
UNIFIEDGT: Towards a Universal Framework of
Transformers in Large-Scale Graph Learning
Junhong Lin1, Xiaojie Guo2, Shuaicheng Zhang3, Dawei Zhou3, Yada Zhu2, and Julian Shun1

1MIT CSAIL, junhong@mit.edu, jshun@mit.edu
2IBM Research, Xiaojie.Guo@ibm.com, yzhu@us.ibm.com

3Virginia Tech, zshuai8@vt.edu, zhoud@vt.edu

Abstract—Graph learning plays a pivotal role in many high-
impact application domains. Despite significant advances in
this field, there is currently no single solution that effectively
handles (1) data heterogeneity, (2) long-range dependencies, (3)
graph heterophily, and (4) scalability to large graphs, all at the
same time. Classical graph neural networks (GNNs) and graph
transformers (GTs) address some but not all of these issues,
often suffering from limitations such as quadratic computation
complexity and/or suboptimal generalization performance in
realistic applications. This paper introduces UNIFIEDGT, a novel
framework that systematically addresses all of these challenges by
automatically providing a graph transformer architecture with
multiple components via neural architecture search. UNIFIEDGT
consists of five major components: (1) graph sampling, (2)
structural prior injection, (3) graph attention, (4) local/global
information mixing, and (5) type-specific feedforward networks
(FFNs). This modular approach enables the efficient processing
of large-scale graphs and effective management of heterogeneity
and heterophily while capturing long-range dependencies. We
demonstrate the versatility of UNIFIEDGT through compre-
hensive experiments on several benchmark datasets, revealing
insights such as the efficacy of graph sampling for GTs, the
importance of explicit graph structure injection via attention
masking, and the synergistic effect of local/global information
mixing via a combination of global attention with local message
passing. Furthermore, we formulate these design choices into
a search space, where an optimal combination can be discov-
ered for a particular dataset via neural architecture search.
Notably, UNIFIEDGT improves generalization performance on
various graph datasets, outperforming state-of-the-art GT models
by a margin of about 3.7% on average. The framework is
available on Github (https://github.com/junhongmit/H2GB) and
PyPI (https://pypi.org/project/H2GB/), and documentation can be
found at https://junhongmit.github.io/H2GB/.

I. INTRODUCTION

Graph neural networks (GNNs) have become an impor-
tant paradigm for learning in structured data in many high-
impact domains, including biology [1], chemistry [2, 3], and
finance [4]. However, GNNs have been shown to suffer from
over-smoothing and over-squashing [5]. Graph transformers
(GTs) have emerged and have shown great potential in al-
leviating these limitations. While GTs are effective, many of
them are designed with the implicit assumption that their graph
inputs are small, homogeneous (containing a single node and
edge type), and homophilic (neighbors often belong to the
same class or have similar features).

Real-world graphs frequently present challenges for graph
learning due to (1) data heterogeneity, (2) heterophily, (3)

TABLE I: Comparison with several state-of-the-art GTs on
handling the four graph properties in graph learning. ”Ë”:
supported; ”é”: not supported.

Data
Heterogeneity

Graph
Heterophily

Long-Range
Dependencies

Scalability on
Large Graphs

GraphTrans [15] é é Ë é
Gophormer [16] é é Ë Ë
Graphormer [17] é é Ë é
GraphGPS [14] é é Ë é

NAGphormer [18] é é Ë Ë
GOAT [19] é Ë Ë Ë

HGT [9] Ë é é Ë

UNIFIEDGT (ours) Ë Ë Ë Ë

long-range dependencies, and (4) large sizes, each of which
can significantly impede the performance of traditional graph
learning approaches. As an example of data heterogeneity
and scalability issues, the OGB-LSC dataset [6] includes
MAG240M, a citation network that not only has diverse
node/edge types (such as author, paper, and institution nodes)
but is also large, containing over 240 million nodes and 3
billion edges. GTs designed for small homogeneous graphs
tend to either perform poorly on such graphs or are not able
to process them at all due to scalability issues. Moreover, many
graphs exhibit graph heterophily, where connected nodes have
different features or labels. In this case, naive message passing
from neighbors can provide noisy information, which often
impedes graph learning. Additionally, well-known issues like
over-smoothing and over-squashing can arise when addressing
long-range dependencies in real-world graph learning.

Advances in graph learning research have begun to ad-
dress some of these challenges, with models optimized for
heterogeneous graphs [7, 8, 9] and heterophilic graphs [10,
11, 12]. Most graph transformers have shown great potential
in overcoming issues with long-range dependencies [13, 14].
However, a holistic solution that simultaneously tackles data
heterogeneity, graph heterophily, and long-range dependencies
and can also scale to large graphs does not currently exist. We
summarize existing GTs and what they support in Table I.
This observation leads to our research question: Given a
particular graph domain or task, how can we define a
graph transformer solution that can effectively handle all
of these challenges at once? Such a solution should be able
to dynamically adjust its components to handle the different
properties of large real-world graphs.

In this paper, we first break down the design space of state-

https://github.com/junhongmit/H2GB
https://github.com/junhongmit/H2GB
https://pypi.org/project/H2GB/
https://pypi.org/project/H2GB/
https://junhongmit.github.io/H2GB/

of-the-art GTs and introduce a modular GT framework, which
we call UNIFIEDGT, that synergizes the strengths of existing
models while addressing their limitations. This framework
uses a graph transformer backbone, enhanced with multiple
components, each tailored to overcome specific challenges in
graph learning. UNIFIEDGT consists of five major compo-
nents: (1) graph sampling, (2) structural prior injection, (3)
graph attention, (4) local/global information mixing, and (5)
type-specific feedforward networks (FFNs).

Second, we summarize the existing designs for each com-
ponent and extend them to solve the graph learning chal-
lenges listed above. Specifically, to tackle the data hetero-
geneity, we propose a novel graph attention component, cross-
type heterogeneous attention, enabling UNIFIEDGT to handle
both homogeneous and heterogeneous graphs.1 Furthermore,
we design a cross-type k-hop neighbor attention masking
method, which allows simultaneous communication among k-
hop neighbors of various node types. To address the graph
heterophily challenge, we introduce a local/global information
mixing module by incorporating local message passing with a
long-range attention module to allow information exchange
across distant homophilic nodes. To enable scalability to
large graphs, we employ graph sampling to enable mini-batch
training. Furthermore, we formulate these design choices into a
search space, where an optimal combination can be discovered
for a particular dataset through a neural architecture search.

Third, we show through comprehensive experiments on
several benchmarks that UNIFIEDGT achieves superior per-
formance over existing state-of-the-art GT models by around
3.7% on average and draw the following insights: (1) explic-
itly accounting for data heterogeneity can usually improve
downstream task performance on heterogeneous datasets; (2)
local/global information mixing enabled by a composition of
a GNN and a GT greatly boosts performance on heterophilic
graphs; (3) neighbor nodes within several hops can usually
provide enough meaningful context in large-scale graph learn-
ing, which justifies the use of graph sampling; and (4) explicit
graph structure injection through direct neighbor attention
masking is significantly more effective than implicit injection
through graph encoding.

