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Abstract. In this paper, we study variants of density
peaks clustering, a popular type of density-based clustering
algorithm for points that has been shown to work well in
practice. Our goal is to cluster large high-dimensional
datasets, which are prevalent in practice. Prior solutions
are either sequential and cannot scale to large data, or are
specialized for low-dimensional data. This paper unifies the
different variants of density peaks clustering into a single
framework, PECANN (Parallel Efficient Clustering with
Approximate Nearest Neighbors), by abstracting out several
key steps common to this class of algorithms. One such
key step is to find nearest neighbors that satisfy a predicate
function, and one of the main contributions of this paper is
an efficient way to do this predicate search using graph-based
approximate nearest neighbor search (ANNS). To provide
ample parallelism, we propose a doubling search technique
that enables points to find an approximate nearest neighbor
satisfying the predicate in a small number of rounds. Our
technique can be applied to many existing graph-based ANNS
algorithms, which can all be plugged into PECANN.

We implement five clustering algorithms with PECANN
and evaluate them on synthetic and real-world datasets with
up to 1.28 million points and up to 1024 dimensions on a
30-core machine with two-way hyper-threading. Compared
to the state-of-the-art FASTDP algorithm for high-dimensional
density peaks clustering, which is sequential, our best
algorithm is 45x–734x faster while achieving competitive
ARI scores. Compared to the state-of-the-art parallel DPC-
based algorithm, which is optimized for low dimensions,
PECANN is two orders of magnitude faster. As far as we
know, we are the first to evaluate DPC variants on large high-
dimensional real-world image and text embedding datasets.

1 Introduction Clustering is the task of grouping
similar objects into clusters and is a fundamental task in
data analysis and unsupervised machine learning [48, 1,
8]. For example, clustering algorithms can be used to
identify different types of tissues in medical imaging [99],
analyze social networks [68], and identify weather regimes
in climatology [18]. They are also widely used as a data
processing subroutine in other machine learning tasks [20,
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97, 60, 66]. One popular type of clustering is density-based
clustering, where clusters are defined as dense regions of
points in space. Recently, density-based clustering algorithms
have received a lot of attention [32, 2, 6, 50, 77, 92, 43, 42, 82]
because they can discover clusters of arbitrary shapes and
detect outliers (unlike popular algorithms such as k-means,
which can only detect spherical clusters).

Density peaks clustering (DPC) [77] is a popular density-
based clustering technique for spatial data (i.e., point sets) that
has proven very effective at clustering challenging datasets
with non-spherical clusters. Due to DPC’s success, many
DPC variants have been proposed in the literature (e.g.,
[33, 15, 84, 101, 88, 98, 102, 27, 87, 44, 35]). However,
existing DPC variants are sequential and/or tailored to low-
dimensional data, and so cannot scale to the large, high-
dimensional datasets that are common in practice.

This paper addresses this gap by proposing a novel frame-
work called PECANN: Parallel Efficient Clustering with
Approximate Nearest Neighbors. PECANN contains im-
plementations for a variety of different DPC density tech-
niques that both scale to large datasets (via efficient parallel
implementations) and run on high dimensional data (via ap-
proximate nearest neighbor search). Designing a unifying
framework for DPC variants is non-trivial, as DPC variants
can differ significantly. Developing a modular and extensi-
ble framework that can seamlessly incorporate various DPC
variants and allow for easy comparison and experimentation
requires careful abstraction and encapsulation of the key al-
gorithmic components. Furthermore, extending DPC to high
dimensions is challenging as there are no efficient parallel
solutions for constrained nearest neighbor search in high di-
mensions, which is needed for DPC. Before going into more
details on our contributions, we review the main steps of DPC
variants and discuss existing bottlenecks.

The three key steps of DPC variants are as follows:

(1) Compute the density of each point x.
(2) Construct a tree by connecting each point x to its closest

neighbor with higher density than x.
(3) Remove edges in the tree according to a pruning heuristic.

Each resulting connected component is a separate cluster.

Step (1) is computed differently based on the variant, but
all variants use a function that depends on either the k-nearest
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neighbors of x or the points within a given distance from x.
Efficient implementations of this step rely on nearest neighbor
queries or range queries. In low dimensions, these queries
can be answered efficiently using spatial trees, such as kd-
trees. However, kd-trees are inefficient in high dimensions
due to the curse of dimensionality [96]. Step (2) again
requires finding nearest neighbors, but with the constraint that
only neighbors with higher density are considered. Step (3)
can easily be computed using any connected components
algorithm. Steps (1) and (2) form the bottleneck of the
computation, and take quadratic work in the worst case,
while Step (3) can be done in (near) linear work. Note that
different clusterings can be generated by reusing the tree
from Step (2) and simply re-running Step (3) using different
pruning heuristics. The tree from Step (2) can be viewed as a
cluster hierarchy (or dendrogram) that contains clusterings at
different resolutions.

Existing papers on DPC variants mainly focus on their
own proposed variant, and as far as we know, there is
no unified framework for implementing and comparing
DPC variants and evaluating them on the same datasets.
Furthermore, most DPC papers focus on clustering low-
dimensional data, but many datasets in practice are high
dimensional (d > 100). The PECANN framework unifies a
broad class of DPC variants by abstracting out these three
steps and providing efficient parallel implementations for
different variants of each step. For Step (1), we leverage
graph-based approximate ANNS algorithms, which are fast
and accurate in high dimensions [65, 91]. For Step (2),
we adapt graph-based ANNS algorithms to find higher
density neighbors by iteratively doubling the number of
nearest neighbors returned until finding one that has higher
density. Our doubling search guarantees that the algorithm
finishes in a logarithmic number of rounds, making it highly
parallel. For Steps (1) and (2), PECANN supports the
following graph-based ANNS algorithms: VAMANA [52],
PYNNDESCENT [67], and HCNNG [70]. For Step (3), we
use a concurrent union-find algorithm [51] to achieve high
parallelism. Prior work [84] has explored using graph-based
ANNS for high-dimensional clustering, but their algorithm
is not parallel and they only consider one DPC variant
and one underlying ANNS algorithm. In addition, we
provide theoretical work and span bounds of PECANN that
depend on the complexity of the underlying ANNS algorithm.
PECANN is implemented in C++, using the ParlayLib [9]
and ParlayANN [65] libraries, and also has Python bindings.

We use PECANN to implement five DPC variants and
evaluate them on a variety of synthetic and real-world
data sets with up to 1.28 million points and up to 1024
dimensions. We find that using a density function that
is the inverse of the distance to the kth nearest neighbor,
combined with the VAMANA algorithm for ANNS, gives
the best overall performance. On a 30-core machine with

Notation Meaning

P input set of points
n, d size and dimensionality of P
xi ith point in P

G a similarity search index
D(xi, xj) distance (dissimilarity) between xi and xj

ρi, λi density and dependent point of xi

δi dependent distance of xi (i.e., D(xi, λi))
k the number of neighbors used for computing densities
Ni (approximate) k-nearest neighbors of xi

Wc,Sc the work and span of constructing G

Wnn,Snn the work and span of finding nearest neighbors using G

Table 2.1: Notation
two-way hyper-threading, this best algorithm in PECANN
achieves 37.7–854.3x speedup over a parallel brute force
approach, and 45–734x speedup over FASTDP [84], the state-
of-the-art DPC-based algorithm for high dimensions, while
achieving similar accuracy in terms of ARI score. FASTDP is
sequential, but even if we assume that it achieves a perfect
speedup of 60x, PECANN still achieves a speedup of 0.76–
12.24x. Compared to the state-of-the-art parallel density
peaks clustering algorithm by Huang et al. [45], which is
optimized for low dimensions, our best algorithm achieves
a 320x speedup while achieving a higher ARI score on the
MNIST dataset (their algorithm failed on larger datasets).

