A Simple Parallel Cartesian Tree Algorithm
and its Application to Suffix Tree Construction *

Guy E. Blellochf

Abstract

We present a simple linear work and space, and poly-
logarithmic time parallel algorithm for generating mul-
tiway Cartesian trees. As a special case, the algorithm
can be used to generate suffix trees from suffix arrays on
arbitrary alphabets in the same bounds. In conjunction
with parallel suffix array algorithms, such as the skew
algorithm, this gives a rather simple linear work paral-
lel algorithm for generating suffix trees over an integer
alphabet ¥ C [1,...,n], where n is the length of the in-
put string. More generally, given a sorted sequences of
strings and the longest common prefix lengths between
adjacent elements, the algorithm will generate a pat tree
(compacted trie) over the strings.

We also present experimental results comparing
the performance of the algorithm to existing sequential
implementations and a second parallel algorithm. We
present comparisons for the Cartesian tree algorithm
on its own and for constructing a suffix tree using our
algorithm. The results show that on a variety of strings
our algorithm is competitive with the sequential version
on a single processor and achieves good speedup on
multiple processors.

1 Introduction

For a string s of length n over a character set ¥ C
{1,...,n}! the suffix-tree data structure stores all the
suffixes of s in a pat tree (a trie in which maximal branch
free paths are contracted into a single edge). In addi-
tion to supporting searches in s for any string ¢t € ¥*
in O(|t|) expected time?, suffix trees efficiently sup-
port many other operations on strings, such as longest
common substring, maximal repeats, longest repeated
substrings, and longest palindrome, among many oth-
ers [Gus97]. As such it is one of the most important

~ *This work was supported by generous gifts from Intel, Mi-
crosoft and IBM, and by the National Science Foundation under
award CCF1018188.
fCarnegie Mellon University, E-mail: guyb@cs.cmu.edu
fCarnegie Mellon University, E-mail: jshun@cs.cmu.edu
IMore general alphabets can be used by first sorting the
characters and then labeling them from 1 to n.
2Worst case time for constant sized alphabets.

Copyright © 2011 by SIAM 48

Unauthorized reproduction is prohibited.

Julian Shun?

data structures for string processing. For example, it
is used in several bioinformatic applications, such as
REPuter [KS99], MUMmer [DPCS02], OASIS [MPKO03|
and Trellis+ [PZ08]. Both suffix trees and a linear
time algorithm for constructing them were introduced
by Weiner [Wei73] (although he used the term posi-
tion tree). Since then various similar constructions have
been described [McC76] and there have been many im-
plementations of these algorithms. Although originally
designed for fixed-sized alphabets with deterministic lin-
ear time, Weiner’s algorithm can work on an alphabet
{1,...,n}, henceforth [n], in linear expected time sim-
ply by using hashing to access the children of a node.

The algorithm of Weiner and its derivatives are all
incremental and inherently sequential. The first paral-
lel algorithm for suffix trees was given by Apostolico et.
al. [AIL'88] and was based on a quite different doubling
approach. For a parameter 0 < € < 1 the algorithm
runs in O(1logn) time, O(%logn) work and O(n'**)
space on the CRCW PRAM for arbitrary alphabets.
Although reasonably simple, this algorithm is likely not
practical since it is not work efficient and uses super-
linear memory (by a polynomial factor). The parallel
construction of suffix trees was later improved to linear
work and space by Hariharan [Har94], with an algorithm
taking O(log* n) time on the CREW PRAM, and then
by Farach and Muthukrishnan to O(logn) time using
a randomized CRCW PRAM [FM96] (high-probability
bounds). These later results are for a constant-sized al-
phabet, are “considerably non-trivial”, and do not seem
to be amenable to efficient implementations.

One way to construct a suffix tree is to first generate
a suffix array (an array of pointers to the lexicograph-
ically sorted suffixes), and then convert it to a suffix
tree. For binary alphabets and given the length of the
longest common prefix (LCP) between adjacent entries
this conversion can be done sequentially by generating
a Cartesian tree in linear time and space. The approach
can be generalized to arbitrary alphabets using multi-
way Cartesian trees without much difficulty. Using suf-
fix arrays is attractive since in recent years there has
been considerable theoretical and practical advances in
the generation of suffix arrays (see e.g. [PST07]). The

interest is partly due to their need in the widely used
Burrows-Wheeler compression algorithm, and also as a
more space-efficient alternative to suffix trees. As such
there have been dozens of papers on efficient implemen-
tations of suffix arrays. Among these Karkkainen and
Sanders have developed a quite simple and efficient par-
allel algorithm for suffix arrays [KS03, KS07] that can
also generate LCPs.

The story with generating Cartesian trees in paral-
lel is less satisfactory. Berkman et. al [BSV93] describe
a parallel algorithm for the all nearest smaller values
(ANSV) problem, which can be directly used to gen-
erate a binary Cartesian tree for fixed sized alphabets.
However, it cannot directly be used for non-constant
sized alphabets, and the algorithm is very complicated.
Hiopoulos and Rytter [IR04] present two much simpler
algorithms for generating suffix trees from suffix arrays,
one based on merging and one based on a variant of
the ANSV problem that allows for multiway Cartesian
trees. However they both require O(nlogn) work.

In this paper we describe a linear work, linear space,
and polylogarithmic time algorithm for generating mul-
tiway Cartesian trees. The algorithm is based on divide-
and-conquer and we describe two versions that differ
in whether the merging step is done sequentially or
in parallel. The first based on a sequential merge,
is very simple, and for a tree of height d, it runs in
O(min{dlogn,n}) time on the CREW PRAM. The sec-
ond version is only slightly more complicated and runs
in O(log®n) time on the CREW PRAM. They both use
linear work and space.