In summary, our technical contributions are as follows:
1) Findings: Through comprehensive experiments, we provide

several important findings to better understand the four
challenges in current large-scale graph learning: (1) data
heterogeneity, (2) graph heterophily, (3) long-range depen-
dencies, and (4) scalability to large graphs.

2) Framework: We design a modular graph transformer
framework, UNIFIEDGT, as an easy-to-use library with
configurable architecture components. To the best of our
knowledge, UNIFIEDGT is the first universal solution that
can handle all four of the challenges mentioned above at the
same time. Additionally, we formulate the design choices
into a search space so that optimal component combinations

1Homogeneous graphs are a special case of heterogeneous graphs with a
single node and edge type.

for a given graph domain can be found through a neural
architecture search.

3) Evaluation: We show that UNIFIEDGT surpasses the state-
of-the-art GTs on a wide range of benchmarks, showcasing
the potential of a universal graph learning architecture.

II. GRAPH TRANSFORMER EXPLORATION

In this section, we first present preliminaries on heteroge-
neous graphs and GTs. Then, we present observations from
our exploration study of GTs on large real-world graphs.

A. Preliminaries

Definition 1 (Heterogeneous Graphs). A heterogeneous
graph is a directed graph G = (V, E ,A,R), where each node
v ∈ V and edge e ∈ E has a type given by τ(v) : V → A and
ϕ(e) : E → R. Here, A and R are the set of node and edge
types, respectively.

Definition 2 (Graph Transformers (GTs)). A transformer
is a stack of alternating blocks of multi-head attention
(MHA) modules and fully connected feed-forward networks
(FFNs). Let G be a graph with node feature matrix X =
[x1,x2, . . . ,xn]

T ∈ Rn×d, where d is the hidden dimension
and xi ∈ Rd is the node feature of node vi. In each layer
l (l > 0), given the hidden feature matrix H(l−1) ∈ Rn×d,
where H(0) = X , the MHA module first linearly projects
the input H(l−1) to the query, key, and value spaces. This
is computed using Equation (1), where the projection using
weight matrices W

(h,l)
Q ,W

(h,l)
K , and W

(h,l)
V ∈ Rd×dh results

in the matrices Q(h,l), K(h,l), and V (h,l), representing the
query, key and value spaces, respectively.

Q(h,l) = H(l−1)W
(h,l)
Q , K(h,l) = H(l−1)W

(h,l)
K , V (h,l) = H(l−1)W

(h,l)
V .

(1)
Then, multiple attention heads are used to compute attention
score on all pairs of nodes through the scaled dot product,
as shown in Equation (2), where the softmax function is
applied row-wise, W (l)

O ∈ Rd×d is a learnable weight matrix,
dh denotes the feature dimension of the matrices Q(h,l) and
K(h,l), h = 1 to H denotes the index of different attention
heads, and ∥ denotes the concatenation operator.

MHA
(
H(l−1)

)
= ∥

h∈[1,H]

(
softmax

(
Q(h,l)(K(h,l))T

√
dh

)
V (h,l)

)
W

(l)
O .

(2)
The multi-head attention module MHA(H(l−1)) concatenates
several attention heads together. By combining the result
with additional residual connections and normalization, the
transformer layer updates features H(l−1) as follows:

Ĥ(l) = MHA
(
H(l−1)

)
+H(l−1)

H(l) = FFN
(
Ĥ(l)

)
+ Ĥ(l) =

[
σ
(
Ĥ(l)W

(l)
1

)
W

(l)
2

]
+ Ĥ(l),

where σ refers to the activation function, and W
(l)
1 ∈ Rd×df

and W
(l)
2 ∈ Rdf×d are trainable parameters in the feedforward

network (FFN) layer. The final output H(L) ∈ Rn×d can be
used as the updated node representation for downstream tasks.

Fig. 1: Data heterogeneity (various node/edge types), graph
heterophily (edges between fraudsters and innocent people),
and long-range dependencies (highlighted by a red dashed
arrow) can all exist in real-world graphs.

Definition 3 (Graph Encoding (GE)). GTs compute attention
over all pairs of nodes (which are also called fully-connected
GT, or FullGT) and do not inherently capture the underlying
graph structure. Graph encoding was introduced to incorporate
the graph topology into the attention mechanism, assigning
each node a representation that reflects its structural role within
the graph. Nodes that are closer in the graph, i.e., connected by
shorter paths, are assigned more similar encoding values, while
distant nodes have more dissimilar encodings. This encoding
helps GTs focus their attention on structurally relevant nodes.

B. Exploration Study

Most existing GTs are designed for learning on small
homogeneous graphs [20, 21, 17, 15, 14]. However, there
are many real-world graphs that are not homogeneous. Such
graphs can exhibit data heterogeneity, heterophily, and long-
range dependencies. An example graph with all of these
properties is presented in Figure 1. This example shows a
financial transaction graph where different node types (person,
company, etc.) and edge types (personal, business transaction,
etc.) exist, making the graph heterogeneous. The class labels
of fraudsters differ from those of their neighbors, making
the graph heterophilic. Furthermore, fraudsters usually use
long chains of transactions when committing fraud to evade
detection. Therefore, graph learning solutions need to take into
account long-range dependencies in order to discover such
fraudulent transactions. Furthermore, these real-world graphs
can also be much larger than what most prior papers on GTs
have used (existing GTs have only been applied on graphs with
thousands of nodes [14, 15]). To bridge the gap in the literature
on GTs, we perform an empirical study to explore the power
of GTs on large real-world graphs that are heterogeneous and
heterophilic. Based on our comprehensive experimental study,
we present a few interesting observations in this section.

1) Property 1: Long-Range Dependencies: Real-world
graph learning can involve long-range dependencies that re-
quire information exchange among distant nodes, as illustrated
in Figure 1. The ability of GTs to allow direct communi-
cation among arbitrary nodes in a graph has shown great
potential in alleviating the well-known problems caused by
over-smoothing and over-squashing in traditional graph learn-
ing models that repeatedly aggregate local information [5].

TABLE II: Average accuracy (%) and standard deviation of
several models on the ogbn-mag dataset, calculated over 5
runs with different random seeds. The graph contains the pa-
per, author, venue, and field of study nodes. Homo.: discard the
node/edge types and treat the graph as homogeneous. Hetero.:
treat the graph as heterogeneous and apply the corresponding
relational model, e.g., relational GCN (R-GCN). The best
results are highlighted in bold.

GCN GraphSAGE HGT [9]

Paper nodes only 35.72 ± 0.41 35.36 ± 0.31 36.13 ± 0.43
Whole graph (Homo.) 44.90 ± 0.58 44.49 ± 0.20 45.83 ± 0.56
Whole graph (Hetero.) 46.93 ± 0.46 50.94 ± 0.44 50.23 ± 0.48

Therefore, this paper focuses on building a graph learning
framework based on GTs.