Our contributions are summarized below.
1. We introduce the PECANN framework that unifies exist-

ing k-nearest neighbor-based DPC variants and supports
parallel implementations of them that scale to large high-
dimensional datasets. We provide fast parallel implementa-
tions for five DPC variants.

2. We extend graph-based ANNS algorithms with a parallel
doubling-search method for finding higher density neigh-
bors.

3. We perform comprehensive experiments on a 30-core
machine with two-way hyper-threading showing that
PECANN outperforms the state-of-the-art DPC-based al-
gorithm for high dimensions by 45–734x. As far as we
know, we are the first to compare different variants of DPC
on large high-dimensional real-world image and text em-
bedding datasets.

Our code and the full version of the paper are available
at https://github.com/yushangdi/PECANN-DPC.

2 Preliminaries

2.1 Definitions and Notation A summary of the
notation is provided in Table 2.1. Let P = {x1, . . . , xn}
represent a set of n points in d-dimensional coordinate space
to be clustered. We use xi to represent the ith point in P . Let
G be a search index that supports searching for the exact or
approximate nearest neighbors of a query point. Let D(xi, xj)
denote the distance (dissimilarity) between points xi and xj ,
where a larger distance value means the points are less similar.
D can be any distance measure the search index G supports.
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Let the neighbors (Ni) of a point xi be either its exact
or approximate k-nearest neighbors. Let ρi be the density
of point xi, representing how dense the local region around
xi is. A larger ρi value indicates a denser local region. For
example, in the original DPC algorithm [77], the density of a
point x is the number of points within a given radius of x, and
in the SD-DP (sparse dual of density peaks) algorithm [33],
the density of a point is the inverse of its distance to its kth

nearest neighbor. In this paper, we consider the densities that
can be computed from the k-nearest neighbors of x.

DEFINITION 2.1. Let Pi = {xj | xj ∈ P ∧ ρj > ρi}.
For xi, its exact dependent point is a point λi ∈ Pi such that,
D(xi, λi) ≤ D(xi, xj) ∀ xj ∈ Pi (i.e., it is the closest point
with higher density than xi). The dependent distance (δi) of
xi is D(xi, λi), i.e., the distance to its dependent point (or ∞
if it does not have one).

Definition 2.1 defines the dependent point to be the
closest point with higher density, which is expensive to
compute in high dimensions. For high-dimensional data,
we relax the constraint to allow reporting an approximate
nearest neighbor with higher density (i.e., considering just the
points with higher density, choose approximately the closest
one). Roughly speaking, an approximate nearest neighbor
of a point x is one whose distance from x is not too far
from the distance of the true nearest neighbor from x. In our
experiments, we use the Euclidean distance function, one of
the most commonly used distance functions for clustering.

Points that are outliers and do not belong to any cluster
are classified as noise points. A noise point is in its own
singleton cluster. For example, some algorithms require a
density cutoff parameter ρmin, and points that have ρi < ρmin
are considered noise points. A cluster center is a point whose
density is a local maximum within a cluster. Each cluster
center corresponds to a separate cluster. One way to pick
cluster centers is using a parameter δmin, where a point xi is
considered a cluster center if δi > δmin.

We use the work-span model [49, 21], a standard
model of computation for analyzing shared-memory parallel
algorithms. The work W of an algorithm is the total number
of operations executed by the algorithm, and the span S is the
length of the longest sequential dependence of the algorithm
(it is also the parallel time complexity when there are an
infinite number of processors). We can bound the expected
running time of an algorithm on P processors by W/P +
O(S) using a randomized work-stealing scheduler [10].

2.2 Relevant Techniques Graph-based Approxi-
mate Nearest Neighbor Search. We use approximate nearest
neighbor search (ANNS) algorithms in PECANN. Graph-
based ANNS algorithms can find approximate nearest neigh-
bors in high dimensions efficiently and accurately compared
to alternatives such as locality-sensitive hashing, inverted in-
dices, and tree-based indices [91, 65, 95]. These algorithms

Algorithm 2.1 Greedy Beam Search, modified from [52]
Input: Query point x, starting point set S, graph index G, beam width L,

dissimilarity measure D, and integer k.
1: V ← ∅ ▷ visited points
2: L ← S ▷ points in the beam
3: while L \ V ̸= ∅ do
4: p∗ ← argmin(q∈L\V)D(x, q)

5: L ← L ∪G.Eout(p∗)
6: V ← V ∪ {p∗}
7: if |L| > L then keep only the L closest points to x in L
8: return k closest points to x in L ∪ V

first construct a graph index on the input points, and later
answer nearest neighbor queries by traversing the graph using
a greedy search. Some popular methods include Vamana [52],
HNSW [64], HCNNG [70], and PyNNDescent [67]. Manohar
et al. [65] provide parallel implementations for constructing
these indices, as well as a sequential implementation for run-
ning a single query. Multiple queries can be processed in
parallel. We describe more graph-based ANNS methods in
Section 7. Graph-based indices usually support any distance
measure, while some indices [52, 67] use heuristics that as-
sume the triangle inequality holds.
ANNS on a Graph Index. We use the function G.FIND-
KNN(x, k) to perform an ANNS on a graph G for the point
x, which returns the approximate k-nearest neighbors of x.
Most graph-based ANNS methods use a variant of a greedy
(beam) search (Algorithm 2.1) to answer a k-nearest neighbor
query [65]. For a query point x, the algorithm maintains a
beam L with size at most L (the width of the beam) as a set
of candidates for the nearest neighbors of x.

Let G.Eout(x) be the vertices incident to the edges going
out from x in G. We call these the out-neighbors of x. On
each step, the algorithm pops the closest vertex to x from L
(Line 4), and processes it by adding all of its out-neighbors to
the beam (Line 5). The set V maintains all points that have
been processed (Line 6). If |L| exceeds L, only the L closest
points to x will be kept (Line 7). The algorithm stops when
all vertices in the beam have been visited, as no new vertices
can be explored (Line 3). The algorithm returns the k closest
points to x from L and the visited point set V (Line 8).