Given any linear work and space algorithm for
generating a suffix array and corresponding LCPs using
O(S(n)) time our results lead to a linear work and space
algorithm for generating suffix trees in O(S(n) +log® n)
time. For example using the Skew algorithm [KS03] on
a CRCW PRAM we have O(log®n) time for constant-
sized alphabets and O(n¢),0 < e < 1 time for the
alphabet [n]. We note that a polylogarithmic time,
linear work and linear space algorithm for the alphabet
[n] would imply stable radix sort on [n] in the same
bounds, which is a long open problem.

For comparison we also present a technique for using
the ANSV problem to generate multiway Cartesian
trees on arbitrary alphabets in linear work and space.
The algorithm runs in O(I(n) + logn) time on the
CRCW PRAM, where I(n) is the best time bound for a
linear-work stable sorting of integers from [n]. We then
show that the Cartesian tree can be used to generate an
ANSYV in linear work and polylogarithmic time.

We have implemented the first version of our algo-
rithm and present various experimental results analyz-
ing our algorithm on a shared memory multicore parallel

Copyright © 2011 by SIAM 49

Unauthorized reproduction is prohibited.

machine on a variety of inputs. First, we compare our
Cartesian tree algorithm with a simple stack based se-
quential implementation. On one core our algorithm is
about 3x slower, but we achieve about 30x speedup on
32 cores and about 45x speedup with 32 cores using hy-
perthreading (two threads per core). We also analyze
the algorithm when used as part of code to generate a
suffix tree from the original string. We compare the code
to the ANSV based algorithm described in the previous
paragraph and to existing sequential implementations
of suffix trees. Our algorithm is always faster than the
ANSYV algorithm. The algorithm is competitive with
the sequential code on a single processor (core), and
achieves good speedup on 32 cores. Finally, we present
timings for searching multiple strings in the suffix tree
we generate. Our times are always faster than the se-
quential suffix tree on one core and always more than
50x faster on 32 cores using hyperthreading.

2 Preliminaries

Given a string s of length n over an ordered alphabet
3, the suffiz array, SA, represents the n suffixes of s in
lexicographically sorted order. To be precise, SA[i] = j
if and only if the suffix starting at the j’th position in
s appears in the i’th position in the suffix-sorted order.
A pat tree [Mor68] (or patricia tree, or compacted trie)
of a set of strings S is a modified trie in which (1) edges
can be labeled with a sequence of characters instead of a
single character, (2) no node has a single child, and (3)
every string in S corresponds to concatenation of labels
for a path from the root to a leaf. Given a string s of
length n, the suffiz tree for s stores the n suffixes of s
in a pat tree.

In this paper we assume an integer alphabet 3 C [n]
where n is the total number of characters. We require
that the pat tree and suffix tree supports the following
queries on a node in constant expected time: finding
the child edge based on the first character of the edge,
finding the first child, finding the next and previous
sibling in the character order, and finding the parent.
If the alphabet is constant sized all these operations
can easily be implemented in constant worst-case time.

A Cartesian tree [Vui80] on a sequence of elements
taken from a total order is a binary tree that satisfies
two properties: (1) heap order on values, i.e. a node
has an equal or lesser value than any of its descendants,
and (2) an inorder traversal of the tree defines the
sequence order. If elements in the sequence are distinct
then the tree is unique, otherwise it might not be.
When elements are not distinct we refer to a connected
component of equal value nodes in a Cartesian tree as
a cluster. A multiway Cartesian tree is derived from a
Cartesian tree by contracting each cluster into a single

node while maintaining the order of the children. A
multiway Cartesian tree of a sequence is always unique.

Let LCP(s1,s2) be the length of the longest com-
mon prefix of s; and sg. Given a sorted sequence of
strings S = [s1,...,Sy], if the string lengths are inter-
leaved with the length of their longest common prefixes
(ie. [|s1], LCP(s1,82),|s2|,--., LCP(Spn—1,5n),|Snl])
the corresponding multiway Cartesian tree has the
structure of the pat tree for S. The pat tree can be
generated by adding strings to the edges, which is easy
to do—e.g. for a node with value v = LC'P(s;, s;+1) and
parent with value v’ the edge corresponds to the sub-
string s;[v + 1,...,v]. As a special case, interleaving
a suffix array with its LCPs and generating the multi-
way Cartesian tree gives the suffix tree structure. In
summary, beyond some trivial operations, generating
a multiway Cartesian tree is sufficient for converting a
suffix array and corresponding LCPs to a suffix tree.

In this paper, we use the concurrent-read exclusive-
write parallel random access machine (PRAM) model
and the concurrent-read concurrent-write (CRCW)
PRAM. For the CRCW PRAM, we use the model where
concurrent writes to the same location results in an ar-
bitrary processor succeeding. We analyze the algorithm
in the work-time framework where we assume unlim-
ited processors and count the number of time steps and
total number of operations. Using Brent’s WT schedul-
ing principle, this implies an O(T) time bound using
W/T processors, as long as processors can be allocated
efficiently [Jaj92].