2) Property 2: Data Heterogeneity: Many real-world
graphs contain heterogeneous information, e.g., different types
of nodes and edges in a financial network illustrated in Fig-
ure 1. However, most GTs are designed for homogeneous
graphs and are not optimized for such heterogeneity. Ignoring
the node and edge types often results in information loss and
performance degradation. As a motivating example, Table II
shows a comparison of classification accuracy for several
graph learning models on the popular heterogeneous graph
benchmark ogbn-mag when accounting for data heterogene-
ity differently. Specifically, the models trained on a reduced
homogeneous graph, where only paper nodes and citation
relations are retained to form a homogeneous graph [22, 6, 23],
or on the entire graph without type differentiation, perform
significantly worse than the models trained on the whole graph
with heterogeneity information. This highlights the intrinsic
value of incorporating data heterogeneity into graph learning.

Observation #1: Explicitly accounting for heterogeneity
can usually benefit learning on heterogeneous graphs.

3) Property 3: Graph Heterophily: Many of the existing
GT models assume graph homophily, i.e., locally connected
nodes are similar in features and labels. However, recent re-
search highlights the limitations of such graph models in deal-
ing with heterophilic graphs, where nodes with similar features
or common connections have different classes [24]. Specifi-
cally, edge homophily [10] is the fraction of edges that connect
nodes with the same label. A low homophily value indicates
that the graph has a high heterophily. snap-patents [12],
a large-scale heterophilic graph with edge homophily 0.07,
is one such example. Prior works [10, 11, 25] suggest that
identifying distant homophilic nodes from the higher-order
neighbors is important for task performance. The attention
mechanism of GTs allows for direct communication among
distant nodes, which can potentially improve task performance
on heterophilic graphs. We, therefore, perform an experimental
study of different ways to tackle graph heterophily in GTs
on the large-scale heterophilic snap-patents graph, the
results of which are shown in Table III.

We observe that directly applying local message passing
using a conventional GCN yields 46.82% accuracy, and using
global attention with a fully connected GT (FullGT) yields

TABLE III: Average accuracy (%) and standard devi-
ation of various models on the large-scale heterophilic
snap-patents [12] graph containing ∼3 million nodes and
∼13 million edges. Results of GT-based models that use graph
encoding are marked in bold while the other results do not use
graph encoding.

Local Global Local+Global

MLP GCN FullGT 2-HopGT GCN+FullGT GCN+2-HopGT

30.69 ± 0.22 46.82 ± 0.12
33.78 ± 0.42 51.97 ± 0.29 52.80 ± 0.40 55.09 ± 0.76
42.94 ± 0.23 54.56 ± 0.52 57.30 ± 0.58 57.90 ± 0.56

42.94% accuracy. In contrast, we see that simply mixing
the local and global information by combining the outputs
from the GCN and FullGT significantly improves performance
(GCN+FullGT, 57.30% accuracy).

Observation #2: Local/global information mixing by
combining local GNNs and global attention via GTs is
highly beneficial for learning on heterophilic graphs.

4) Property 4: Scalability to Large Graphs: While GTs
can propagate information across long distances, they also
lead to a quadratic time complexity due to the attention
score computation between all pairs of nodes. This limits
the applicability of GTs to large-scale graphs. However, we
find that when dealing with large-scale graphs with millions
of nodes, it is not necessary for a single node to directly
communicate with all of the other nodes, as this could lead
to severe attention dilution [26]. To address this scalability
challenge, we focus on restricting GTs to operate within a
k-hop neighborhood, where k is a tunable parameter. This
allows us to adapt the model to different dataset scales: on
large datasets, a smaller k can help mitigate attention dilution,
while on smaller datasets, a larger k can help capture long-
range dependencies. For example, we find that using a 2-hop
neighborhood (2-HopGT) yields better results than FullGT
on the snap-patents dataset as seen in Table III. Lastly,
consistent with observation #2, we observe that we can achieve
better performance by again mixing local information with the
2-hop neighbors via GCN+2-HopGT (57.90% accuracy).

Observation #3: For large-scale graph learning, attend-
ing to neighbor nodes within several hops can provide
enough information.

Motivated by this observation, we can use a graph sampling
strategy to significantly reduce the number of nodes that the
GT needs to attend to, thereby improving runtime efficiency.
Furthermore, although GTs commonly apply graph encoding
to incorporate the graph topology into its attention mechanism,
allowing the GT to attend to all nodes in a large-scale
graph can still lead to attending to irrelevant nodes with high
similarity despite the injected graph encoding. We find that
the attention masking technique (introduced in Section III-B,
Equation (3)) used in 2-HopGT to restrict pairwise dot product
calculations to certain pairs of nodes (i.e., nodes within two
hops of each other), significantly improves downstream task
performance by 18.19%. From Table III, we observe that
adding graph encoding improves FullGT’s accuracy from
33.78% to 42.94%. Similarly, adding graph encoding to 2-

HopGT further improves its accuracy from 51.97% to 54.56%.
Notably, 2-HopGT without graph encoding (51.97% accu-
racy) still outperforms FullGT with graph encoding (42.94%
accuracy) by a considerable margin, demonstrating that the
attention masking strategy alone provides substantial benefits.

Observation #4: Explicit graph structure injection via
attention masking can be more useful than the common
implicit injection through graph encoding.

III. UNIFIED GRAPH TRANSFORMER (UNIFIEDGT)
In this section, we introduce our general unified graph

transformer framework, UNIFIEDGT (Figure 2). UNIFIEDGT
consists of five modular ingredients: (1) graph sampling, (2)
structural prior injection, (3) graph attention, (4) local/global
information mixing, and (5) type-specific feedforward net-
works (FFNs). Many of the existing GTs can be implemented
in this framework with various designs of each modular
ingredient, as shown in Table IV. While some of the mod-
ules are based on existing work, we also introduce several
new methods, e.g., cross-type k-hop neighbor attention mask,
cross-type heterogeneous attention, and type-specific FFNs.
Furthermore, our main contribution is enabling many existing
GT-based methods as well as new ones that we come up with
to be expressed within the same framework.
A. Graph Sampling

Graph sampling and minibatch training are crucial for
processing large-scale graphs. However, since existing GTs
mainly focus on small graphs (up to thousands of nodes),
graph sampling is rarely used. To extend GTs to large
graphs, we provide three standard sampling options: neighbor
sampling [27], GraphSAINT sampling [28], and HGSam-
pling [9].

B. Structural Prior

Capturing the graph structure is important for graph learn-
ing. The structural prior can be injected in two ways:

1) Graph Encoding (GE): Existing GTs commonly use
graph encoding to differentiate the position of the nodes and
store structural information by encoding the node proximity.
However, they all focus on homogeneous graphs and cannot
capture heterogeneous information. To extend GTs to het-
erogeneous graphs, we provide the following GE options:
Node2Vec embedding [29], Metapath2Vec embedding [30],
and knowledge graph embedding [31, 32, 33], random-walk
graph encoding (RWGE) [34], and shortest path distance
graph encoding (SPD-GE) [17].