In some cases, it is possible that the algorithm traverses
fewer than k points for a query, and thus returns fewer than k
points. To solve this problem, options include using a brute
force search or repeating the search from other starting points.
Parallel Primitives. PAR-FILTER(A, f ) takes as input a
sequence of elements A and a predicate f , and returns all
elements a ∈ A such that f(a) is true. PAR-ARGMIN(A,
f ) takes as input a sequence of elements A and a function
f : A → R, and returns the element a ∈ A that has the
minimum f(a). PAR-SUM(A) takes as input a sequence of
numbers A, and returns the sum of the numbers in A. PAR-
FILTER, PAR-ARGMIN, and PAR-SUM all take O(n) work
and O(log n) span. PAR-SELECT(A, k) takes as input a
sequence of elements A and an integer 0 < k ≤ |A|, and
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Algorithm 3.1 PECANN Framework
Input: Point set P , integer k > 0, distance measure D, Fdensity, Fnoise,

Fcenter
1: G = BUILDINDEX(P )
2: parfor i ∈ 1 . . . n do
3: Ni ← G.FIND-KNN(xi, k) ▷ find k-nearest neighbors
4: parfor i ∈ 1 . . . n do
5: ρi ← Fdensity(xi,Ni) ▷ compute densities

6: λ← COMPUTEDEPPTS(G, P , ρ,N , D)
7: Pnoise ← Fnoise(P , ρ, λ,N ) ▷ compute noise points
8: Pcenter ← Fcenter(P \ Pnoise, ρ, λ,N ) ▷ compute center points
9: Initialize a union-find data structure UF with size n = |P |

10: parfor xi ∈ P \ (Pnoise ∪ Pcenter) do
11: UF .UNION(i, λi)
12: parfor i ∈ 1 . . . n do
13: ci ← UF .FIND(i)
14: Return c

Algorithm 3.2 Dependent Point Computation
1: function DPBRUTEFORCE(xi,Ncandidates, ρ, D)
2: Ncandidates ← PAR-FILTER(Ncandidates, j : ρj > ρi)
3: ifNcandidates = ∅ then return ∅
4: λi ← PAR-ARGMIN(Ncandidates, j : D(xi, xj))
5: return λi

6: function COMPUTEDEPPTS(G, P , ρ,N , D)
7: parfor xi ∈ P do
8: λi ← DPBRUTEFORCE(xi,Ni, ρ, D)
9: Punfinished ← PAR-FILTER(P , xi : λi = ∅)

10: kdep ← Ld ▷ Ld is an integer parameter > k

11: while |Punfinished| > threshold do
12: parfor xi ∈ Punfinished do
13: Ncandidates ← G.FINDKNN(i, kdep)
14: λi ← DPBRUTEFORCE(xi,Ncandidates, ρ, D)
15: kdep ← 2 · kdep

16: Punfinished ← PAR-FILTER(Punfinished, xi : λi = ∅)
17: parfor xi ∈ Punfinished do
18: λi ← DPBRUTEFORCE(xi, P , ρ, D)
19: return λ

returns the kth largest element in A. It takes O(n) work and
O(log n log log n) span [49]. We use the implementations of
these primitives from ParlayLib [9].

A union-find data structure maintains the set member-
ship of elements and allows the sets to merge. Initially, each
element is in its own set. A UNION(a, b) operation merges the
sets containing a and b into the same set. A FIND(a) operation
returns the membership of element a. We use a concurrent
union-find data structure [51], which supports operations in
parallel. Performing m unions on a set of n elements takes
O(m(log( n

m + 1) + α(n, n))) work and O(log n) span (α
denotes the inverse Ackermann function).

3 PECANN Framework We present the PECANN
framework in Algorithm 3.1. To make our description of
the framework more concrete, we will give an example of
instantiating the framework in this section. Section 4 will
provide more examples and Section 5 will provide the work
and span analysis of PECANN.

The input to PECANN is a point set P , a positive integer

k, a distance measure D, and three functions Fdensity, Fnoise,
and Fcenter that indicate how the density, noise points, and
center points are computed, respectively. In the pseudocode,
ρ is an array of densities of all points in P and N is an array
containing k-nearest neighbors for all points. λ is an array
containing dependent points. c is an array containing the
cluster IDs of all points and ci is the cluster ID of xi. The
framework has the following six steps.
1. Construct Index. On Line 1, we construct an index
G, which can be any index that supports k-nearest neighbor
search. For example, it can be a kd-tree, which is suitable
for low-dimensional exact k-nearest neighbor search [34],
or a graph-based index for ANNS on high-dimensional
data [65, 52, 64, 70, 67]. It can also be an empty data structure,
which would lead to doing brute force searches to find the
exact k-nearest neighbors. An example of a graph index
corresponding to a point set is shown in Figure 3.1.
2. Compute k-nearest Neighbors. On Lines 2–3, we
compute the k-nearest neighbors of all points in parallel,
using the index G. If we run the greedy search (Algorithm 2.1)
on the example in Figure 3.1 with k = 1, L = 1, and
S containing only the query point, we would find that the
nearest neighbors of a, b, c, d, e, and f are c, c, b, f , d, and
d, respectively (here we assume that the graph index returns
exact nearest neighbors).
3. Compute Densities. On Lines 4–5, we compute the
density for each point in parallel using Fdensity. An example
density function is 1

D(xi,xj)
, where xj is the furthest neighbor

from xi in Ni [33]. For this density function, the densities
of the points in Figure 3.1 are ρa = 1√

2
, ρb = 1, ρc = 1,

ρd = 1√
2

, ρe = 1
2 , and ρf = 1√

2
. The ranking of the densities

from high to low (breaking ties by node ID) is b, c, a, d, f, e.
4. Compute Dependent Points. On Line 6, we compute the
dependent point of all points in parallel. The dependent points
in our example are shown in Figure 3.2. We explain the details
of how we compute the dependent points in Subsection 3.1.
As mentioned in Section 1, the resulting tree from this step is
a hierarchy of clusters (dendrogram), which can be returned
if desired. To compute a specific clustering, the following
two steps are needed.
5. Compute Noise and Center Points. On Lines 7–
8, we compute the noise and center points using the in-
put functions Fnoise and Fcenter. An example of Fnoise is
par-filter(P, xi : ρi > ρmin), where ρmin is a user-
defined parameter. Points whose densities are at most ρmin

are classified as noise points. An example of Fcenter is
par-filter(P, xi : D(xi, λi) ≥ δmin), where δmin is a
user-defined parameter. Non-noise points whose distance are
at least δmin from their dependent point are classified as cen-
ter points. In our example (Figure 3.3), if we let ρmin = 1√

2
,

then e is a noise point. If we let δmin = 2.5, then b and d are
center points.
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6. Compute Clusters. On Lines 9–13, we compute the
clusters using a concurrent union-find data structure [51].
In parallel, for all points that are not noise points or center
points, we merge them into the same cluster as their dependent
point. This ensures that points (except noise points and
center points) are in the same cluster as their dependent point.
Figure 3.3 shows the clustering obtained on our example.
Since e is a noise point and b and d are center points, we skip
processing their outgoing edge during the union step (Line 11
of Algorithm 3.1).

a
b

e

f

d c

Figure 3.1: Example dataset
and a corresponding graph in-
dex.

a
b

e

f

d c

Figure 3.2: Each point has an
outgoing edge to its dependent
point.

a

b

cd e
f

Figure 3.3: Clustering result with e as a noise point (white circle),
and b and d as center points (blue diamonds). The dashed edges are
ignored during the union step (Line 11 of Algorithm 3.1). The two
blue circles are the two clusters found.

3.1 Dependent Point Computation Our parallel al-
gorithm for computing the dependent points (Algorithm 3.2)
takes as input the index G, the point set P , the array of densi-
ties ρ, the array of (approximate) k-nearest neighbors N , and
the distance measure D.

DPBRUTEFORCE is a helper function (Lines 1–5) that
searches for the nearest neighbor of xi with density higher
than ρi among Ncandidates using brute force. It returns ∅ if no
points in Ncandidates have a higher density than ρi.