3 Parallel Cartesian Trees

We describe a work-efficient parallel divide-and-conquer
algorithm for creating a Cartesian tree. The algorithm
works recursively by splitting the input array A into
two, generating the Cartesian tree for each subarray,
and then merging the results into a Cartesian tree for
A. We define the right-spine (left-spine) of a tree to
consist of all nodes on the path from the root to the
rightmost (leftmost) node of the tree. The merge works
by merging the right-spine of the left tree and the left-
spine of the right tree based on the value stored at each
node. Our algorithm is similar to the O(nlogn) work
divide-and-conquer suffix array to suffix tree algorithm
of Tliopoulos and Rytter [IR04], but the most important
difference is that our algorithm only looks at the nodes
on the spines at or deeper than the deeper of the two
roots and our fully parallel version uses trees instead
of arrays to represent the spines. This leads to the
O(n) work bound. In addition, Iliopoulos and Rytter’s
algorithm works directly on the suffix array rather than
solving the Cartesian tree problem so the specifics are
different.

Copyright © 2011 by SIAM 50

Unauthorized reproduction is prohibited.

We describe a partially parallel version of this
algorithm (Algorithm la) and a fully parallel version
(Algorithm 1b). Algorithm 1la is very simple, and takes
up to O(min{dlogn,n}) time, where d is the depth of
the resulting tree, although for most inputs it takes
significantly less time (e.g. for the sequence [1,2,...,n]
it takes O(logn) time even though the resulting tree
has depth n). The algorithm only needs to maintain
parent pointers for the nodes in the Cartesian tree. The
complete C code is provided in Figure 1 and line numbers
from it will be referenced throughout our description.

The algorithm takes as input an array of n elements
(Nodes) and recursively splits the array into two halves
(lines 19-21), creates a Cartesian tree for each half, and
then merges them into a single Cartesian tree (line 22).
For the merge (lines 4-15), we combine the right spine
of the left subtree with the left spine of the right subtree
(see Figure 2). The right (left) spine of the left (right)
subtree can be accessed by following parent pointers
from the rightmost (leftmost) node of the left (right)
subtree. The leftmost and rightmost nodes of a tree
are simply the first and last elements in the input array
of nodes. We note that once the merge reaches the
deeper of the two roots it stops and needs not process
the remaining nodes on the other spine. The code in
Figure 1 does not keep child pointers since we don’t
need them for our experiments, but it is easy to add a
left and right child pointer and maintain them.

THEOREM 3.1. Algorithm 1a produces a Cartesian tree
on its input array.

Proof. We show that at every step in our algorithm,
both the heap and the inorder properties of the Carte-
sian trees are maintained. At the base case, a Cartesian
tree of one node trivially satisfies the two properties.
During a merge, the heap property is maintained be-
cause a node’s parent pointer only changes to point to a
node with equal or lesser value. Consider modifications
to the left tree. Only the right children of the right spine
can be changed. Therefore any descendants in the right
tree will correctly appear after in the inorder traversal.
Similarly in the other direction any left tree descendants
of a right tree node will correctly appear before in the
inorder traversal. Furthermore the order within each of
the two trees is maintained since any node that is a de-
scendant on the right (left) in the trees before merging
remains a descendant on the right (left) after the merge.

THEOREM 3.2. Algorithm 1a for constructing a Carte-

sian tree requires O(n) work and O(n) space on the
RAM.

Proof. We use the following definitions to help with
proving the complexity bounds of our algorithm: A node

right; break;}
left; break;}

right —>parent;}

1 struct node { nodex parent; int value; };
2

3 void merge(nodex left , nodex right) {

4 nodex head;

5 if (left —>value > right—>value) {

6 head = left; left = left —>parent;}

7 else {head = right; right= right—>parent;}
8

9 while (1) {

10 if (left == NULL) {head—>parent =

11 if (right = NULL) {head—>parent =
12 if (left —>value > right—>value) {

13 head—>parent = left; left = left —>parent;}
14 else {head—>parent = right; right =
15 head = head—>parent;}}

16

17 void cartesianTree (nodex Nodes, int n) {
18 if (n < 2) return;

19 cilk_spawn cartesianTree (Nodes,n/2);
20 cartesianTree (Nodes+n/2,n—n/2);

21 cilk_sync;

22 merge (Nodes+n/2—1,Nodes+n/2);}

Figure 1: C code for Algorithm la. The cilk_spawn and cilk_sync declarations are part of the Cilk+-+ parallel
extensions [Int10] and allow the two recursive calls to run in parallel.

in a tree is left-protected if it does not appear on the
left spine of its tree, and a node is right-protected if it
does not appear on the right spine of its tree. A node is
protected if it is both left-protected and right-protected.

In the algorithm, once a node becomes protected, it
will always be protected and will never have to be looked
at again since the algorithm always only processes the
left and right spines of a tree. We show that during
a merge, all but two of the nodes that are looked at
become protected, and we charge the cost of processing
those two nodes to the merge itself. Call the last node
looked at on the right spine of the left tree lastnodeLe ft
and the last node looked at on the left spine of the right
tree lastnodeRight (see Figure 2).

All nodes that are looked at, except for lastn-
odeLeft and lastnodeRight will be left-protected by
lastnodeLeft. This is because those nodes become ei-
ther descendants of the right child of lastnodeLeft (when
lastnodeLeft is below lastnodeRight) or descendants
of lastnodeRight (when lastnodeRight is below lastn-
odeLeft). A symmetric argument holds for nodes being
right-protected. Therefore, all nodes looked at, except
for lastnodeLeft and lastnodeRight, become protected
after this sequence of operations. We charge the cost for
processing lastnodeLeft and lastnodeRight to the merge
itself.

Other than when a node appears as lastnodeRight
or lastnodeLeft it is only looked at once and then

Copyright © 2011 by SIAM
Unauthorized reproduction is prohibited.

51

becomes protected. Therefore the total number of nodes
looked at is 2n for the lastnodeRight or lastnodeLeft on
the n — 1 merges, and at most n for the nodes that
become protected for a total work of O(n). Since each
node only maintains a constant amount of data, the
space required is O(n).