2) Attention Masking: To address the limitation where
unrestricted attention can lead to attending to irrelevant nodes
despite the encoded graph structure, we propose a novel
design for learning heterogeneous graph structure, cross-type
k-hop neighbor attention masking, which is formulated in
Equation (3) [35]:

S = QKT /
√

dk +B, where Bij =

{
bm if Am

ij > 0,m ≤ k,

−∞ otherwise.
(3)

Here S denotes the attention score matrix, A denotes the
adjacency matrix and m denotes the smallest positive integer

TABLE IV: Different components of the state-of-the-art GT methods and components supported by our UNIFIEDGT framework.
We list various representative existing GT methods that can be expressed by our framework. We omit the multi-head attention
for simplicity. σ(·) denotes the softmax function. A is the adjacency matrix.

Graph
Type Methods Sampling/

Tokenization Graph Encoding Attention Masking FFN

Homo.

GraphTrans [15] — H = X ∥ GNN(X,A) σ
(

QKT
√
d

)
V — H = ReLU(HW (1))W (2)

Gophormer [16] Neighbor — σ
(

QKT
√
d

+ ϕijb
)
V Am

ij H = ReLU(HW (1))W (2)

Graphormer [17] — H = X +Zdeg σ
(

QKT
√
d

+ bD(i,j)

)
V — H = ReLU(HW (1))W (2)

GraphGPS [14] — H = X ∥ P σ
(

QKT
√
d

)
V + GNN(X,A) — H = ReLU(HW (1))W (2)

NAGphormer [18] Hop2Seq — σ
(

QKT
√
d

)
V — H = ReLU(HW (1))W (2)

GOAT [19] Neighbor H = X ∥ Pnode2vec σ
(

QKT
√
d

+ bD(i,j)

)
V — H = ReLU(HW (1))W (2)

Hetero. HGT [9] HGSampling — σ

(
µQτ(t)W

ATT
ϕ(e)K

T
τ(s)√

d

)
Vτ(s)W

MSG
ϕ(e)

A
ϕ(e)
ij —

Hetero. UNIFIEDGT (ours) Neighbor; GraphSAINT;
HGSampling Hτ = WτXτ ∥ Pτ σ

(
qiW

edge
ϕ(e)

kT
j√

dk

)
vj Am

ij Hτ = ReLU(HτW
(1)
τ)W

(2)
τ

Fig. 2: Overall UNIFIEDGT framework. |A| is the number of node types and |R| is the number of edge types.

such that Am
ij > 0. The element Am

ij in the m-order adjacency
matrix captures the connectivity between nodes vi and vj ,
connected via a path of length m, where vi and vj can
be of different types. Bij denotes the attention bias added
between nodes vi and vj , which can be used to inject structural
priors [20, 36]. The added bias is passed through the softmax
function to generate an attention score (see Figure 2 and
Section II-A, Equation (2)). When −∞ is added to Sij , it acts
as an attention mask, zeroing out the attention score between
node vi and vj . Our cross-type k-hop neighbor attention
masking restricts attention to k-hop neighbors with a learnable
bias b, allowing the model to learn the importance of each hop.
This attention mask is cross-type because it allows a single
node to attend to its neighbors regardless of their types.

C. Attention Calculation

Existing GTs have predominantly been applied to homo-
geneous graphs, where the attention is calculated by pairwise
dot products on the projected key and query vectors, assuming
both vectors fall into the same projection space [35]. We call
this plain graph attention. To generalize GTs to heterogeneous
graphs, the diverse semantics of nodes and edges need to be
considered. UNIFIEDGT introduces the design of cross-type
heterogeneous attention, which utilizes the node and edge
types, as shown in Equation (4) and Table IV.

MHA
(
H(l−1)

)
= ∥

h∈[1,H]

σ

q
(h,l)
i W

edge
ϕ(e)

(k
(h,l)
j)T

√
dk

v
(h,l)
j

W
(l)
O

(4)

It performs type-dependent key-, query-, and value-projections
to model the complex connections between node types. Con-

cretely, the projection matrices WKτ(v)
, WQτ(v)

, and WVτ(v)

are applied on node v with type τ(v), to generate the corre-
sponding Q, K, and V matrices, as shown in the following
equation, where O ∈ {Q,K,V }:

O =
[
oT
1 , . . . ,o

T
n

]T
=

[(
h1WOτ(1)

)T

, . . . ,
(
hnWOτ(n)

)T
]T

Furthermore, to incorporate edge type information, we design
an edge-type dependent transformation W edge

ϕ(e) to allow model-
ing of diverse relations. Note that typical heterogeneous GNNs
only pass messages through specified meta-relations [7, 9],
while our proposed heterogeneous attention mechanism en-
ables a single node to communicate with other nodes of
different types simultaneously. Our new attention mechanism
generalizes to both heterogeneous and homogeneous GTs. For
homogeneous graphs, it can represent existing GTs by using
a single set of Q, K, and V projection matrices across all
nodes.

D. Local/Global Information Mixing

We have observed that local/global information mixing
improves performance in heterophilic graph learning in Sec-
tion II-B3. Inspired by the success of applying a GNN as an
auxiliary module in GTs [15, 14], we incorporate the GNN into
our UNIFIEDGT framework to help mix in local information.
There are many choices of GNN that can be incorporated,
such as GCN, GraphSAGE, and GAT. The selected GNN will
be automatically transformed into a corresponding relational
GNN to handle data heterogeneity. According to the relative
position between GNN layers and transformer layers, there are
several composition schemes:
• Prefixed GNN (by adding a GNN embedding to the

graph encoding module), the most frequently adopted
method (e.g., GraphTrans [15]), performs a few layers
of message passing using a GNN and concatenates the
results with the original node features. It allows the GNN
to aggregate information from multi-hop neighbors via
multilayer message passing and, therefore, brings structural
information into the node embedding.

• Parallel GNN performs message passing using a GNN
and applies a transformer in parallel, summing together
the output (e.g., GraphGPS [14]). It lets the GNN focus
on local information while the long-range attention module
in the transformer accounts for the long-range homophilic
neighbors that have a similar node embedding.

• Prefixed+Parallel GNN. Due to the modular design of our
framework, we can apply both a prefixed and a parallel
connection, which has not been done in existing GTs.

E. Type-Specific Feed-Forward Networks (FFNs)

FFNs are a typical component of transformer architec-
tures [35] that can help the model capture more complex
patterns and relationships in graphs. We introduce type-specific
FFNs, which apply dedicated FFN layers to each node type
τ(v), as shown in Equation (5). This approach is designed

to accommodate data heterogeneity, allowing the modeling of
richer relationships in the semantic spaces of individual types.

