o) . . . .
s Towards Scalable and Practical Batch-Dynamic Connectivity

Adam Karczmarz
University of Warsaw & IDEAS NCBR
a.karczmarz@mimuw.edu.pl

Quinten De Man
University of Maryland
deman@umd.edu

Laxman Dhulipala
University of Maryland
laxman@umd.edu

Jakub Lacki Julian Shun Zhongqi Wang
Google Research MIT CSAIL University of Maryland
jlacki@google.com jshun@mit.edu zqwang@umd.edu
ABSTRACT Despite its importance, dynamic connectivity has not yet been

We study the problem of dynamically maintaining the connected
components of an undirected graph subject to edge insertions and
deletions. We give the first parallel algorithm for the problem that is
work-efficient, supports batches of updates, runs in polylogarithmic
depth, and uses only linear total space. The existing algorithms for
the problem either use super-linear space, do not come with strong
theoretical bounds, or are not parallel.

On the empirical side, we provide the first implementation of the
cluster forest algorithm, the first linear-space and polylogarithmic
update time algorithm for dynamic connectivity. Experimentally,
we find that our algorithm uses up to 19.7X less space and is up
to 6.2 faster than the level-set algorithm of Holm, de Lichten-
berg, and Thorup, arguably the most widely-implemented dynamic
connectivity algorithm with strong theoretical guarantees.
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1 INTRODUCTION

The problem of dynamically maintaining the connected compo-
nents of a graph is a critical subroutine that is often used when
designing dynamic algorithms for other fundamental and practi-
cal problems, e.g., dynamic DBSCAN [21, 31], hierarchical cluster-
ing [38, 43], approximate MST [17], among other problems. It is
also one of the most intensely studied dynamic graph problems,
and has seen extensive algorithmic development over the past three
decades [18, 24-27, 29, 30, 39, 44, 45, 47, 48]. In the fully-dynamic
graph connectivity problem, the goal is to build a data structure
that supports the following operations on an undirected graph G:

e Insert(u,v) inserts edge (u,v) into G.

o Delete(u,v) deletes edge (u,v) from G.

e Connected(u,v) returns whether u and v are connected in G.
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efficiently solved in practice, and marks a major gap in our under-
standing of how to bridge theory and practice in dynamic algo-
rithms. In the special case of dynamic forest-connectivity, there
are data structures, such as Euler Tour Trees (ETTs) [24], that are
reasonably practical and have been adapted to support parallel
updates [46]. However, few implementations exist for the more
complex case of general graphs. For general graphs, perhaps the
best known dynamic connectivity data structure that provides good
theoretical guarantees and has been implemented [28] is due to
Holm, de Lichtenberg, and Thorup [26], who developed a dynamic
connectivity algorithm that performs updates in O(log? n) amor-
tized time and requires O(nlogn + m) space, for a graph with n
vertices and m edges. Their algorithm is based on O(log n) layers
of dynamic forest-connectivity data structures; we refer to their
idea as the HLT algorithm.

However, existing implementations of the HLT algorithm suffer
from high overheads in space and time, limiting their practical
applicability. For example, we found that to run on a 1.2 billion
edge graph, an optimized dynamic connectivity implementation
based on the HLT algorithm requires up to 360 billion bytes—over
70 times more than what it takes to store the graph using a simple
(static) representation. The key limitation of implementations based
on the HLT algorithm is that the connectivity information is stored
redundantly in separate forest-connectivity data structures across
a logarithmic number of different layers. At a high level, the HLT
algorithm maintains a spanning forest F and a hierarchy of nested
edge subsets F; C Fy C ... F, = F. With this representation, the
vertices of G are present in k trees, which results in a space usage
of O(nlogn) across all of the trees.

On the theoretical side, the space usage was improved to linear
by an elegant cluster forest algorithm (CF algorithm) that is inspired
by the HLT algorithm [45]. The key idea in the CF algorithm is to
store a single forest of trees (called the cluster forest) that implic-
itly represents the connectivity information stored in the nested
O(log n) layers of the HLT algorithm. In its basic version, the CF al-
gorithm achieves similar update times to HLT, while improving the
space bound to O(n + m). This was the first algorithm that solved
dynamic graph connectivity in polylogarithmic update time and
linear space. The CF algorithm was later simplified and optimized
by Wulff-Nilsen [47].