Note that although Algorithm la makes parallel
recursive calls it uses a sequential merge routine. In
the worst case this can take time equal to the depth of
the tree. We now describe a fully parallel variant, which
we refer to as Algorithm 1b. The algorithm maintains
binary search trees for each spine, and substitutes the
sequential merge with a parallel merge. We will use split
and join operations on the spines. A split goes down the
spine tree and cuts it at a specified value v so that all
values less or equal to v are in one tree and values greater
than v are in another tree. A join takes two trees such
that all values in the second are greater or equal to the
largest value in the first and joins them into one. Both
can run in time proportional to the depth of the spine
tree and the join adds at most one to the height of the
larger two trees.

Without loss of generality, assume that the root of
the right Cartesian tree has a smaller value than the
root of the left Cartesian tree (as in Figure 2). For the
left tree, the end point of the merge will be its root.
To find where to stop merging on the right tree, the

Left spine i
(resulting tree) i

root

Left spine

(right tree & f ' .
resulting & Right spine
tree) A‘ (right tree &

resulting
tree)

lastnodeRight

1

lastnodeleft

»
\
A

Left spine Right spine !
(left tree /< X (left tree) :
resulting ;
tree)

Left tree

/’i/’

’

Left spine ,
(right tree) ,

’
L

/N

Right tree

Figure 2: Merging two spines. Thick lines represent the spines of the resulting tree; dashed lines represent edges
that existed before the merge but not after the merge; dotted edges represent an arbitrary number of nodes; all

non-dashed lines represent edges in the resulting tree.

algorithm searches the left-spine of the right tree for the
root value of the left tree and splits the spine at that
point. Now it merges the whole right-spine of the left
tree and the deeper portion of the left-spine of the right
tree. After the merge these two parts of the spine can
be thrown out since their nodes have become protected.
Finally the algorithm joins the shallower portion of the
left spine of the right tree with the left spine of the left
tree to form the new left spine. The right-spine of the
resulting Cartesian tree is the same as that of the right
Cartesian tree before the merge.

THEOREM 3.3. Algorithm 1b for constructing a Carte-
sian tree requires O(n) work, O(log?n) time, and O(n)
space on the CREW PRAM.

Proof. The trees used to represent the spines are never
deeper than O(logn) since each merge does only one

Copyright © 2011 by SIAM
Unauthorized reproduction is prohibited.

52

join, which adds only one node to the depth. All splits
and joints therefore take O(logn) time. The merge
can be done using a parallel merging algorithm that
runs in O(logn) time and O(n) work on the CREW
PRAM [Jaj92], where n is the number of elements
being merged. The depth of Algorithm 1b’s recursion
is O(logn), which gives a O(log®n) time bound. The
O(n) work bound follows from a similar analysis to that
of the sequential version, with the exception that splits
and joins in the spine cost an extra O(logn) per merge,
so we have a recurrence W(n) = 2W(n/2) + O(logn),
which solves to O(n). The trees on the spines take
linear space so the O(n) space bound follows. Processor
allocation is straightforward due to the O(logn) time
for the merges.

LEMMA 3.1. The output of Algorithm 1a can be used

to construct a multiway Cartesian tree in O(n) work on
the RAM. Algorithm 1b can perform the same task with
O(n) work and O(logn) time on the EREW PRAM.

Proof. For Algorithm la, this can be done using path
compression to compress all clusters of the same value
into the root of the cluster, which can then be used
as the “representative” of the cluster. All parent
pointers to nodes in a cluster will now point to the
“representative” of that cluster. This takes linear work.
For Algorithm 1b, substitute path compression with
a parallel tree contraction algorithm. Parallel tree
contraction can be done in O(n) work and O(logn) time
on the EREW PRAM [Jaj92].

For non-constant sized alphabets if we want to
search in the tree efficiently (O(1) expected time per
edge) the edges need to be inserted into a hash table,
which can be done in O(log n) time and O(n) work (both
w.h.p.) on a randomized CRCW PRAM.

COROLLARY 3.1. Given a suffix array for a string over
the alphabet [n] and the LCPs between adjacent ele-
ments, a suffix tree can be generated in hash-table format
using Algorithm 1b, tree contraction, and hash table in-
sertion, in O(n) work, O(log®n) time, and O(n) space
on the randomized CRCW PRAM.

Proof. Follows directly.

4 Cartesian Trees and the ANSV Problem

The all nearest smaller values (ANSV) problem is
defined as follows: for each element in a sequence
of numbers, find the closest smaller element to the
left of it and the closest smaller element to the right
of it. Here we augment the ANSV based Cartesian
tree algorithm of Berkman et. al [BSV93] to support
multiway Cartesian trees, and also show how to use
Cartesian trees to solve the ANSV problem.

Berkman et. al.’s algorithm solves the ANSV
problem in O(n) work and O(loglogn) time on the
CRCW PRAM. The ANSV can then be used to generate
a Cartesian tree by noting that the parent of a node
has to be the nearest smaller value in one of the two
directions (in particular the larger of the two nearest
smaller values is the parent). To convert their Cartesian
tree to the multiway Cartesian tree, one needs to group
all nodes pointing to the same parent and coming from
the same direction together. If I(n) is the best time
bound for stably sorting integers from [n] using linear
space and work, the grouping can be done in linear work
and O(I(n)+loglogn) time by sorting on the parent id
numbers of the nodes. Stability is important since we
need to maintain the relative order among the children
of a node.

Copyright © 2011 by SIAM 53

Unauthorized reproduction is prohibited.

THEOREM 4.1. A multiway Cartesian tree on an array
of elements can be generated in O(n) work and space
and O(I(n) + loglogn) time on the CRCW PRAM.