Hτ(v) = ReLU
(
Hτ(v)W

(1)
τ(v)

)
W

(2)
τ(v). (5)

F. Optimal Configuration Search

The goal of UNIFIEDGT is to identify the optimal architec-
ture for handling diverse graph properties in a specific domain.
We employ Bayesian optimization (BO), a proven approach
in neural architecture search [37, 38, 39], to search for such
configurations. This approach utilizes a probabilistic model
to predict the performance of new architectures based on
prior results, efficiently guiding the search. This contrasts with
supernet-based methods, which require training a single, large
network encompassing many sub-architectures, often leading
to substantial computational overhead. BO offers a more
efficient alternative by sequentially exploring the architecture
space on a smaller network.

IV. EXPERIMENTS

In this section, we demonstrate the performance of UNI-
FIEDGT in terms of modeling real-world homogeneous, het-
erogeneous, heterophilic, and long-range graph datasets.

A. Datasets

We comprehensively evaluate UNIFIEDGT using four cat-
egories of datasets (shown in Table V): large-scale ho-
mogeneous (ogbn-products and ogbn-papers100M)
and heterogeneous graphs (ogbn-mag and MAG240M) from
the Open Graph Benchmark [6], large-scale heterophilic
graphs [12] (arxiv-year and snap-patents) and
graph datasets with long-range dependencies from the Long
Range Graph Benchmark [13] (VOCSuperpixels and
COCOSuperpixels). Additionally, we create two heteroge-
neous graph datasets, oag-cs and oag-eng from the Open
Academic Graph (OAG) [40, 41, 42], with more edge types
than existing graphs to evaluate our model on a large number
of edge types. These datasets focus on the Paper-Venue
classification task in two fields, computer science (cs) and
engineering (eng), and consist of more than 3000 prediction
classes. Following [9], we use papers from 1900–2016 for
training, 2017 for validation, and 2018–2019 for testing.

B. Baselines

We compare UNIFIEDGT with MLP [43] and four classes
of state-of-the-art GNN and GT models. The first class of
baselines is designed for homogeneous graphs, and includes
GCN [44], GraphSAGE [27], GAT [45], GIN [46], and a
scalable GT model, NAGphormer [18]. Other existing GTs
designed for small graphs on these benchmarks lead to
out-of-memory errors. Note that one of the scalable GT
models, Gophormer [16], has no code or model available
yet, but its performance has been shown to be comparable
with NAGphormer [18]. The second class of baselines is
designed for heterogeneous graphs, and includes relational
GCN (R-GCN) [7], GraphSAGE (R-GraphSAGE), GAT (R-
GAT), HAN [8], and HGT [9]. The third class of baselines

TABLE V: Statistics of graph datasets. The datasets are ordered by the number of nodes.

arxiv-year oag-eng oag-cs ogbn-mag ogbn-products snap-patents ogbn-papers100M MAG240M

Nodes (types) 169,343 (1) 929,315 (4) 1,112,691 (4) 1,939,743 (4) 2,449,029 (1) 2,923,922 (1) 111,059,956 (1) 244,160,499 (3)
Edges (types) 1,166,243 (1) 12,346,854 (22) 27,537,448 (22) 42,182,144 (7) 123,718,280 (1) 13,975,788 (1) 1,615,685,872 (1) 3,454,471,824 (5)
Features 128 768 768 128 100 269 128 768
Classes 5 3,958 3,515 349 47 5 172 153

TABLE VI: Comparison of average accuracy (%) and standard deviation of various GNN methods designed for homoge-
neous/heterogeneous graphs on six graph benchmarks. R-GCN, R-GraphSAGE, and R-GAT are equivalent to their homogeneous
counterparts in homogeneous datasets, and so those experiments were skipped. We highlight the top first, second, and third
results. OOM indicates that the method ran out of memory on a compute node with 1TB of main memory, and OOT indicates
that the experiment took longer than 1 day.

Homogeneous Datasets Heterogeneous Datasets

ogbn-products ogbn-papers100M ogbn-mag oag-cs oag-eng MAG240M

MLP 61.40 ± 0.36 46.90 ± 0.44 24.57 ± 0.69 9.43 ± 0.16 20.93 ± 0.70 49.65 ± 0.79

H
om

og
en

eo
us GCN 77.42 ± 0.51 62.60 ± 0.24 44.90 ± 0.58 19.44 ± 0.76 32.60 ± 0.53 64.11 ± 0.20

GraphSAGE 77.99 ± 0.32 64.35 ± 0.33 44.49 ± 0.20 23.02 ± 0.37 37.75 ± 0.68 63.50 ± 0.51
GAT 79.12 ± 0.67 64.69 ± 0.56 51.30 ± 0.27 21.24 ± 0.53 34.18 ± 0.83 56.22 ± 0.09
GIN 74.00 ± 0.69 63.08 ± 0.42 41.66 ± 0.44 19.08 ± 0.36 30.68 ± 0.45 65.35 ± 0.07
NAGphormer 75.71 ± 0.39 63.82 ± 0.16 42.47 ± 0.74 16.49 ± 0.55 31.85 ± 0.80 OOM
GOAT 82.00 ± 0.43 OOT OOT OOT OOT OOT

H
et

er
og

en
eo

us R-GCN – – 46.93 ± 0.46 23.10 ± 1.09 37.10 ± 0.49 64.03 ± 0.11
R-GraphSAGE – – 50.94 ± 0.44 22.81 ± 0.63 36.11 ± 0.45 64.09 ± 0.47
R-GAT – – 41.51 ± 0.47 21.03 ± 0.59 35.90 ± 0.60 55.74 ± 0.30
HAN 69.11 ± 0.75 62.56 ± 0.20 39.00 ± 0.22 13.14 ± 1.96 27.81 ± 0.69 60.39 ± 0.28
HGT 75.33 ± 0.35 64.56 ± 0.41 50.23 ± 0.48 22.51 ± 0.40 35.51 ± 0.52 64.82 ± 0.14

UNIFIEDGT (ours) 80.98 ± 0.12 66.34 ± 0.43 53.26 ± 0.29 26.59 ± 1.08 41.39 ± 0.51 66.65 ± 0.40

is optimized for heterophilic graphs, and includes jump-
ing knowledge networks (GCNJK and GATJK) [47], Mix-
Hop [48], GPRGNN [49], and GOAT [19]. The fourth class of
baselines is optimized for graphs with long-range dependen-
cies, and includes GatedGCN [50], Transformer+LapPE [14],
GraphGPS [14]. Running GOAT took longer than 1 day in
most of our datasets, and resulted in a time-out (OOT) in our
computing environment.