On Lines 7–8, we first search within the k-nearest
neighbors of each point to find its dependent point. This
optimization is also used in several other works [33, 88, 15].
On Line 9, we obtain the set of points Punfinished that have not
found their dependent points. Line 10 initializes kdep to Ld.

Ld and threshold are parameters used for our per-
formance optimizations. We defer a discussion of these pa-
rameters to Subsection 3.2, and ignore their effect here by
setting Ld to be 2k and threshold to be 0 (this causes
Lines 17–18 to have no effect, since Punfinished will be empty
at that point).

The while-loop on Line 11 terminates when all points
have found their dependent point. On Lines 12–14, we
compute the dependent point for points in Punfinished. If the
index is designed for approximate k-nearest neighbor search,
we guarantee that the dependent point has a higher density, but

it might not be the closest among points with higher densities.
Note that on Line 12, we can skip the point with maximum
density, since we know that it does not have a dependent point.
On Lines 13–14, for each point, we find kdep neighbors of
xi on each round, and if any of the neighbors have a higher
density than xi, we can return the closest such neighbor as
the dependent point. We then double kdep

i for the next round
(Line 15). A similar doubling optimization is used in [15], but
with a cover tree. Furthermore, their algorithm is sequential.
On Line 16, we compute the set of points Punfinished that have
not found their dependent point.
Example. On the dataset from Figure 3.1, points a, c, e,
and f would find their dependent point within their k-nearest
neighbor (k = 1) on Lines 7–8 because their nearest neighbor
has higher density than themselves. b is the point with
maximum density and is skipped. For the remaining point
d, on the first round we have kdep = 2, and so Ncandidates =
{e, f}. This does not contain any point with a higher density
than d, and so we double Kdep = 2 and try again. On the
second round, kdep = 4, and so Ncandidates = {b, c, e, f},
which contains d’s dependent point c.

3.2 Performance Optimizations

Dependent Point Finding Now we explain the two
integer parameters Ld and threshold. The while-loop
on Line 11 checks if |Punfinished| > threshold, and when
that is no longer true, we do a brute force k-nearest neighbor
computation for the remaining points in Punfinished on Lines 17–
18. This optimization is useful because for the points with
relatively high density, it can be challenging for the index
to find a dependent point (as most neighbors have lower
density than them), and for these last few points it is faster
to just do a brute force search than continue to double kdep.
Furthermore, when few points are remaining, there is less
parallelism available when calling FINDKNN, each of which
is sequential, compared to the brute force search, which is
highly parallel. In our experiments, we set threshold =
300, which we found to work well.

Ld is a tunable parameter that is > k (Line 10) and
indicates the initial number of nearest neighbors to search
for to find a dependent point (Line 13). A larger value of Ld

leads to fewer iterations. However, points that require fewer
than Ld nearest neighbors to find a dependent point will do
some extra work (as they search for more nearest neighbors
than necessary). On the other hand, points that require at least
Ld nearest neighbors to find a dependent point will do less
work overall (they do not need to waste work on the initial
rounds where they would not find a dependent point anyway).
Vamana Graph Construction. Vamana [52, 65] is one of
the graph-based indices that we use for ANNS. Its parallel
construction algorithm [65] builds the graph by running
greedy search (from Algorithm 2.1) on each point xi (in
batches), and then adds edges from xi to points visited during
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the search (V). It requires a degree bound parameter R,
such that in the constructed graph each vertex has at most R
out-neighbors. If adding edges between xi and V causes a
vertex’s degree to exceed R, a pruning procedure is called
to iteratively select at most R out-neighbors. The pruning
algorithm also has a parameter α ≥ 1 that controls how
aggressive the pruning is; a higher α corresponds to more
aggressive pruning, which can lead to less than R neighbors
being selected. Intuitively, this heuristic prunes the long edge
of a triangle, with a slack of α. The details of the pruning
algorithm can be found in [52].

The original Vamana graph construction algorithm [52,
65] starts the greedy search from a single point, which is
the medoid of P . Starting from a single point can make
the algorithm require a high degree bound and beam width
to achieve good results on clustered data because a search
can be trapped within the cluster that the medoid is in.
Instead of using a large degree bound and beam width, which
degrades performance, we use an optimization where we
randomly sample a set of starting points for the Vamana graph
construction algorithm instead of starting from the medoid
alone. This heuristic is also explored in [59].

4 Usage of PECANN PECANN allows users to plug
in functions that can be combined to obtain new clustering
algorithms. In this section, we describe several functions and
provide their work and span bounds.

4.1 Indices Here we describe several approaches for
building indices for k-nearest neighbor search. Let the work
and span of constructing G be Wc and Sc, respectively.
Brute Force. The brute force approach does not use an index
at all. When searching for the exact k-nearest neighbors of
xi, it uses a PAR-SELECT to find the kth smallest distance
to xi, and a PAR-FILTER to filter for the points with smaller
distances to xi. In this case, Wc and Sc are O(1), while Wnn

and Snn are O(n) and O(log n log log n), respectively.
Tree Indices. Another option is to use a tree index, such
as a kd-tree or a cover tree [15]. For a parallel kd-tree,
Wc = O(n log n) and Sc = O(log n log log n) [94]. A
parallel cover tree can be constructed in O(n log n) expected
work and O(log3 n log log n) span with high probability [40].
A k-nearest neighbor search in a kd-tree takes O(n) work
and O(log n) span. A k-nearest neighbor search in a cover
tree takes O(c7(k + c3) log k log∆) expected work and
span [40, 30, 29], where c is the expansion constant of P
and ∆ is the aspect ratio of P . However, note that these tree
indices usually suffer from the curse of dimensionality and
do not perform well on high-dimensional datasets.
Graph Indices. Graph-based ANNS algorithms have been
shown to be efficient and accurate in finding approximate near-
est neighbors in high dimensions [91, 65, 95]. Our framework
includes three parallel graph indices from the ParlayANN
library [65]: Vamana [52], HCNNG [70], and PyNNDes-

cent [67]. Similar to Vamana, HCNNG also uses the pa-
rameter α to prune edges. HCNNG and PYNNDESCENT
also accept a num_repeats argument, which represents how
many times they will independently repeat the construction
process before merging the results together.

When the number of returned neighbors is less than k,
we use the brute force method to find the exact k-nearest
neighbors. While these graph indices have been shown
to work well in practice, there are only a few works that
theoretically analyze their performance [71, 74, 83, 56, 47].
Indyk and Xu [47] show that Vamana construction takes
Wc = O(n3) work. In practice, we find that the work is
usually much lower. Using the batch insertion method [65],
which inserts points in batches of doubling size, Vamana
construction takes Sc = O(n2 log n) span.1

4.2 Density, Center, and Noise Functions Here, we
describe a subset of the density, center, and noise functions
(Fdensity, Fcenter, and Fnoise) that we implement in PECANN.
We describe other functions we implement in the full paper.
kth Density Function. The density of xi is ρi = 1

D(xi,xj)

where xj is the furthest neighbor from xi in Ni, i.e., the
distance to the exact or approximate kth nearest neighbor of
xi [33, 15]. Each density computation is O(k) work and
O(log k) span to find the furthest neighbor in Ni.