Proof. This follows from the bounds of the ANSV
algorithm and of integer sorting.

It is not currently know whether I(n) is polyloga-
rithmic so at present this result seems weaker than the
result from the previous section. In the experimental
section we compare the algorithms experimentally. In
related work Iliopoulos and Rytter [IR04] present an
O(nlogn) work polylogarithmic time algorithm based
on a variant of ANSV.

We now describe a method for obtaining the ANSVs
from a Cartesian tree in parallel using tree contraction.
Note that for any node in the Cartesian tree both of
its nearest smaller neighbors (if it has them) must be
on the path from the node to the root (one neighbor is
trivially the node’s parent). We first present a simple
linear-work algorithm for the task that takes time equal
to the depth of the Cartesian tree. Let d denote the
depth of the tree, with the root being at depth 1. The
following algorithm returns all left nearest neighbors
of all nodes. A symmetric algorithm returns the right
nearest neighbors.

For every node, maintain two variables, node.index
which is set to the node’s index in the sequence cor-
responding to the inorder traversal of the Cartesian
tree and never changed, and node.inherited, which
is initialized to null.

For each level 7 of the tree from 1 to d:

In parallel, for all nodes at level i: pass
node.inherited to its left child and node.index
to its right child. The child stores the passed
value in its inherited variable.

For all nodes in parallel: if node.inherited # null, then
node.inherited denotes the index of the node’s left
smaller neighbor. Otherwise it does not have a left
smaller neighbor.

We now present a linear-work and O(logn) time
parallel algorithm for this task based on tree contrac-
tion [Jaj92]. To find the left neighbors, we describe
how to decompress the tree several configurations for
rake and compress operations, and the rest of the con-
figurations have a symmetric argument. For compress,
there is the left-left and right-left configurations. For
the left-left configuration, the compressed node takes
the inherited value of its parent. For the right-left con-
figuration, the compressed node takes the index value

of its parent. For raking a left leaf, the raked leaf takes
the inherited value of its parent, and for raking a right
leaf, the raked leaf takes the index value of its parent.
We can find the right neighbors by symmetry.

5 Experiments

The goal of our experiments is to analyze the effective-
ness of our Cartesian tree algorithm both on its own and
also as part of code to generate suffix trees. We compare
the algorithm to the ANSV-based algorithm and to the
best available sequential code for suffix trees. We feel
it is important to compare our parallel algorithm with
existing sequential implementations to make sure that
that the algorithm can significantly outperform existing
sequential ones even on a modest number of processors
(cores) available on current desktop machines. In our
discussion we refer to the two variants of our main al-
gorithm (Section 3) as Algorithm la and Algorithm 1b,
and to the ANSV-based algorithm as algorithm 2. For
the experiments, in addition to implementing Algorithm
la and a variant of Algorithm 2, we implemented paral-
lel code for suffix arrays and their corresponding LCPs,
and parallel code for inserting the tree nodes into a hash
table to allow for efficient search. We ran our experi-
ments on a 32-core parallel machine using a variety of
real-world and artificial strings.

5.1 Auxiliary Code. To generate the suffix array
and LCP we implemented a parallel version of the
skew algorithm [KSO03]. The implementation uses a
parallel bucket sort [Jaj92], requiring O(n) work and
O(n'/¢) time for some constant ¢ > 1. Our LCP
code is based on an O(nlogn) solution for the range
minima problem instead of the optimal O(n). We did
implement a parallel version of the linear-time range-
minima algorithm by [FHO6], but found that it was
slower. Due to better locality in the parallel radix sort
than the sequential one, our code on a single core is
actually faster than a version of [KS03] implemented in
the paper and available online, even though that version
does not implement the LCP. We get a further 9 to 17
fold speedup on a 32-core machine. Compared to the
parallel implementation of suffix arrays by Kulla and
Sanders [KSO07], our times are faster on 32 cores then
the 64 core numbers reported by them (31.6 seconds
vs 37.8 seconds on 522 Million characters), although
their clock speed is 33% slower than ours and it is
a different system so it is hard to compare directly.
Mori provides a parallel suffix array implementation
using openMP [Morl0a], but we found that it is slower
than their corresponding sequential implementation,
even when using 32 cores. Our parallel implementation
significantly outperforms that of Mori. These are the

Copyright © 2011 by SIAM 54

Unauthorized reproduction is prohibited.

only two existing parallel implementations of suffix
arrays that we are aware of.

We note that recent sequential suffix array codes are
faster than ours running on one core [PST07, Morl0a,
Mor10b], but most of them do not compute the LCPs.
For real-world texts, those programs are faster than our
code by a factor of between 3 and 6. This is due to
many optimizations these codes make. We expect many
of these optimizations can be parallelized and could
significantly improve the performance of parallel suffix
array construction, but this was not the purpose of our
studies. One advantage of basing suffix tree code on
suffix array code, however, is that improvements made
to parallel suffix arrays would improve the performance
of the suffix tree code.

We use a parallel hash table to allow for fast search
in the suffix tree. The hash-table uses a compare
and swap for concurrent insertion. Furthermore we
optimized the code so that most entries near leafs of
the tree are not inserted into the hash table and a linear
search is used instead. In particular since our Cartesian
tree code stores the tree nodes as an in-order traversal
of the suffixes of the suffix tree, a child and parent near
the leaf are are likely to be near each other in this array.
In our code if the child is within some constant &k (16 in
the experiments) in the array we do not store it in the
hash table but use a linear search.

