k-Core, with reductions
of up to 42x, 40x, and 7.7x for graphs with large core numbers,
such as brain, gplus, and orkut, respectively. Similarly, in the 951
percentile error (Fig. 6¢), our method achieves reductions of nearly
49x, 81x, and 7x for the same graphs. These results underscore
the robustness and scalability of our algorithm in handling diverse
graph structures with varying core number distributions.
Ablation Study We analyze the effect of varying the privacy para-
meter, ¢, and the privacy split fraction, f, on the utility of the k-core
decomposition algorithm by plotting the average approximation
factor across different datasets: gplus, wiki, and livejournal, for our
algorithm and the baseline. From the results shown in Fig. 9, we ob-
serve that the approximation factor improves as ¢ increases, which
aligns with the theoretical expectations of differential privacy where
higher ¢ allows for less noise and greater utility.
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Further, we note that an optimal value of 0.8 consistently min-
imizes the approximation factor across all datasets (Fig. 9). This is
the case since degree thresholding affects the amount of noise that
will be added per level for later computations. Thus, we use f = 0.8
for all other experiments, as it strikes a balance between the two
steps, ensuring better overall performance.

5.2 Triangle Counting

Response Time Fig. 10a shows the average response times of our
LEDP triangle counting algorithm, EdgeOrient,, implemented in
our distributed (LEDP-DS) framework. We compare our algorithm
to ARROneNSp (Lap) from [43]. While ARROneNSp (Lap) is im-
plemented in C++, our Golang implementation demonstrates com-
parable performance across most datasets, with notable speedups
for large graphs. Specifically, for gplus, our algorithm achieves a
speedup of 3.45x, while for other graphs such as email-eu-core,
stanford, and wiki, our performance is comparable despite the com-
munication overhead. However, for the enron, brightkite, and dblp
dataset, our algorithm is slower. This discrepancy is likely due to
the smaller sizes of the graphs so a centralized algorithm will per-
form better than a distributed algorithm. These results emphasize
the scalability and practicality of EdgeOrient, for large-scale graph
analysis, highlighting its ability to handle diverse graphs.

Accuracy Following the evaluation methodology in [43], we com-

pute relative error for a graph using \A;M’ where A represents

the approximated triangle count and A the true triangle count. Ad-
ditionally, we apply the theoretical bounds from Theorem 4.5 to
our analysis. According to Fig. 10b, our algorithm, EdgeOrient,,
consistently achieves relative errors ranging from 107! to 1072
across all datasets, remaining well within the theoretical bounds.
Compared to ARROneNSy (Lap), our algorithm gives better re-
lative errors by 53x - 89x, for all graphs except gplus, where we
achieve slightly better but comparable accuracy. In contrast to
GroupRR [38], which we could only run on the wiki dataset due to
the 4-hour timeout limit, our algorithm not only matches accuracy
but also has a response time fwo orders of magnitude faster.
On small or dense graphs like wiki or email-eu-core, the TCoun-

tRR—which incurs a dominant error term growing proportional to

2 _
€2

performs similarly to ours because n is small [26]. However, in
larger graphs, n3/2 explodes, whereas our error depends instead on
Vnd (with d < n). TCountRR must also consider all O(n*) 4-cycles,
but our method only needs O(n%d?) 4-cycles. Consequently, on lar-
ger datasets such as enron and brightkite, we reduce the relative
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error (Fig. 10b) by roughly 17x and 45.5x, respectively. Compared
to using 60 worker cores, we achieve up to a 1.41x speedup.

To further analyze the limitations of prior approaches, we com-
pute the multiplicative approximation factor of the triangle count,
max(Z,A)

defined as ~ ) . Unlike relative error, this metric expli-

max(l,min(A,A )
citly accounts for cases where algorithms, such as the one in [43],
produce negative triangle counts, which severely undermines their
utility in real-world scenarios. As shown in Fig. 10c, our algorithm
achieves consistently small approximation factors across all graphs,
remaining within [1.01, 1.93], and reducing the factor by six orders
of magnitude compared to [43] and TCountRR. This highlights
the robustness of our approach, EdgeOrient,, in maintaining low
and stable approximation factors across diverse graph structures.

Ablation Study To evaluate the impact of the privacy parameter
¢ on utility, we analyze and plot the approximation factors for
varying values of ¢ across three representative graphs: gplus, dblp,
and stanford, comparing against those reported in [43]. Our res-
ults demonstrate that for stanford and dblp, our algorithm achieves
a significant reduction in approximation factor by up to six or-
ders of magnitude. For gplus, while the approximation factors are
comparable for higher values of ¢, our algorithm achieves better
utility for smaller values of ¢. Specifically, at ¢ = 0.25, our algorithm
achieves an approximation factor of 1.025, compared to 1.126 for
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ARROneNS, (Lap), an improvement of 9.8%. Similarly, at ¢ = 0.50,
our algorithm achieves a factor of 1.011, compared to 1.055, an
improvement of 4.2% This highlights the ability of our approach
to offer better utility even under stricter privacy constraints, un-
derscoring its advantage over [43]. Additionally, we observe that
the utility of our algorithm consistently improves as the privacy
parameter ¢ increases, aligning with the theoretical expectations of
differential privacy, where higher values of ¢ results in less noise.

6 CONCLUSION

Large-scale network analysis often raises privacy concerns for sens-
itive data. We employ local edge differential privacy (LEDP), letting
nodes protect their edges without a trusted authority. We pro-
pose novel LEDP algorithms for k-core decomposition and triangle
counting that surpass prior work in accuracy and theoretical guar-
antees and introduce the first distributed framework to simulate
these algorithms on a single machine. Experiments show our k-core
approximations meet non-private theoretical bounds on average,
while triangle counting errors are nearly two orders of magnitude
lower than previous LEDP methods, with similar runtimes. Ongo-
ing work extends this framework to multi-machine testing with
real communication to capture added latency and explores multi-
coordinator variants to eliminate single points of failure and reduce
bottlenecks. These enhancements will support a broader range of
LEDP algorithms. Our open-source framework (at [1]) invites the
community to build on LEDP graph algorithms.
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