Given the theoretical advantages of the CF algorithm, an impor-
tant question is: is the CF algorithm practical? For example, does
it yield improved space-efficiency or faster runtime in practice rela-
tive to existing dynamic connectivity implementations? This ques-
tion is highly non-trivial due to the complexity of implementing
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Figure 1: The core data structures used by the cluster forest (CF) and HLT algorithms. The input graph is shown in (a). The
cluster forest is given in (b), and represents the nested hierarchy of connected components. (c) shows the cluster graph of the
level 2 component F. Lastly, (d) shows the same component hierarchy as (b), but as stored by the HLT algorithm.

and optimizing the CF algorithm, which uses a significant amount
of indirection and requires performing sophisticated tree traversals
and amortization to obtain its update bounds. A second important
question is: can the CF algorithm be efficiently parallelized?
In particular, can we ensure that each update is processed with
low depth (longest chain of sequentially dependent instructions)
in the worst case? Furthermore, can we also make the algorithm
work-efficient in the parallel batch-dynamic setting? We note that
the batch-dynamic setting, in which updates come in batches of
arbitrary size, is the standard modern setting for parallelizing dy-
namic algorithms [1, 5, 16, 20, 23, 35, 41]. Ideally, we would like
to parallelize the algorithm without sacrificing space-efficiency
or work-efficiency. That is, each batch of updates should be per-
formed with low depth, and work (total number of operations) and
space matching that of the sequential CF algorithm. We note that
while the HLT algorithm was recently shown to be amenable to an
efficient batch-dynamic algorithm [1], it is not space-efficient.

In this paper, we carefully study the CF approach in theory and
practice to answer these open questions. On the theoretical side,
we extend the CF algorithm to the parallel setting and show how
to achieve low depth. Specifically, we introduce a new invariant
(the blocked invariant), which provides important additional struc-
ture that we exploit. Using our new invariant and our approach to
maintaining it, we obtain the first space-efficient and work-efficient
parallel algorithm that has polylogarithmic depth.

On the empirical side, we perform the first experimental study
of the CF approach in the sequential setting. Compared with the
existing state-of-the-art dynamic connectivity implementations
with worst-case guarantees based on the HLT algorithm, we find
that our implementations use up to 19.7X less space and are up
to 6.2X faster than an optimized implementation of HLT. In the
next two sections, we formalize the data structures, and present a
technical overview of our results.

2 PRELIMINARIES

Model. We use the work-depth (or work-span) model for fork-
join parallelism to analyze parallel algorithms [7, 13]. The model
assumes a set of threads that share memory. A thread can fork k
child threads that run in parallel. When all children complete, the
parent thread continues. The work W of an algorithm is the total
number of instructions and the depth (span) D is the length of the
longest sequence of dependent instructions. Computations can be
executed using a randomized work-stealing scheduler in practice in
W/P + O(D) time with high probability on P processors [2, 8, 22].
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Definitions. We start by introducing definitions used through-
out the paper when describing the dynamic connectivity algo-
rithm. We are given an undirected graph G, with vertices V and
edges E. We use n to denote the number of vertices and m to
denote the number of edges. Each edge e = (u,v) € E has a
level I(e) € [1, Lmax] assigned to it, where Lpax [logn]. Let
E; ={e = (u,0) € E|I(e) < i} be the set of all edges with levels < i.
Let G; = (V, E;). We maintain the following size invariant on the
connected components of each G;:

Invariant 2.1 (Size Invariant). The maximum size of a connected
component of G; is 2".

We can imagine contracting each of the connected components
of G; to obtain V;, the set of clusters at level i. The children of
a cluster ¢ € V; are the clusters in V;_; that are merged together
using level i edges to obtain c.

Cluster Forest. By explicitly representing the relationship between
clusters on different levels, we obtain the cluster forest, which
we denote using C, in which each node has a level in [0, Liax],
and where the nodes at level i represent the clusters of connected
components of G; (the graph containing all edges with level < i).
The root(s) of C are nodes representing clusters at level Lyay in G
and correspond to the connected components of the graph. The
leaves of C are nodes representing the clusters at level 0 in G,
and correspond to the original vertices of the graph. Figure 1(b)
illustrates the cluster forest for the graph in Figure 1(a). If clusters
with only a single child are not stored, it is not difficult to see that
the number of nodes in C is O(n).