C. Training and Evaluation

The hyper-parameters of each baseline were initially set
based on the authors’ official experimental settings and sub-
sequently fine-tuned for optimal performance. For the train-
ing of UNIFIEDGT, we perform a Bayesian optimization-
based search on each dataset to obtain the optimal architec-
ture configuration [51]. For ogbn-products, ogbn-mag,
oga-cs, and oag-eng, we do not use GNN composition,
and use HGSampling, the Metapath2Vec graph encoding, and
a 1-hop neighbor attention mask. For ogbn-papers100M,
we do not use a graph encoding, and use HGSampling, a
parallel GCN with a GT, and a 1-hop neighbor attention
mask. For MAG240M, we do not use a graph encoding, and
use HGSampling, a prefixed GNN with a GT, and a 1-hop
neighbor attention mask. For the heterophilic datasets, we use
HGSampling, a parallel GCN with a GT, the Metapath2Vec
graph encoding, and a 2-hop neighbor attention mask. For the
datasets with long-range dependencies, we do not use graph
sampling or an attention mask, and use a parallel GatedGCN
with a GT and a Laplace graph encoding. Test performance

is reported for the learned parameters corresponding to the
highest validation performance. Following the official evalua-
tion metric of each dataset, we use classification accuracy as
the metric for most of the datasets, while using the F1 score
as the metric for the datasets with long-range dependencies.

D. Experimental Results

We report our experimental results in Tables VI–VIII,
where average accuracy and standard deviations are calculated
over 5 runs with different random seeds. Table VI lists
the classification results on homogeneous and heterogeneous
graph datasets, and Table VII and Table VIII list the results
on heterophilic graphs and graphs with long-range depen-
dencies, respectively. We make the following observations.
First, UNIFIEDGT consistently outperforms all of the exist-
ing methods on most of the graph datasets, except GOAT
on the ogbn-products dataset. However, GOAT requires
significantly longer training time and memory. This validates
the efficacy of UNIFIEDGT as a comprehensive solution for
handling large graphs with data heterogeneity, heterophily, and
long-range dependencies. On homogeneous and heterogeneous
graph datasets (Table VI), UNIFIEDGT outperforms the other
methods with an average accuracy improvement of about 2.4%
over the second-best method, and outperforms the best GT
baseline by about 3.7% on average. We also observe that
models that account for data heterogeneity differently exhibit
highly varying performance on heterogeneous graphs. For
example, while the NAGphormer model, designed for homo-
geneous graphs, is competitive with HGT (a baseline model

TABLE VII: Comparison of average classification accuracy (%) and standard deviation of various GNN methods optimized
for graph heterophily on two heterophilic graph datasets. We highlight the top first, second, and third results.

MLP GCN GCNJK GAT GATJK GraphSAGE HGT MixHop GPRGNN NAGphormer GOAT UNIFIEDGT

arxiv-year 36.92 ± 0.52 46.82 ± 0.30 48.29 ± 0.57 46.00 ± 0.41 44.88 ± 0.74 49.37 ± 0.29 51.85 ± 0.39 49.25 ± 0.33 41.91 ± 0.43 48.22 ± 0.20 53.57 ± 0.18 57.23 ± 0.59
snap-patents 30.69 ± 0.22 46.82 ± 0.12 48.9 ± 0.20 39.85 ± 0.40 45.24 ± 0.36 50.95 ± 0.45 50.71 ± 0.42 52.78 ± 0.44 39.55 ± 0.16 54.80 ± 0.13 54.97 ± 0.23 57.90 ± 0.58

TABLE VIII: Comparison of average F1 score and standard deviation of GNN methods tailored for long-range dependencies
on two datasets provided by the Long Range Graph Benchmark. We highlight the top first, second, and third results.

MLP GCN GIN GatedGCN Transformer+LapPE GPS UNIFIEDGT

VOCSuperpixels 6.41 ± 0.11 14.51 ± 0.40 15.37 ± 0.34 29.35 ± 0.54 26.50 ± 0.77 35.18 ± 0.97 36.79 ± 0.65
COCOSuperpixels 3.02 ± 0.05 7.41 ± 0.11 8.07 ± 0.24 27.05 ± 0.51 24.81 ± 0.36 33.16 ± 0.29 33.26 ± 0.33

TABLE IX: Ablation studies on the ogbn-mag (hetero-
geneous) and arxiv-year (homogeneous, heterophilic)
dataset. Accuracy (%) and standard deviation of applying
proposed cross-type attention masking. Results of GT-based
models that use graph encoding are marked in bold, while the
other results do not use graph encoding.

ogbn-mag arxiv-year

FullGT 30.92 ± 0.38 36.85 ± 0.39
38.61 ± 0.26 46.93 ± 0.39

k-HopGT 51.61 ± 0.14 52.45 ± 0.70
53.26 ± 0.29 56.87 ± 0.78

TABLE X: Accuracy (%) and standard deviation of inte-
grating a GNN with FullGT and k-HopGT using paral-
lel/prefixed/prefixed and parallel connections.

ogbn-mag arxiv-year

FullGT +
prefixed GCN 50.14 ± 0.30 51.73 ± 0.32
parallel GCN 51.01 ± 0.25 51.56 ± 0.68

prefixed & parallel GCN 49.96 ± 0.12 51.53 ± 0.19

k-HopGT +
prefixed GCN 51.27 ± 0.10 52.66 ± 0.64
parallel GCN 51.79 ± 0.38 51.50 ± 0.74

prefixed & parallel GCN 50.79 ± 0.31 51.66 ± 0.83

designed for heterogeneous graphs) on homogeneous graph
datasets, it significantly underperforms HGT and UNIFIEDGT
on heterogeneous graph datasets.

For heterophilic graphs (Table VII), UNIFIEDGT outper-
forms the second-best method, GOAT, by about 3.3%. This
achievement is attributed to our simple, innovative approach
of mixing local and global information through the integration
of local message passing with long-range attention.

Table VIII summarizes results on graphs with long-range
dependencies. UNIFIEDGT achieves competitive and better
performance against the second-best solution, GraphGPS, on
both long-range graph datasets, demonstrating its effectiveness
in handling datasets with long-range dependencies.

E. Ablation Studies

In this section, we perform ablation studies on a fully
connected GT (FullGT) and a GT with the proposed k-
hop neighbor attention masking (k-HopGT) to verify the
effectiveness of our proposed components.

1) Structural prior: We evaluate the effect of two kinds
of structural prior injection methods: graph encodings and
attention masking. From Table IX, we observe that graph
encoding is beneficial for FullGT, with accuracy increasing
from ∼31% to ∼38% on ogbn-mag, and from ∼37% to

∼47% on arxiv-year. However, they still underperform
many other baselines in Table VI and Table VII. When k-
hop neighbor attention masking is applied (k-HopGT), the
performance improves on both datasets. Note that adding
graph encoding on GT with attention masking is still beneficial
(1.6% improvement on ogbn-mag, 4.4% improvement on
arxiv-year), but the performance gain is less significant
compared to only adding attention masking. This verifies that
attention masking is indeed an effective technique for graph
structure injection.