The density can also be normalized [44]. The normalized
density (normalized) is ρ′i =

ρik∑
j∈Ni

ρj
. Intuitively, this

function normalizes a point’s density with an average of the
densities of its neighbors. Each normalization takes an extra
O(k) work and O(log k) span.
Threshold Center Function. Recall from Section 2 that
δi = D(xi, λi) is the dependent distance of xi. Fcenter obtains
the center points by selecting the points whose distance to
their dependent point is greater than δmin, a user-defined
parameter. This can be implemented with a par-filter,
whose work and span are O(n) and O(log n), respectively.
This method is used in [4, 101, 5].
Product Center Function. This method takes as input nc,
a user-defined parameter that specifies how many clusters to
output. We compute the product δi × ρi for all points xi. The
nc points with the largest products are the center points. This
function can be implemented with a PAR-SELECT to find the
nth
c largest product t, and then a PAR-FILTER to filter out the

points with product less than t. The work and span are O(n)
and O(log n log log n), respectively. This method is used in
[53, 77, 44, 61].
Noise Function. We implement a noise function Fnoise, which
returns the points xi with density ρi < ρmin. These points
are then ignored in the remainder of the algorithm. This can
be implemented using a parallel filter with O(n) work and

1The batch insertion method in [65] sets a batch size upper bound of
0.02n, which does not affect the bounds, as there will only be a constant
number (< 50) more batches after the upper bound is reached.
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O(log n) span. This noise function is used by [4, 77, 5].

5 Analysis of PECANN

5.1 Work and Span Analysis The work and span
of PECANN (Algorithm 3.1) depend on the specific index
construction algorithm and functions Fdensity, Fnoise, and
Fcenter. Here, we choose the functions that give the best
performance in our experiments (kth density, product center,
and default noise functions).

We first analyze the work and span of computing
dependent points as shown in Algorithm 3.2 (this is called on
Line 6 of Algorithm 3.1). Let ncan = |Ncandidates|. Lines 1–5
take O(ncan) work and O(log ncan) span. Thus, Lines 7–8
take O(nk) work and O(log k) span, because |Ni| = k and
|P | = n. Line 9 takes O(n) work and O(log n) span.

On Lines 11–16, for each point, we call G.FINDKNN
O(log n) times since we double kdep after each round. Let
the work and span of finding the k nearest neighbors using
G be Wnn(k) and Snn(k), respectively. Let Wnn =∑O(log n)

j=0 Wnn(2
j) and Snn =

∑O(log n)
j=0 Snn(2

j). The
filter on Line 16 takes O(n log n) work and O(log2 n) span
across O(log n) rounds. The total work and span across all
rounds is O(nWnn) and O(Snn + log2 n). The brute force
computation on Lines 17–18 takes O(n) work and O(log n)
span, as O(1) points remain after the loop on Lines 11–16.

Thus, the work and span of Algorithm 3.2 are O(nWnn)
and O(Snn + log2 n), respectively.

We now analyze the remaining steps of Algorithm 3.1.
Lines 2–3 compute the k-nearest neighbors of all points,
which takes O(nWnn(k)) work and O(nSnn(k)) span.
Lines 4–5 compute the densities of all points. Using the
kth density function, this takes O(nk) work and O(log k)
span. Lines 7–8 using the product center and default noise
functions take O(n) work and O(log n log log n) span. The
union-find operations on Lines 9–13 take O(nα(n, n)) work
and O(log n) span.

The following theorem gives the overall work and span.

THEOREM 5.1. The work and span of PECANN using
the kth density, product center, and the default noise functions
are O(Wc+nWnn) and O(Sc+Snn+log2 n), respectively.

5.2 Approximation Analysis In this section, we give
a brief analysis of the approximation guarantees of PECANN.
Proofs and more detailed analyses can be found in the full ver-
sion of our paper. Our analysis of the density approximation
is based on the kth density function described above. Our
analysis of the approximate dependent point computation is
based on the threshold center function described above.
Density Estimation. Assuming some guarantee in approxi-
mate k-nearest neighbor search, we can show that the density
peaks of the exact algorithm that do not conflict with other
points will remain density peaks. A conflict occurs when the
density ranges of two points overlap. The density range of a

Name n d Description # Clusters

gaussian 105 to 108 128 Standard benchmark 10 to 10000
MNIST 70,000 784 Raw images 10
ImageNet 1,281,167 1024 Image embeddings 1000
birds 84,635 1024 Image embeddings 525
reddit 420,464 1024 Text embeddings 50
arxiv 732,723 1024 Text embeddings 180

Table 6.1: Our datasets, along with their sizes (n), their dimension-
ality (d), and the number of ground truth clusters.
point bounds the approximate density value of the point.

LEMMA 5.2. Consider the threshold center function,
which obtains the center points by selecting the points whose
distance to their dependent point is greater than δmin. If the
density interval of a point does not conflict with any other
interval and it is a true density peak, then it is still a density
peak in PECANN given the same threshold δmin.

Note that there may be additional density peaks returned
by the approximate algorithm, but the true density peaks in
the exact algorithm are guaranteed to still be density peaks.
Dependent Point Estimation. Now we analyze the approxi-
mate dependent point found by Algorithm 3.2. The following
lemma guarantees that the approximate dependent points re-
turned by our algorithm are not too much further than the
true dependent points. Let dj be the distance to the true jth

nearest neighbor from query point q. As far as we know,
other approximate DPC methods [3, 4, 38] do not provide
approximation bound on approximate dependent point search.

LEMMA 5.3. Suppose we find the approximate depen-
dent point among the βk-approximate nearest neighbor, for
β ≥ 1. The approximate dependent point is at most c2 dβk

dk
fur-

ther from the exact dependent point given the same densities
for some constant c ≥ 1.

In Algorithm 3.2, we use β = 2 for Lemma 5.3, since
we double the number of nearest neighbors to find until we
have found a dependent point.

6 Experiments

6.1 Experimental Setup

Computational Environment We use c2-standard-60
instances on the Google Cloud Platform. These are 30-core
machines with two-way hyper-threading with Intel 3.1 GHz
Cascade Lake processors that can reach a max turbo clock-
speed of 3.8 GHz. The instances have two non-uniform
memory access (NUMA) nodes, each with 15 cores. Except
for the experiments studying scalability with respect to the
number of threads, we use all 60 hyper-threads for our
experiments.
Datasets. We use a variety of real-world and artificial
datasets, summarized in Table 6.1 and described below.
• gaussian is a synthetic mixture of datasets generated
from a Gaussian distribution. To generate a gaussian
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Dataset L Ld R k

MNIST 32 32 32 16
ImageNet 128 128 128 16

reddit, arxiv 64 64 64 16
gaussian, birds 32 32 32 16

Table 6.2: Default parameters used for datasets.

dataset of dimension d = 128 with size n and c clusters, we
first sample c centers xi uniformly from [0, 1]d, and then
sample n/c points from a Gaussian centered at each xi with
variance 0.05.

• MNIST [23] is a standard dataset that consists of 28× 28
dimensional images of grayscale digits between 0 and 9.
The ith cluster corresponds to all occurrences of digit i.

• ImageNet [22] is a standard image classification bench-
mark with more than one million images, each of size
224 × 224 × 3. The images are from 1000 classes of ev-
eryday objects. Unlike for MNIST, we do not cluster the
raw ImageNet images, but instead first pass each image
through ConvNet [62] to get an embedding. Each ground
truth cluster contains the embeddings corresponding to a
single image class from the original ImageNet dataset.