Each node v in C also stores the size of the cluster that it repre-
sents, n(v), which is equal to the number of leaves in the subtree
rooted at v (n(v) = 1 for leaf nodes). By the size invariant above
(Invariant 2.1), for any level i cluster ¢, we have n(c) < 2.

For a cluster ¢ € C at level i, the cluster graph, CG(c) of the
node is the graph formed by taking its child clusters at level (i — 1)
as the vertices, and where the edges are the level i edges incident
to all leaf vertices in c. Figure 1(c) illustrates the cluster graph for a
vertex in the cluster forest illustrated in Figure 1(b).

We define a self-loop edge as a level i edge for which its end-
points are contained within the same level (i — 1) cluster. Note that
a level i self-loop edge on a level (i — 1) cluster C differs from a
level (i — 1) edge with both endpoints in C. The level i self-loop
edge appears in the cluster graph of the parent of C as a self-loop
on C (thus the name). The level (i — 1) edge appears in the cluster
graph of C and connects two children of C.



3 TECHNICAL OVERVIEW

Parallelizing the CF Approach with Low Depth. In both the
CF and HLT approaches, replacement edge search, i.e., the search
for an edge that certifies the connectivity between the endpoints
of a deleted edge (i.e., “replaces” it) is the most complex aspect of
the data structure. Both algorithms maintain a hierarchy of nested
edge subsets E; C Ey C ... C Ej, with the HLT approach storing a
spanning tree of each subset, and the CF algorithm using a more
space-efficient representation (see Figure 1). In both algorithms,
replacement search is handled by carefully searching the nested
hierarchy of components from the lowest level component contain-
ing the deleted edge to the highest level. For example, in Figure 1, if
the edge 4-6 is deleted, the edges in component F will be searched,
and either 5-6 or 5-7 can be used as a replacement edge. Both al-
gorithms maintain the size invariant (Invariant 2.1), which ensures
that components at level i have size at most 2. In each component,
the non-tree edges are searched to find a replacement edge, and
the unsuccessfully searched edges are pushed to a lower level to
pay for the cost of searching them. The parallel version of the HLT
algorithm by Acar et al. [1] obtains parallelism by performing a
doubling search over the non-tree edges incident to the smaller
of the two components induced by the deleted edge (obtaining
the smaller component, and indexing the non-tree edges is made
possible using Euler Tour Trees). Note that it is critical that the
edges searched are incident to the smaller component, since this
component (and its non-tree edges) will be pushed to a lower level
to pay for the search.

Unlike the HLT algorithm, which maintains an Euler Tour Tree
for every component (see Figure 1(d)), and can easily split a com-
ponent into the smaller/larger halves by deleting the edge in the
ETT, the CF algorithm only has access to the cluster graph of the
component that an edge is deleted from, due to being more space-
efficient. Recall that the cluster graph of a level i node consists of all
edges at level i (all such edges go between the level i — 1 children of
this node). Since the CF algorithm cannot simply remove the edge
and split the component into smaller/larger halves, the algorithm
performs a more careful graph search that effectively interleaves
two searches (e.g., breadth-first searches) from both level i — 1 clus-
ters incident to the deleted edge. Like in the HLT algorithm, level i
edges that are unsuccessfully inspected can be paid for by pushing
them down to level i — 1. We give more details in Section 4.

The graph search, which needs to discover the connected com-
ponent of a graph undergoing changes, seems extremely difficult
to parallelize work-efficiently using the existing CF algorithm. The
main issue is that the graph in the cluster forest at this level can
have a very high diameter; in fact, the diameter can be as high as
©(n), making a work-efficient parallelization of this process very
challenging unless we are willing to sacrifice having low depth.

We solve this problem by introducing a new invariant called the
blocked invariant that ensures that the cluster graph stored at every
internal node in the cluster forest is guaranteed to have constant
diameter (in fact the diameter is always at most 2). The key idea
of the invariant is simple to state: we ensure that every cluster is
incident to at least one edge that cannot be further pushed down to
alower level without violating the size invariant. We prove that this
property implies that the cluster graph at each node is guaranteed
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to have diameter at most 2. As a result, during replacement search
any parallel graph procedure (e.g., parallel breadth-first search)
will suffice, and help us obtain low depth, since the diameter is
low. However, maintaining this property dynamically turns out
to be very tricky, even in the sequential setting; our main algo-
rithmic contributions are novel sequential and parallel algorithms
to maintain the invariant under (batch-)dynamic updates. Overall,
our new parallel batch-dynamic algorithm can perform insertions
and deletions with O(log? n) amortized work per edge update and
O(log® n) depth per batch.