2) GNN Composition: We evaluate the effect of adding a
GNN (we use GCN as an example) to the GT architecture and
validate that the combined architecture can lead to improved
results (Table X). First, we observe that incorporating the
GNN with the GT consistently improves performance com-
pared to Table IX. Remarkably, all configurations—whether
prefixed, parallel, or a hybrid of both—demonstrate superior
accuracy over models employing only a single component
(GCN or FullGT alone). For example, all combinations of
GCN and FullGT achieve around 49.96–51.01% accuracy on
ogbn-mag, while GCN alone only achieves 44.90% accuracy
as shown in Table VI, and FullGT alone only achieves 30.92%
accuracy, as shown in Table IX. This demonstrates the benefit
of the combination of a GNN with a GT.

V. RELATED WORKS

A. Graph Transformers

Graph transformers [17, 52, 14, 53, 9, 54, 19] extend
the transformative capabilities of conventional transformer
architectures, which have made significant strides in both
natural language processing and computer vision. By using
powerful attention mechanisms, they can effectively capture
long-range dependencies in graph structures. Transformers
overcome limitations in traditional GNNs [44, 27], such as
over-smoothing and over-squashing [5]. To deal with the
idiosyncrasies of graph data, like local structure and rela-
tive positional information, specialized techniques such as
graph-specific positional and structure encodings have been
proposed [55, 56]. Current research primarily focuses on
homogeneous graphs [17, 19] or specialized applications like
heterogeneous molecule graphs [9, 8, 14]. Only a few existing
works [19] explore the power of GTs in heterophilic graph
learning. Our work aims to bridge this gap by providing a

graph transformer framework that can handle large heteroge-
neous and heterophilic graphs.

B. Learning on Large-Scale Graphs

The computational intricacies of learning on large-scale
graphs frequently cause traditional GNNs to run out of
memory [57]. To mitigate this, various solutions have been
proposed. Graph partitioning [58] splits the graph into smaller
sub-graphs to facilitate parallel computing [59]. Sampling
methods [9] reduce the computational load by focusing on rep-
resentative subgraphs [60, 27, 28]. Mini-batching techniques
strive for a balance between computational efficiency and
learning efficacy [61]. All of these strategies aim to optimize
learning outcomes while preserving the graph’s structural and
feature information. This paper applies these strategies to
graph transformers to perform learning on large heterogeneous
and heterophilic graphs.

VI. CONCLUSION

In this paper, we proposed UNIFIEDGT the first framework
for real-world graph learning that can simultaneously handle
the four challenges of (1) data heterogeneity, (2) graph het-
erophily, (3) long-range dependencies, and (4) scalability to
large graphs. UNIFIEDGTincludes various options for graph
sampling, structural prior injection, graph attention and a com-
bination of local/global information, and can be configured via
neural architecture search. Using UNIFIEDGT, we performed
a systematic empirical study and demonstrated its superior
performance on several graph benchmark datasets. We showed
that the optimal configuration in UNIFIEDGT can consistently
outperform all of the existing baselines.

ACKNOWLEDGEMENTS

This work is funded by the MIT-IBM AI Watson
Lab, NSF awards #CCF-1845763, #CCF-2316235, #CCF-
2403237, #IIS-2339989, and #IIS-2406439, DOE Early Career
Award #DE-SC0018947, Google Faculty Research Award,
Google Research Scholar Award, DARPA under contract
No. HR00112490370 and No. HR001124S0013, DHS CINA,
Amazon-Virginia Tech Initiative for Efficient and Robust Ma-
chine Learning, Cisco, 4-VA, Commonwealth Cyber Initiative,
and Virginia Tech. The views and conclusions are those of
the authors and should not be interpreted as representing the
official policies of the funding agencies or the government.

REFERENCES
[1] K. Huang, C. Xiao, L. M. Glass, M. Zitnik, and J. Sun, “SkipGNN:

Predicting molecular interactions with skip-graph networks,” Scientific
Reports, vol. 10, no. 1, pp. 1–16, 2020.

[2] T. Zhao, Y. Hu, L. R. Valsdottir, T. Zang, and J. Peng, “Identifying
drug–target interactions based on graph convolutional network and deep
neural network,” Briefings in Bioinformatics, vol. 22, no. 2, pp. 2141–
2150, 2021.

[3] D. Jiang, Z. Wu, C.-Y. Hsieh, G. Chen, B. Liao, Z. Wang, C. Shen,
D. Cao, J. Wu, and T. Hou, “Could graph neural networks learn better
molecular representation for drug discovery? a comparison study of
descriptor-based and graph-based models,” Journal of Cheminformatics,
vol. 13, no. 1, pp. 1–23, 2021.

[4] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou,
S. Yang, and Y. Qi, “A semi-supervised graph attentive network for

financial fraud detection,” in IEEE International Conference on Data
Mining (ICDM), 2019, pp. 598–607.

[5] Y. Song, C. Zhou, X. Wang, and Z. Lin, “Ordered GNN: Ordering
message passing to deal with heterophily and over-smoothing,” in
International Conference on Learning Representations (ICLR), 2023.

[6] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “OGB-
LSC: A large-scale challenge for machine learning on graphs,” in
Advances in Neural Information Processing Systems (NeurIPS), Datasets
and Benchmarks Track, 2021.

[7] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in European Semantic Web Conference (ESWC), 2018, pp.
593–607.

[8] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Hetero-
geneous graph attention network,” in Proceedings of the International
Conference on World Wide Web (WWW), 2019, pp. 2022–2032.

[9] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in Proceedings of the International Conference on World Wide
Web (WWW), 2020, pp. 2704–2710.

[10] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 7793–7804, 2020.

[11] J. Zhu, R. A. Rossi, A. Rao, T. Mai, N. Lipka, N. K. Ahmed, and
D. Koutra, “Graph neural networks with heterophily,” in Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), vol. 35, no. 12,
2021, pp. 11 168–11 176.

[12] D. Lim, F. Hohne, X. Li, S. L. Huang, V. Gupta, O. Bhalerao, and S. N.
Lim, “Large scale learning on non-homophilous graphs: New bench-
marks and strong simple methods,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 34, pp. 20 887–20 902, 2021.

[13] V. P. Dwivedi, L. Rampášek, M. Galkin, A. Parviz, G. Wolf, A. T. Luu,
and D. Beaini, “Long range graph benchmark,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 35, pp. 22 326–22 340,
2022.

[14] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and
D. Beaini, “Recipe for a general, powerful, scalable graph transformer,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 35,
pp. 14 501–14 515, 2022.

[15] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Sto-
ica, “Representing long-range context for graph neural networks with
global attention,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 34, pp. 13 266–13 279, 2021.

[16] J. Zhao, C. Li, Q. Wen, Y. Wang, Y. Liu, H. Sun, X. Xie, and
Y. Ye, “Gophormer: Ego-graph transformer for node classification,”
arXiv preprint arXiv:2110.13094, 2021.

[17] C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform bad for graph representation?” in
Advances in Neural Information Processing Systems (NeurIPS), 2021,
pp. 28 877–28 888.

[18] J. Chen, K. Gao, G. Li, and K. He, “NAGphormer: A tokenized graph
transformer for node classification in large graphs,” in The International
Conference on Learning Representations (ICLR), 2022.