• birds [36] is a dataset that contains images of 525 species
of birds. The images have the same number of dimensions
as ImageNet, and we pass it through the same ConvNet
model to obtain an embedding dataset. The ground truth
clusters are the 525 species of birds. This dataset is is out of
distribution for the original ConvNet model.

• reddit and arxiv are text embedding datasets studied
in the recent Massive Text Embedding Benchmark (MTEB)
work [69]. We restrict our attention to embeddings from
the best model on the current MTEB leaderboard, GTE-
large [58]. We also restrict our attention to the two largest
datasets from MTEB, reddit, where the goal is to cluster
embeddings corresponding to post titles into subreddits,
and arxiv, where the goal is to cluster embeddings
corresponding to paper titles into topic categories.

Algorithms. We implement our algorithms using the Par-
layLib [9] and ParlayANN [65] libraries. We use C++ for
all implementations, and the gcc compiler with the -O3 flag
to compile the code. We also provide Python bindings for
PECANN. We evaluate the following algorithms.
• PECANN: Our framework described in Section 3 with the
different density functions described in Section 4. Unless
specified otherwise, we use the kth density function
without normalization with k = 16, the VAMANA graph
index with α = 1.1, and the product center function with nc

set to the number of ground truth clusters, and the default
noise function. In Table 6.2, we give the rest of the default
parameters that we used for each dataset.

• FASTDP [84]: A single-threaded approximate DPC algo-
rithm that also uses graph-based ANNS to estimate densities.

• k-MEANS: The FAISS [54] implementation of k-means,
an extremely efficient k-means implementation. It is

parallelized by using parallel k-nearest neighbor search. The
k-means algorithm takes in k, the number of clusters, niter,
the number of iterations, and nredo, the number of times
to retry and choose the best clustering. Unless specified
otherwise, the number of clusters used in k-means is the
number of clusters in the ground truth clustering.

• BRUTEFORCE: An instantiation of PECANN, where we
use a naive parallel brute force approach for every step. This
method takes O(n2) work. It also first searches within the
k-nearest neighbors to find the dependent point. We refer to
the result of BRUTEFORCE as the "exact DPC" result.

• DBSCAN: A density-based clustering algorithm for low-
dimensional data [32, 80]. We use the implementation in the
Intel Extension for Scikit-learn [72] for high-dimensional
datasets, which is implemented in C++ and parallelized with
parallel nearest neighbor search. We also tried Wang et
al.’s [93] parallel implementation, which is optimized for
low-dimensional data, and found it slower than Scikit-learn
on high-dimensional data. DBSCAN has two parameters ϵ
and min_pts: ϵ defines the maximum distance between two
points to be considered neighbors. min_pts specifies the
minimum number of points required to form a dense region
(core point), which triggers the formation of a cluster.

We also tried a parallel exact DPC algorithm that uses
a priority search kd-tree-based dependent point finding
algorithm that was designed for low dimensions [45]. We
changed the first step of [45] from a range search to a
k-nearest neighbor search to match our framework. On
MNIST, their algorithm takes 280s on our 30-core machine,
which is 320 times slower than PECANN. This method is
prohibitively slow because kd-trees suffer from the curse
of dimensionality, where performance in high dimensions
degrades to no better than a linear search [96]. We thus do
not further compare against this method.
Evaluation. We evaluate clustering quality using the Ad-
justed Rand Index (ARI) [46], homogeneity, and complete-
ness [78]. Consider our clustering C and the ground-truth or
exact clustering T . Intuitively, ARI evaluates how similar
C and T are. Homogeneity measures if each cluster in C
contains members from the same class in T . Completeness
measures whether all members in T of a given class are in
the same cluster in C.

Let nij be the number of objects in the ground truth
cluster i and the cluster j generated by the algorithm, ni∗
be

∑
j nij , n∗j be

∑
i nij , and n be

∑
i ni∗. The ARI

is computed as
∑

i,j (
nij
2 )−[

∑
i (

ni∗
2 )

∑
j (

n∗j
2 )]/(n2)

1
2 [
∑

i (
ni∗
2 )+

∑
j (

n∗j
2 )]−[

∑
i (

ni∗
2 )

∑
j (

n∗j
2 )]/(n2)

.

The ARI score is 1 for a perfect match, and its expected value
is 0 for random assignments.

The formulas for homogeneity and completeness of
clusters are defined as follows: homogeneity = 1− H(C|T )

H(C) ;

completeness = 1 − H(T |C)
H(T ) . H(C|T ) is the conditional

entropy of the class distribution given the cluster assignment,
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Figure 6.1: Self-relative parallel speedup across different numbers
of hyper-threads.

H(C) is the entropy of the class distribution, H(T |C) is
the conditional entropy of the cluster distribution given the
class, and H(T ) is the entropy of the cluster distribution.
For example, consider a ground-truth clustering T where all
classes have the same number of points. If C assigns every
point to its own cluster of size 1, it has homogeneity score
1 and a low completeness score when nc ≪ n. If C assigns
all points to a single cluster, it has completeness score 1 and
homogeneity score 0.

6.2 Scalability Figure 6.1 shows the parallel scalabil-
ity of PECANN on our larger datasets. PECANN achieves an
average of 14.36x self-relative speedup on one NUMA node
with 30 hyper-threads and an average of 16.57x self-relative
speedup on two NUMA nodes with 60 hyper-threads.

We also study the runtime of PECANN as we increase
the size of the synthetic gaussian dataset and vary the
number of clusters between 10 to 10,000. We use a linear fit
on the logarithm of runtime and log n to obtain the slopes,
which reflects the exponent in the growth of runtime with
respect to data size. We find that the slope ranges from
1.12–1.2 depending on the number of output clusters, and
thus experimentally the runtime grows approximately as
O(n1.2) for this dataset. This shows that PECANN has good
scalability with respect to n.

6.3 Runtime Decomposition We present the runtime
decomposition of PECANN on each dataset with all density
methods and all values of k in the full paper. The bottleneck
of the runtime is the index construction time and the k-nearest
neighbor time when computing densities. When k is larger,
the k-nearest neighbor search time for density computation
is longer, as expected. Computing clusters with union-find is
fast because this step has low work, as discussed in Section 4.
The dependent point computation time is much shorter than
the density computation because the dependent point for
some points can be obtained from the k-nearest neighbors
(Lines 7–8 in Algorithm 3.2), so we do not need to run nearest
neighbor searches for these points. Additionally, even when
the dependent point is not in the k-nearest neighbors, our
doubling technique finds a dependent point in the first few
rounds for most points, thereby usually avoiding an expensive
exhaustive search.

6.4 Comparison of Different Density Functions,
Values of k, and Graph Indices In Figure 6.2, we show
the runtime vs. ARI of different density functions and values
of k. We see that the kth density function is the most robust
and achieves the highest ARI score on most datasets. We also
observe that using k = 16 provides a good trade-off between
quality and time. exp-sum, sum, and sum-exp are other
density functions in PECANN, which are combinations of
the distances to the k-nearest neighbors. We describe them in
our full paper.

We can easily swap in different graph indices into our
framework and compare the results. In Figure 6.3, we show
a Pareto frontier of the clustering quality vs. runtime on
ImageNet for each of the following different graph indices:
VAMANA [52], PYNNDESCENT [67], and HCNNG [70].
The Pareto frontier comprises points that are non-dominated,
meaning no point on the frontier can be improved in quality
without worsening time and vice versa. In other words, the
curve we plot represents the optimal trade-off in the parameter
space between clustering time and quality.