For Algorithm 2, we implemented the O(nlogn)
work and O(logn) time ANSV algorithm of [BSV93]
instead of the much more complicated work optimal
version. However, we used an optimization that makes
it run significantly faster in practice. In particular,
using a doubling search, each left query on location ¢
runs in time O(log(k — j + 1)) where k is the resulting
nearest lesser value and j = max{l € [1,...,1—1]|v[l]] <
v[l + 1]}, and symmetrically for right queries.

5.2 Experimental Setup. We performed experi-
ments on a 32-core (with hyper-threading) Dell Pow-
erEdge 910 with 4 x 2.26GHZ Intel 8-core X7560 Ne-
halem Processors, a 1066MHz bus, and 64GB of main
memory. The parallel programs were compiled using the
cilk++ compiler (build 8503) with the -02 flag. The se-
quential programs were compiled using g++ 4.4.1 with
the -02 flag.

For comparison to sequential suffix tree code we
used Tsadok’s and Yona’s [TY03] code and Kurtz’s code
from the MUMmer project [DPCS02, Kur99] (http:
//mummer . sourceforge.net),both of which are pub-
licly available. We only list the results of Kurtz be-
cause they are superior to those of [TYO03] for all of
our test files. Kurtz’s code is based on McCreight’s
suffix tree construction algorithm [McC76]—it is inher-

ently sequential and completely different from our al-
gorithms. Other researchers have experimented with
building suffix trees in parallel [GMO09], but due to dif-
ficulty in obtaining the source code, we do not have
results for this implementation. However, our running
times appear significantly faster than those reported in
the corresponding papers, even after accounting for dif-
ferences in machine specifications.

For running the experiments we used a variety of
strings available online (http://people.unipmn.it/
manzini/lightweight/corpus/), a Microsoft Word
document (thesaurus.doc), XML code from wikipedia
samples (wikisamp8.xml and wikisamp9.xml), and ar-
tificial inputs. We also included two files of inte-
gers, 10Mrandom-ints10K, with random integers rang-
ing from 1 to 103, and 10Mrandom-intsImax, with ran-
dom integers ranging from 1 to 23!, to show that our al-
gorithms run efficiently on arbitrary integer alphabets.

We present times for searching for random sub-
strings in the suffix trees of several texts constructed
using our code and Kurtz’s code. We also report
times for searches using Myer and Manber’s suffix array
code [MMO90] as Abouelhoda et.al. show that this code
(mamy) performs searches more quickly than Kurtz’s
code does. For each text, we search 500,000 random
substrings of the text (these should all be found) and
500,000 random strings (most will not be found) with
lengths uniformly distributed between 1 to 25. The file
etext99* consists of the etext99 data with special char-
acters removed (mamy does not work with special char-
acters), and its size is 100.8MB. The file 100Mrandom
contains 10% random characters.

5.3 Cartesian Trees. We experimentally compare
our Cartesian tree algorithm from Algorithm 1
to the linear-time stack-based sequential algorithm
of [GBT84]. There is also a linear-time sequential algo-
rithm based on ANSVs, but we verified that the stack-
based algorithm outperforms the ANSV one so we only
report times for the former. Figure 3 shows the running
time vs. number of processors for both our algorithm
and the stack-based one in log-log scale. Our parallel al-
gorithm achieves nearly linear speedup and outperforms
sequential algorithms with 4 or more cores.

5.4 Suffix Trees. We use Algorithm la and 2 along
with our suffix array code and hash insertion to generate
suffix trees from strings. Table 1 presents the runtimes
for generating the suffix tree based on Algorithm la,
our variant of Algorithm 2, and using Kurtz’s code.
For the implementations based on algorithm la and 2
we give both sequential (single thread) running times
and parallel running times on 32 cores with hyper-

Copyright © 2011 by SIAM 55

Unauthorized reproduction is prohibited.

Comparison of Cartesian tree algorithms
10 T T T

~
~
~
~

4]
[
j=2)
2
£
£
< ©
s B~ = — - - -G --=-HO-—---6-—--9O- - - —d
E o
k] ~
> 10k AN — © — sequential stack | |
5 ~ — & — parallel merging
c AN
© ~
5 ~
‘g ~N
~
5] &
@ ~
<@ ~
g o~
= \<>\
=4
=3
x

10 s s s s s
4 8 16

Number of processors

Figure 3: Running times for Cartesian tree algorithms
on 10M random characters on 32-core machine in log-
log scale. The 64-core time is actually 32-cores using
hyper-threading.

threading. We note that the speedup ranges from 9
to 19, with the worst speedup on the string of equal
characters. Figure 4 shows runtime as a function
of number of cores for 10 million random characters
(10Mrandom). Compared to Kurtz’s code, our code
running sequentially is between 1.4x faster and b5x
slower. Our parallel code, however, is always faster
than Kurtz’s code and up to 27x faster. Comparatively,
Kurtz’s code performs best on strings with lots of
regularity (e.g. the all identical string). This is because
the incremental sequential algorithms based on Weiner’s
algorithm are particularly good on these strings. The
runtime for our code is affected much less by the type
of input string.