The CF Approach in Practice. In addition to our theoretical con-
tributions, in this paper we give the first implementations of any
cluster forest data structure, and study the practicality of the CF
approach and our new invariants in the sequential setting. As we
discuss in more detail in Section 8, implementing CF algorithms
seems to be even more involved than implementations of the HLT
algorithm. A significant implementation challenge is that a sin-
gle data structure—the cluster forest—stores both the hierarchy of
connected components and the non-tree edges stored at each com-
ponent in the hierarchy (in the HLT algorithm, the implementation
complexity is somewhat lower since each component is stored as
a separate Euler Tour Tree). Our experiments show that our new
implementations of the CF approach are significantly more space-
efficient and process updates faster than existing state-of-the-art
dynamic connectivity implementations. For example, across a di-
verse set of graph inputs, our CF implementations achieve up to
19.7% lower space usage and up to 6.2X faster updates compared to
a carefully designed implementation of HLT.

4 SEQUENTIAL CF ALGORITHM

Next, we give a more detailed overview of how the sequential CF
algorithm performs insertions and deletions.

Insert e = (u,v). The CF algorithm first sets the level of the edge,
I(e) = Lmax-. Let r, and ry be the roots of the trees containing u
and v, respectively, in C. If r, = ry, then nothing further needs to
be done. If r,, # ry, then we have increased the connectivity of the
graph and must merge r, and r, together. This requires a merge
operation on C that takes the roots of two trees and merges them
together by adding the children of (without loss of generality) r, as
children of r;, and deleting r,.

Delete e = (u,0). As in the HLT algorithm, deletion requires per-
forming a replacement edge search to check if the deletion of (u,v)
affects the connectivity of G. Let i = I(e). In the CF algorithm,
the problem boils down to certifying the connectivity of the level
i cluster, P, containing u and v. Recall that the cluster graph of P
consists of the level (i — 1) clusters that are children of P and the
level i edges with both endpoints in P. Let the level (i — 1) clusters
containing u and v be C, and Cy, respectively, and the cluster graph
of P, CG(P), be G;. If C;, = Cy (e is a self-loop), then we can quit
since the connectivity of G; is unaffected after deleting e.

If C, # Cy, then we need to check whether (u, v) was a bridge
of G; (i.e., every possible spanning tree of G; must use this edge).
If the deleted edge is a bridge, then G; splits into two components.
This means that the cluster forest C must be updated, and then the
algorithm must recursively check at level (i + 1) whether the two
split pieces of G; can be reconnected using a level (i + 1) edge.
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Figure 2: (1): The cluster graph of the level i cluster P con-
taining a deleted level i edge (u,v); the vertices of the cluster
graph are the level (i—1) child clusters of P. (2): Deleting (u, v)
may disconnect CG(P), so search(C,) and search(C,) are run
to check if C,, and C, are still connected using level i edges in
CG(P). Green edges are edges explored during the search. (3):
In this example, CG(P) remains connected, {C,,C4, Cp} are
merged, and the explored level i edges of the smaller search
are pushed down to level (i — 1).

To certify connectivity in G;, the algorithm runs two searches
from Cy, and C, using any graph search procedure, such as breadth-
first search. Call these searches search(Cy) and search(C,). The
searches explore the multi-graph of level (i — 1) clusters that are
children of P, and level i edges between them (see Figure 2). Unlike
in the HLT algorithm, the CF algorithm does not know which of C;,
or Cyp is in the smaller component after deleting (u,v). To obtain
good amortized work bounds, the CF algorithm alternates between
steps of search(Cy,) and search(Cy). The searches stop when either
(1) a common vertex in G; is explored by both searches, or (2) one
of the searches runs out of level i edges to explore, certifying that
Cy and Cy are no longer connected using level i edges.

In case (1), Cy, and C, must be connected so G; is unaffected, and
thus the cluster forest C does not change. Let S;, and Sy, be the set of
level (i—1) clusters explored by u and v’s searches, respectively. Let
ny = Yees, n(c) and ny = Yces, n(c). Then min(ny, ny) < 211,
and so we can push all of the level i edges explored by the smaller
search down to level (i — 1). The alternating search ensures that
we do not need to worry about pushing down edges incident to
the larger component as the work on these edges is paid for by the
pushing down of edges in the smaller component. Pushing edges
to level (i — 1) can require merging level (i — 1) clusters.