[19] K. Kong, J. Chen, J. Kirchenbauer, R. Ni, C. B. Bruss, and T. Goldstein,
“GOAT: A global transformer on large-scale graphs,” in Proceedings of
the International Conference on Machine Learning (ICML), 2023, pp.
17 375–17 390.

[20] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks
to graphs,” AAAI Workshop on Deep Learning on Graphs: Methods and
Applications, 2021.

[21] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou,
“Rethinking graph transformers with spectral attention,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 34, pp. 21 618–
21 629, 2021.

[22] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, pp. 22 118–22 133, 2020.

[23] A. Khatua, V. S. Mailthody, B. Taleka, T. Ma, X. Song, and W.-m. Hwu,
“IGB: Addressing the gaps in labeling, features, heterogeneity, and size
of public graph datasets for deep learning research,” in Proceedings
of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD), 2023.

[24] X. Zheng, Y. Liu, S. Pan, M. Zhang, D. Jin, and P. S. Yu, “Graph

neural networks for graphs with heterophily: A survey,” arXiv preprint
arXiv:2202.07082, 2022.

[25] X. Li, R. Zhu, Y. Cheng, C. Shan, S. Luo, D. Li, and W. Qian, “Finding
global homophily in graph neural networks when meeting heterophily,”
in International Conference on Machine Learning (ICML), 2022, pp.
13 242–13 256.

[26] Z. Qin, X. Han, W. Sun, D. Li, L. Kong, N. Barnes, and Y. Zhong,
“The devil in linear transformer,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2022,
pp. 7025–7041.

[27] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 30, 2017.

[28] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations (ICLR), 2020.

[29] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-
works,” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), 2016, pp. 855–864.

[30] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec: Scalable
representation learning for heterogeneous networks,” in Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2017, pp. 135–144.

[31] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 26, 2013.

[32] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Com-
plex embeddings for simple link prediction,” in International Conference
on Machine Learning (ICML), 2016, pp. 2071–2080.

[33] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in The
International Conference on Learning Representations (ICLR), 2015.

[34] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Graph
neural networks with learnable structural and positional representations,”
in International Conference on Learning Representations, 2022.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[36] G. Mialon, D. Chen, M. Selosse, and J. Mairal, “Graphit: Encoding
graph structure in transformers,” arXiv preprint arXiv:2106.05667, 2021.

[37] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 25, 2012.

[38] C. White, W. Neiswanger, and Y. Savani, “BANANAS: Bayesian op-
timization with neural architectures for neural architecture search,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
vol. 35, no. 12, 2021, pp. 10 293–10 301.

[39] B. Ru, X. Wan, X. Dong, and M. Osborne, “Interpretable neural
architecture search via bayesian optimization with weisfeiler-lehman
kernels,” arXiv preprint arXiv:2006.07556, 2020.

[40] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang,
“An overview of microsoft academic service (MAS) and applications,”
in Proceedings of the International Conference on World Wide Web
(WWW), 2015, pp. 243–246.

[41] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner:
Extraction and mining of academic social networks,” in Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2008, pp. 990–998.

[42] F. Zhang, X. Liu, J. Tang, Y. Dong, P. Yao, J. Zhang, X. Gu, Y. Wang,
B. Shao, R. Li et al., “OAG: Toward linking large-scale heterogeneous
entity graphs,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2019,
pp. 2585–2595.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[44] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

[45] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations (ICLR), 2018.

[46] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations (ICLR), 2019.

[47] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning (ICML). PMLR,
2018, pp. 5453–5462.

[48] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman,
H. Harutyunyan, G. Ver Steeg, and A. Galstyan, “Mixhop: Higher-order
graph convolutional architectures via sparsified neighborhood mixing,”
in International Conference on Machine Learning (ICML). PMLR,
2019, pp. 21–29.

[49] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal
generalized pagerank graph neural network,” in International Conference
on Learning Representations (ICLR), 2021.

[50] X. Bresson and T. Laurent, “Residual gated graph convnets,” arXiv
preprint arXiv:1711.07553, 2017.

[51] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wil-
son, and E. Bakshy, “BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization,” in Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[52] E. Min, R. Chen, Y. Bian, T. Xu, K. Zhao, W. Huang, P. Zhao, J. Huang,
S. Ananiadou, and Y. Rong, “Transformer for graphs: An overview from
architecture perspective,” arXiv preprint arXiv:2202.08455, 2022.

[53] S. Zhang, Q. Ning, and L. Huang, “Extracting temporal event relation
with syntax-guided graph transformer,” in North American Chapter of
the Association for Computational Linguistics (NAACL), July 2022, pp.
379–390.

[54] S. Yao, T. Wang, and X. Wan, “Heterogeneous graph transformer for
graph-to-sequence learning,” in Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL), 2020, pp. 7145–
7154.

[55] D. Chen, L. O’Bray, and K. Borgwardt, “Structure-aware transformer for
graph representation learning,” in International Conference on Machine
Learning (ICML). PMLR, 2022, pp. 3469–3489.

[56] Y. Chen, J. You, J. He, Y. Lin, Y. Peng, C. Wu, and Y. Zhu, “SP-
GNN: Learning structure and position information from graphs,” Neural
Networks, vol. 161, pp. 505–514, 2023.

[57] A. Gupta, P. Matta, and B. Pant, “Graph neural network: Current state of
art, challenges and applications,” Materials Today: Proceedings, vol. 46,
pp. 10 927–10 932, 2021.

[58] P.-O. Fjällström, Algorithms for Graph Partitioning: A Survey.
Linköping University Electronic Press, 1998.

[59] Y. Shao, H. Li, X. Gu, H. Yin, Y. Li, X. Miao, W. Zhang, B. Cui, and
L. Chen, “Distributed graph neural network training: A survey,” ACM
Computing Surveys, vol. 56, no. 8, pp. 1–39, 2024.

[60] P. Hu and W. C. Lau, “A survey and taxonomy of graph sampling,”
arXiv preprint arXiv:1308.5865, 2013.

[61] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
GCN: An efficient algorithm for training deep and large graph convo-
lutional networks,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2019,
pp. 257–266.

	Introduction
	Graph Transformer Exploration
	Preliminaries
	Exploration Study
	Property 1: Long-Range Dependencies
	Property 2: Data Heterogeneity
	Property 3: Graph Heterophily
	Property 4: Scalability to Large Graphs

	Unified Graph Transformer (UnifiedGT)
	Graph Sampling
	Structural Prior
	Graph Encoding (GE)
	Attention Masking

	Attention Calculation
	Local/Global Information Mixing
	Type-Specific Feed-Forward Networks (FFNs)
	Optimal Configuration Search

	Experiments
	Datasets
	Baselines
	Training and Evaluation
	Experimental Results
	Ablation Studies
	Structural prior
	GNN Composition

	Related Works
	Graph Transformers
	Learning on Large-Scale Graphs

	Conclusion