To create the Pareto frontier, we do a grid search for each
method over different choices of maximum degree R and the
beam sizes for construction, k-nearest neighbor search, and
dependent point finding. We choose all combinations of these
four parameters from [8, 16, 32, 64, 128, 256]4. We set the
density method to be kth without normalization and k = 16.
We set α = 1.1 for VAMANA and PYNNDESCENT. HCNNG
and PYNNDESCENT additionally accept a num_repeats ar-
gument, which represents how many times we independently
repeat the construction process before merging the results
together; we set this parameter equal to 3. We see that all
graph indices are able to achieve similar maximum ARI with
respect to the ground truth: VAMANA, HCNNG, and PYN-
NDESCENT achieve maximum ARIs of 0.709, 0.715, and
0.713, respectively. HCNNG attains this maximum slightly
faster than the other two indices, but when compared to the ex-
act DPC result, HCNNG has a smaller maximum ARI, which
means its clustering deviates more from the exact solution.
Indeed, HCNNG has a maximum ARI compared to exact
DPC of 0.918, while PYNNDESCENT and VAMANA attain a
maximum ARI of 0.995 compared to exact DPC.

We also find that among the four Vamana hyperparame-
ters, the maximum degree of the graph and construction beam
size have both the largest contribution to the ARI and the
largest impact on the clustering time. Please find more details
in the full version of our paper.

6.5 Clustering Quality-Time Trade-off In Figure 6.4,
we plot the Pareto frontier of clustering quality (ARI with
respect to the exact DPC clustering) vs. runtime of PECANN.
To obtain the Pareto frontiers, we use the same parame-
ter values as in the last experiment, except that for the
smaller datasets with n < 250, 000 we use a smaller range
[8, 16, 32, 64]4 for the parameter search space. We see that
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Figure 6.3: (Left) Pareto frontier of clustering quality with respect
to exact DPC vs. runtime on ImageNet. (Right) Pareto frontier
of clustering quality with respect to the ground truth clustering vs.
runtime on ImageNet.

PECANN can achieve results very close to the exact DPC
clustering. On all datasets except arxiv, PECANN achieves
at least 0.995 ARI with respect to exact DPC, and on arxiv,
PECANN achieves 0.989 ARI with respect to exact DPC.

6.6 Comparison of Different Methods In Figure 6.5,
we plot the Pareto frontier of clustering quality (ARI with
respect to the ground truth clustering) vs. runtime for different
methods on the larger datasets. To obtain the Pareto frontiers,
we use the same parameters for VAMANA as in the previ-
ous experiment. For K-MEANS, we use nredo ∈ [1, 2, 3, 4]
and niter ∈ [1, 2, 3, . . . , 9, 10, 15, 20, 25, . . . , 40, 45], for all
combinations where niter × nredo < 100. For FASTDP,
we use window_size ∈ [20, 40, 80, 160, 320] for all
datasets (controlling query quality) and max_iterations ∈
[1, 2, 4, 8, 16, 32, 64] (controlling graph construction quality).
For DBSCAN, we use different parameters for each dataset,
based on guidelines from [79, 80, 75]. [79] suggest setting
min_pts to 2d− 1. For high-dimensional datasets, [80] sug-
gest that increasing min_pts may improve results. ϵ is chosen
based on the distribution of the min_pts-nearest neighbor
distances [75]. The parameters can be found in our full paper.

We observe that DBSCAN has lower quality and higher
runtime than all other baselines. As the original authors
of DBSCAN state, it is difficult to use DBSCAN for high-
dimensional data [80].

We observe that the sequential FASTDP is slower that
PECANN on all datasets. In terms of accuracy, PECANN has
better maximum ARI on birds and arxiv, while FASTDP

has better maximum ARI on reddit (although as we discuss
below, reddit is not well suited to DPC).

Compared with k-MEANS, PECANN obtains better
quality and is faster on ImageNet and birds, where the
number of ground truth clusters is large, and performs about
equal with k-MEANS on arxiv. However, PECANN has
worse quality for a given time limit on reddit and mnist.
Although PECANN has worse quality than k-MEANS on two
datasets when k-MEANS uses the correct number of clusters,
k-MEANS’s quality is sensitive to the number clusters. As
shown in Subsection 6.7, k-MEANS can have lower quality
than PECANN on these two datasets when k is not the number
of ground truth clusters.

We summarize the best ground truth ARI and the
corresponding parallel running time that all these methods,
as well as BRUTEFORCE, achieve in Table 6.3. Compared
to density-based methods, PECANN achieves 37.7–854.3x
speedup over BRUTEFORCE, 45–734x speedup over FASTDP,
while achieving comparable ARI. PECANN also achieves
up to 0.7 higher ARI than DBSCAN, and is up to orders-of-
magnitude faster.

For more intuition on the runtime differences between
PECANN and k-MEANS, note that the work of each iteration
of k-MEANS is linear in the number of clusters multiplied
by n, and so k-MEANS is fast on datasets like MNIST with a
small number of ground truth clusters, while it is slower on
datasets like birds and ImageNet that have many clusters.

In terms of an explanation for the quality difference
between PECANN and k-MEANS, PECANN gets better
maximum accuracy on ImageNet and birds, which may
be because the ground truth clusters in these datasets form
shapes that our density-based method PECANN can find, but
that the geometrically constrained k-means cannot. On the
other hand, for reddit, PECANN has lower quality than
k-MEANS. Since we still obtain cluster quality very close to
the exact DPC on reddit (see Figure 6.4), this dataset is a
case where the density based DPC method is worse than the
simpler k-means heuristic.

6.7 Varying Number of Clusters Not knowing the
number of ground truth clusters is common in real-world

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited10

D
ow

nl
oa

de
d 

07
/3

0/
25

 to
 2

04
.9

8.
75

.5
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



0 100 200 300

0.5

1.0
arxiv

1.0 1.5 2.0

0.6

0.8

1.0
birds

0 100 200
0.0

0.5

1.0
ImageNet

1 2 3
0.6

0.8

1.0
MNIST

0 100 2000.0

0.5

1.0
reddit

Clustering Time (s)

AR
I

Figure 6.4: Pareto frontier of clustering quality of PECANN with respect to exact DPC.
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Figure 6.5: Pareto frontier of ARI with respect to ground truth vs. runtime. Up and to the left is better. PECANN is the best method on
ImageNet and birds, has similar performance to the best method (k-MEANS) on arxiv, and is slower or has worse quality than the
best method (k-means) on mnist and reddit. FASTDP is sequential. The x-axis on arxiv, ImageNet, and MNIST are in log-scale.