In case (2), we take the search with a smaller total size value,
without loss of generality search(Cy), and push all of the level i
edges it explored down to level (i — 1) to pay for the search. This
requires merging all level (i — 1) clusters explored by search(Cy).
Let W be this new level (i — 1) node that they were all merged into.
Next, we need to update C to reflect the fact that G; split. We first
remove W as a child of P in C and decrement n(P) by n(W). We
then create a new level i node P’ and set the parent of W to P/, and
add P’ as a child of the parent of P. Only in case (2) do we need to
continue (recursively) at level (i + 1) to check if the level i clusters
containing u and v remain connected using the level (i + 1) edges,
or whether a similar split needs to happen at level (i + 1) or above.

Cluster Forest Interface. Studying this algorithm, we can identify
the following necessary operations on the cluster forest C:
(1) FetchEdge(C,i) the search needs to be able to iterate over
the level i edges incident to a level (i — 1) cluster C.
(2) Parent(C) returns the parent of C in the cluster forest.
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(3) AddChild(P,C) adds a node C as a child of node P.

(4) RemoveChild(P,C) removes C from the children of P.

(5) Cluster(v,I) returns the level I cluster containing v.

(6) Merge(Cq, Co) merges two level (i — 1) clusters C; and Cs.
(7) PushDown(e) pushes down a level i edge e.

Local Trees Implementation. Since a node in the cluster forest
may have at most n children, the CF algorithm represents the cluster
graph of each cluster in C using local trees to allow performing all
of the above operations in O(log n) time. A local tree for a cluster
u in C is a binary tree whose leaves are the children of u in C. Let
the rank of a child v of u be r(v) = [logn(v) . Initially, each child
cluster is in its own tree. While there are two trees r and r’ of the
same rank, they are paired up into a new tree r’’ with rank one
larger. Once this pairing process terminates, there are at most logn
trees 11, . . ., Ty, which are called rank trees. The collection of rank
trees are combined into a single binary tree by connecting them in
order of rank along the right spine of a binary tree.

To efficiently iterate over level i edges during the search, the trees
are augmented using a log n-length bitmap (stored as a single word),
where the i-th bit is 1 if and only if there is a level i edge incident
to some leaf vertex in the subtree. All of the operations needed
in the sequential CF algorithm can be implemented in O(logn)
worst-case time using local trees [47].

Advantages and Challenges of the CF Algorithm. One im-
mediate advantage of the cluster forest algorithm [47] is that the
space requirement for the cluster forest can be made O(n + m) by
simply ensuring that the cluster forest is path compressed, i.e., a
level-i cluster c is explicitly represented if and only if either i = 0
or there is a level i edge e with both endpoints in ¢ (thus either e
is a self-loop or ¢ has at least two level-(i — 1) child clusters). On
the other hand, the HLT algorithm requires O(nlogn + m) space,
since each vertex is potentially present in an Euler Tour Tree at all
O(logn) levels. Since large graphs in practice are often extremely
sparse [15], achieving linear total space is an important goal that
can lead the community towards practical and theoretically efficient
implementations of dynamic graph connectivity.

As discussed in Section 3, the main challenge with parallelizing
the CF algorithm is how to perform the replacement edge search,
which requires work-efficiently traversing the cluster graph (which
can potentially have very high diameter).

5 THE BLOCKED CLUSTER FOREST

We will use the idea of blocked edges to obtain more structured clus-
ter graphs that have bounded diameter and enable us to parallelize
the connectivity search. Here we define blocked edges and establish
the main invariant of our new data structure:

Definition 5.1 (Blocked Edge). Aleveliedgee = (u,v) isa blocked
edge if it cannot be pushed to level (i — 1) without violating In-
variant 2.1. That is, a level i edge (u,v) is blocked if and only if
n(cluster(u, i)) + n(cluster(v, i)) > 2:1. An unblocked edge is an
edge that is not blocked.

Invariant 5.2 (Blocked Edge Invariant). Consider any cluster graph
CG(c) of aleveli cluster c. Then every level (i—1) cluster X € CG(c)
is incident to at least one blocked level i edge or c is an isolated cluster
and only has one child X.