Figures 5 and 6 show the breakdown of the times for
our implementations of Algorithm la and Algorithm 2
respectively when run on 32 cores with hyper-threading.
Figure 7 shows the breakdown of the time for generating
the suffix array and LCP array. For Algorithm 1la about
85% of the total time is spent in generating the suffix
array, about 10% in inserting into the hash table and less
than 5% on generating the Cartesian tree from the suffix
array (i.e., the code shown in Figure 1). For Algorithm
2 we note that the ANSV only takes about 10% of the
total time even though it is an O(nlogn) algorithm.
This is likely due to the optimization discussed above.
Since we did not spend a lot of time optimizing the
suffix array or hash code, we expect the overall code
performance could be improved significantly. Figure 8
shows the running time of Algorithm la on random

Text Size | Kurtz | Alg la | Alg 1a | Alg la Alg 2 | Alg 2 Alg 2
(MB) 32-core seq. Speedup | 32-core | seq. | Speedup

10Midentical 10 1.04 0.46 4.34 9.4 1.32 9.64 7.66
10Mrandom 10 10.6 0.39 7.58 194 1.01 11.9 11.8

(aV107p) V10T 10 1.69 0.54 5.78 10.7 1.36 11.0 8.1
chr22.dna 34.6 31.1 2.23 374 16.8 5.22 53.9 10.3
etext99 105 128 8.71 135 15.5 15.7 191 12.2
howto 39.4 33.1 2.90 45.8 15.8 5.88 64.1 11.0
jdk13c 69.7 18.1 5.30 90.2 17.0 11.0 125 11.6
rctail96 115 65.5 9.54 153 16.0 17.1 216 11.4

rfc 116 89.6 8.96 150 16.7 17.4 220 12.6
sprot34.dat 110 89.8 9.42 143 15.2 15.2 202 13.3
thesaurus.doc 11.2 10.7 0.72 9.77 13.6 1.39 14.4 10.4
w3c2 104 33.4 8.87 138 15.6 15.8 201 12.7
wikisamp8.xml 100 35.5 8.42 128 15.2 13.5 173 12.8

wikisamp9.xml 1000 — 118 1840 15.6 — — —
10MrandomInts10K 10 — 0.44 7.74 17.6 0.91 10.1 11.1
10MrandomIntsImax 10 — 0.41 5.96 14.5 0.73 8.18 11.2

Table 1: Comparison of running times (seconds) of MUMmer’s sequential algorithm and our algorithms for suffix
tree construction on different inputs on 32-core (with hyper-threading) Dell PowerEdge 910 with 4 x 2.26GHZ
Intel 8-core X7560 Nehalem Processors and a 1066MHZ bus.

character files of varying sizes. We note that the running
time is superlinear in relation to the file size, and
hypothesize that this is due to memory effects. While
our implementation of Algorithm 1a is not truly parallel,
it is incredibly straightforward and performs better than
Algorithm 2.

Search times are reported in Table 2. Searches
done in our code are on integers, while those done in
Kurtz’s code and Myer and Manber’s code are done
on characters. We report both sequential and parallel
search times for our algorithm. Our results show that
even sequentially, our code performs searches faster than
the other two implementations do. Our code is likely
to perform even better if we modified it to search on
characters instead of integers.

5.5 Space Requirements. Since suffix trees are of-
ten constructed on large texts (e.g. human genome), it
is important to keep the space requirements minimal.
As such, there has been related work on compactly rep-
resenting suffix trees [AKOO03, Sad07]. Our implemen-
tations of Algorithm la and Algorithm 2 use 3 integers
per node (leaf and internal) and about 5n bytes for the
hash table. This totals to about 29n bytes. This com-
pares to about 12n bytes for Kurtz’s code, which has
been optimized for space [DPCS02, Kur99]. We leave
further optimization of space of our code to future work.

Copyright © 2011 by SIAM
Unauthorized reproduction is prohibited.

56

6 Conclusions

We have described a work-optimal parallel algorithm
with O(log®n) time for constructing a Cartesian tree
and a multiway Cartesian tree. By using this algorithm,
we are able to transform a suffix array into a suffix tree
in linear work and O(log”n) time. Our approach is
much simpler than previous approaches for generating
suffix trees in parallel and can handle arbitrary alpha-
bets. We implemented of our algorithm, and showed
that it achieves good speedup and outperforms existing
suffix tree construction implementations on small scaled
multicore processors.

References

[AIL"88] A. Apostolico, C. Iliopoulos, G. Landau,
B. Schieber, and U. Vishkin, Parallel construction of
a suffiz tree with applications, Algomthmica 3 (1988),
347-365.

[AKOO03] M. Abouelhoda, S. Kurtz, and E. Ohlebusch, Re-
placing suffiz trees with enhanced suffix arrays, Journal
of Discrete Algorithms 2 (2003), 53—86.

[BSV93] O. Berkman, B. Schieber, and U. Vishkin, Optimal
doubly logarithmic parallel algorithms based on finding
all nearest smaller values, Journal of Algorithms 14
(1993), 371-380.

[DPCS02] A. Delcher, A. Phillippy, J. Carlton, and
S. Salzberg, Fast algorithms for large-scale genome

Text Alg 1a | Algla | Kurtz | mamy
seq. 32-core seq. seq.
100Mrandom 1.08 0.03 1.86 1.78
etext99* 1.24 0.03 7.67 1.73
sprot34.dat 0.96 0.02 3.75 1.73

Table 2: Comparison of times (seconds) for searching 1,000,000 strings of lengths 1 to 25 on 32-core machine with

hyper-threading.

Comparison of construction times

12 &
"
5 1
I 8- -89- - — — — a—- - — — — — O — — — — — o}
E 10t ! i
£ |
o
° 1
i=4
IS |

1 |
= |
S qiu
2 ‘® — © — Algorithm 1a
S 6r \\ — & — Algorithm 2 |5
© ‘\ — 8 —Kurtz
c \
2 [
(%2}
T 4 O 1
8 '\ &
8 L
Y RN
B2 ol e-_ 1
= N -—
5 o- - V= - - - - O — - _ _ o
4 —e - - - — g _ __ °

0 L L L L L L L 1

0 4 8 12 16 20 24 28 32

Number of processors

Figure 4: Running times for the different algorithms
using varying numbers of cores on 10 million random
characters on 32-core machine with hyper-threading.