Algorithm Dataset Time (s) Maximum ARI

PECANN arxiv 11.65 0.07
FASTDP arxiv 8557.89 0.06
BRUTEFORCE arxiv 9953.15 0.07
KMEANS arxiv 2.41 0.07
DBSCAN arxiv 451.99 0.03

PECANN birds 0.86 0.65
FASTDP birds 128.71 0.63
BRUTEFORCE birds 66.04 0.66
KMEANS birds 28.66 0.65
DBSCAN birds 6.79 0.30

PECANN ImageNet 101.58 0.71
FASTDP ImageNet 7655.91 0.71
BRUTEFORCE ImageNet 31979.98 0.71
KMEANS ImageNet 188.17 0.65
DBSCAN ImageNet 1481.39 0.42

PECANN MNIST 0.87 0.37
FASTDP MNIST 39.36 0.37
BRUTEFORCE MNIST 32.80 0.34
KMEANS MNIST 0.22 0.40
DBSCAN MNIST 3.59 0.18

PECANN reddit 14.90 0.12
FASTDP reddit 7621.71 0.14
BRUTEFORCE reddit 2888.20 0.10
KMEANS reddit 5.36 0.42
DBSCAN reddit 148.48 0.05

Table 6.3: The maximum ARI score with respect to the ground
truth achieved by different clustering algorithms across different
datasets, and their corresponding parallel running time.

settings. In Figure 6.6, we show a Pareto frontier of the
completeness and homogeneity scores (with respect to ground
truth) of PECANN and k-MEANS on different datasets with
varying number of clusters. We generate this Pareto frontier
using the same experiment setup as earlier, except now we

0.2 0.4 0.6 0.8 1.0
Homogeneity

0.4

0.6

0.8
Co

m
pl

et
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es
s

dataset
arxiv
birds
imagenet
mnist
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Figure 6.6: Pareto frontiers of completeness vs. homogeneity of
PECANN and k-MEANS on different datasets. Up and to the right is
better.

record homogeneity and completeness instead of ARI as we
vary the number of clusters given to each method. Thus,
points along the Pareto frontier in Figure 6.6 are optimal
tradeoffs between homogeneity and completeness as we
vary the cluster granularity. We see that PECANN strictly
dominates k-MEANS on birds and MNIST, and k-MEANS
is better on arxiv and reddit. On ImageNet, PECANN
achieves higher completeness and k-MEANS achieves higher
homogeneity.

In the full paper, we also study the ARI of PECANN
using VAMANA and k-MEANS when we pass a number of
clusters to the algorithm different than the ground truth. When
the number of clusters used is larger than the ground truth,
the quality of k-MEANS decays quickly while the quality of
PECANN is more robust.

7 Related Work Variants of DPC. The original DPC
algorithm [77] uses a range search to compute the density of
a point x, where the density is defined as the number of points
in a ball of fixed radius centered at x. In contrast, while
PECANN supports any density metric, our paper focuses
specifically on k-nearest neighbor-based DPC variants, which
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do not require a range search. These methods are less sensitive
to noise and outliers [33] and are more computationally
efficient to compute in high dimensions. Some of these
methods (e.g., [33, 101, 88, 98]) also have a refinement step
after obtaining the initial DPC clustering. For these methods,
PECANN can be used to efficiently obtain the first DPC
clustering before the refinement step.

Floros et al. [33] and Chen et al. [15] use the inverse
of the distance to the kth nearest neighbor as the density
measure. Sieranoja and Fränti [84] propose FASTDP, which
uses the inverse of the average distance to all k-nearest
neighbors as the density measure, and finds the k-nearest
neighbors by constructing an approximate k-nearest neighbor
graph. d’Errico et al. [28] propose a variant of DPC for high-
dimensional data. It combines DPC with a non-parametric
density estimator called PAk, but their algorithm is sequential.
There are also many other variants of DPC [27, 87, 44, 35,
44, 102, 88, 57, 13, 24, 107, 100, 57, 98, 26, 101]. There are
also algorithms that perform dimensionality reduction on the
dataset before running DPC [26, 13].
Parallel, Approximate, and Dynamic DPC. Zhang et
al. [104] propose an approximate DPC algorithm for MapRe-
duce using locality-sensitive hashing. Amagata and Hara [4]
propose a partially parallel exact DPC algorithm and two
parallel grid-based approximate DPC algorithms. They also
propose parallel static and dynamic DPC algorithms for data
in Euclidean space [5, 3]. Huang et al. [45] propose a parallel
exact DPC algorithm based on priority kd-trees and show their
algorithm outperforms previous tree-index approaches [4, 76].
Lu et al. [63] propose speeding up DPC using space-filling
curves. Unlike PECANN, these algorithms [4, 5, 45, 7] are
only efficient on low-dimensional datasets and must be used
with Euclidean distance.

Amagata [3] proposes an approximate dynamic DPC
algorithm for metric data, but it is sequential and only tested
on datasets with up to 115 dimensions. In comparison,
PECANN is parallel and we experimented on datasets with
up to 1024 dimensions. There are also dynamic algorithms
for k-nearest neighbor-based DPC variants [81, 25].
Density-based Clustering Algorithms. DPC falls under
the broad category of density-based clustering algorithms,
which have the advantage of being able to detect clusters of
arbitrary shapes. Some density-based clustering algorithms
define the density of a point based on the number of points
in its vicinity [32, 2, 6, 50, 77, 33, 16]. Others use a grid-
based definition, which first quantizes the space into cells
and then does clustering on the cells [92, 43, 42, 82]. Still
others use a probabilistic density function [92, 55, 86]. One
popular density-based clustering algorithm is DBSCAN [32],
which has many derivatives as well [6, 89, 39, 11, 31, 12, 17].
However, the original authors of DBSCAN state that it is
difficult to use for high-dimensional data [80].
Graph-based Approximate Nearest Neighbor Search

(ANNS). Graph-based ANNS methods have been shown to
be effective in practice [91, 65, 95]. Existing graph-based
indices include Hierarchical Navigable Small World Graph
(HNSW) [64], DiskANN (also called Vamana) [52], HC-
NNG [70], PyNNDescent [67], τ -MNG [73], and many oth-
ers (e.g., [106, 14, 19]). Please see [65] and [91] for compre-
hensive overviews of these methods and their comparisons
with non-graph-based methods, such as locality-sensitive
hashing, inverted indices, and tree-based indices. There are
also works that explore the theoretical aspects of graph-based
ANNS [71, 74, 83, 56, 47].

The dependent point search in DPC can also be viewed
as a filtered search, where the points’ labels are their
density, and we filter for points with densities larger than
the query point’s density. Various graph-based similarity
search algorithms have been adapted recently to support
filtering [105, 90, 37, 41]. Gollapudi et al. [37] propose
the Filtered DiskANN algorithm, which supports filtered
ANNS queries, where nearest neighbors returned must match
the query’s labels. Gupta et al. [41] developed the CAPS
index for filtered ANNS via space partitions, which supports
conjunctive constraints while DiskANN does not. Both
DiskANN [85] and CAPS can be made dynamic. However,
these solutions use categorical labels, and a point can have
multiple labels. Using this approach for dependent point
finding requires quadratic memory just to specify the labels
(the ith least dense point would need i− 1 labels, which are
the i − 1 smaller density values than its density), which is
prohibitive. Indeed, we tried running the Filtered DiskANN
code on our datasets but it ran out of space on our machine.
VBASE [103] also supports filtered search by first searching
for k-nearest neighbors and then filtering. However, they do
not handle the case when there are no neighbors returned that
satisfy the criteria.

8 Conclusion We present the PECANN framework for
density peaks clustering (DPC) variants in high dimensions.
We adapt graph-based approximate nearest neighbor search
methods to support (filtered) proximity searches in DPC vari-
ants. PECANN is highly parallel and scales to large datasets.
We show several DPC variants that can be implemented in
PECANN, and evaluate them on large datasets. PECANN
achieves significant improvements in runtime and clustering
quality over the state of the art.
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