1.4
§ 1.2
o
g 1 B Hash table insertion
"
"5 0.8
g 06 B Finding roots
[-T4]
c
'c 04 Multiway Cartesian
c
30.2—————— tree
0 4._,_._,_._._.ﬁ m Node initialization
.@% ;b\\o)b & \‘\0)0, @Q‘b
& & &P
s&

Figure 5: Breakdown of running times for converting a
suffix array to suffix tree using Algorithm 1la on 32 cores
with hyper-threading.

alignment and comparision, Nucleic Acids Research 30
(2002), no. 11, 2478-2483.

Copyright © 2011 by SIAM
Unauthorized reproduction is prohibited.

57

10
g 9
g 8
g 7 B Hash table insertion
)
- 6
E 5 M Create
‘é‘o g "representatives"
§ 2 Compute parents
x 1

0 B ANSV

Figure 6: Breakdown of running times for the suffix
tree portion of Algorithm 2 on 32 cores with hyper-
threading.

LCPs

m Suffix array (not
including LCPs)

Running times (seconds)

O R, N WP UIONN OO

Figure 7: Breakdown of running times for the suffix
array portion of Algorithm la and Algorithm 2 on 32
cores.

[FHO6] Johannes Fischer and Volker Heun, Theoretical and
practical improvements on the RMQ-problem, with ap-
plications to LCA and LCE, CPM, 2006, pp. 36-48.

[FM96] M. Farach and S. Muthukrishnan, Optimal logarith-

70

60

50t _ i

30

Run time (seconds)

201

10

0
400 600 800

File size (MB)

1000

Figure 8: Running times for Algorithm la on random
character files of varying sizes on 32-core machine with
hyper-threading.

mic time randomized suffix tree construction, ICALP,
1996.

[GBT84] H. Gabow, J. Bentley, and R. Tarjan, Scaling and
related techniques for geometry problems, STOC 84,
1984, pp. 135-143.

[GMO09] A. Ghoting and K. Makarychev, Indezing genomic
sequences on the IBM Blue Gene, Supercomputing 09,
20009.

[Gus97] D. Gusfield, Algorithms on strings, trees and se-
quences, Cambridge University Press, 1997.

[Har94] Ramesh Hariharan, Optimal parallel suffiz tree con-
struction, STOC ’94: Proceedings of the twenty-sixth
annual ACM symposium on Theory of computing,
1994, pp. 290-299.

[Int10] Intel, Cilk++ programming language, 2010, http://
software.intel.com/en-us/articles/intel-cilk.

[IR04] C. Iliopoulos and W. Rytter, On parallel transforma-
tions of suffix arrays into suffic trees, AWOCA, 2004.

[Jajo2] J. Jaja, Introduction to parallel algorithms, Addison-
Wesley Professional, 1992.

[KS99] S. Kurtz and C. Schleiermacher, Reputer: Fast
computation of mazximal repeats in complete genomes,
Bioinformatics 15 (1999), no. 5, 426-427.

[KS03] J. Karkkainen and P. Sanders, Simple linear work
suffix array construction, ICALP, 2003.

[KS07] F. Kulla and P. Sanders, Scalable parallel suffiz array
construction, Parallel Computing 33 (2007), no. 9,
605-612.

[Kur99] S. Kurtz, Reducing the space requirement of suffiz
trees, Software Practice Experience 29 (1999), no. 13,
1149-1171.

[McC76] Edward M. McCreight, A space-economical suffix
tree construction algorithm, Journal of the ACM 23
(1976), no. 2, 262-272.

Copyright © 2011 by SIAM 58

Unauthorized reproduction is prohibited.

[MM90] U. Manber and G. Myers, Suffiz arrays: A new
method for on-line string searches, First ACM-SIAM
Symposium on Discrete Algorithms, 1990, pp. 319-327.

[Mor68] Donald R. Morrison, Patricia - practical algorithm
to retrieve information coded in alphanumeric, J. ACM
15 (1968), no. 4, 514-534.

[Morl0a] Yuta Mori, libdivsufsort: A lightweight suffiz-
sorting library, 2010, http://code.google.com/p/
libdivsufsort.

[Mor10b] , sais: An implementation of the induced
sorting algorithm, 2010, http://sites.google.com/
site/yuta256/sais.

[MPKO03] C. Meek, J. M. Patel, and S. Kasetty, Oasis:
An online and accurate technique for local-alignment
searches on biological sequences, VLDB, 2003.

[PSTO7] S. Puglisi, W. F. Smyth, and A. H. Turpin, A
tazonomy of suffix array construction algorithms, ACM
Computing Surveys 39 (2007), no. 2.

[PZ08] B. Phoophakdee and M. Zaki, Trellis+: An effec-
tive approach for indexing genome-scale sequences us-
ing suffix trees, Pacific Symposium on Biocomputing,
vol. 13, 2008, pp. 90-101.

[Sad07] K. Sadakane, Compressed suffiz trees with full func-
tionality, Theory of Computing Systems 41 (2007),
no. 4.

[TY03] D. Tsadok and S. Yona, ANSI C implementation of
a suffiz tree, 2003, http://mila.cs.technion.ac.il/
~yona/suffix_tree/.

[Vui80] Jean Vuillemin, A unifying look at data structures,
Commun. ACM 23 (1980), no. 4, 229-239.

[Wei73] P. Weiner, Linear pattern matching algorithm, 14th
Annual IEEE Symposium on Switching and Automata
Theory, 1973, pp. 1-11.