Blocked Edge Unblocked Edge

(1) Star (2) Triangle (3) Isolated

Figure 3: The three possible cases for what the cluster graph
of a level i cluster in a blocked cluster-forest can look like.

A blocked cluster-forest is defined as a cluster forest where
every cluster satisfies Invariant 5.2. An isolated cluster in the
cluster forest is a cluster that has only a single child. The blocked
edge invariant is useful since we can show that it implies that every
cluster graph has low diameter, making them more amenable to
parallel search. Next, we describe several important and useful
properties of the blocked cluster-forest. The proofs are left to the
full paper [36]. The key property is that a maximum matching
computed over the blocked edges must have size at most 1, as
summarized by the following lemma:

LEMMA 5.3. Suppose Invariant 5.2 holds for a cluster graph CG(c)
of a level i cluster c. Let M be the size of the maximum matching in
CG(c) over only the blocked edges. Then M < 1.

The invariant also implies that we cannot have a path using
only blocked edges of length > 3, since such a path has a blocked
matching of size M > 1. This allows to prove the following lemma
that bounds the diameter of any cluster graph.

LEMMA 5.4. Suppose Invariant 5.2 holds for a cluster graph CG(c)
of a level i cluster c. Then CG(c) has diameter diam(CG(c)) < 2.

The following two lemmas describe other properties of the
blocked cluster forest which enable efficient updates:

LEMMA 5.5. Suppose Invariant 5.2 holds for a graph CG(c) of a
level i cluster c. Then, there exists a center node in CG(c) that is
connected to every other node by a blocked edge.

LEMMA 5.6. Suppose Invariant 5.2 holds for a graph CG(c) of a
level i cluster ¢, and CG(c) has k > 4 nodes. Then, the center node
corresponds to the largest cluster in CG(c).

Using Structure for Parallel Connectivity Search. Consider a
level i cluster c. We can characterize CG(c) as one of following:

e The cluster graph is a star (case (1) in Figure 3).

o The cluster graph is a triangle (case (2) in Figure 3).

e The cluster graph is a single node (case (3) in Figure 3).

Figure 4 illustrates the relationship between clusters in the clus-
ter forest C and the cluster graph of a node. Since the graphs are
guaranteed to have low diameter, performing a graph search on
CG(c) from two clusters Cy, and C, can be done in low depth by
running the searches in lock step and doubling the number of edges
that we explore at each step. The doubling ensures that we can still
amortize the exploration cost to level decreases on the edges in
previous steps while ensuring that the search runs in polylogarith-
mic depth. The main challenge now is how to maintain the blocked
invariant dynamically.
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| Cluster Forest CG(P), the cluster graph of P

Blocked Edge
level i

7N

Figure 4: Illustration of the cluster graph for a node in the
blocked cluster-forest, and its star structure. The center node
of CG(P) is C3, and all other nodes are satellites connected to
the center through a blocked edge.

| Unblocked Edge

Cluster Forest Node

Cluster Graph Node level i — 1

5.1 Updating the Blocked Cluster-Forest

In this section, we describe how to maintain Invariant 5.2 while per-
forming single edge insertions and deletions. Surprisingly, achiev-
ing this goal even in the sequential setting requires some non-trivial
ideas and analysis.

Pushing Edges Down. Note that pushing an edge from level (i+1)
to i may violate the blocked invariant for its new level (i — 1) end-
points. Lemma 5.7 and 5.8 prove that if an unblocked edge is repeat-
edly pushed down until it is blocked, then the blocked invariant
will be maintained. The proofs are left to the full paper [36] due to
space constraints.

LEmMMA 5.7. If a level i edge e between two distinct level (i — 1)
clusters C1 and Cy is unblocked, then either C1 or Co is an isolated
cluster, i.e., its cluster graph consists of a single level (i — 2) cluster.

LEmMA 5.8. If an unblocked edge is pushed down until it is blocked
then Invariant 5.2 is preserved.

Insert e = (u,v). We give a simple top-down algorithm for inser-
tion. In the cluster forest we include a single global level Lyax + 1
cluster whose children are the roots of all the components. Then for
insertion, add the edge as a level (Limax+1) edge. No level (Lmax+1)
edge can be blocked as the size constraint for level L,y clusters is
> n. Next repeatedly push down e until it is blocked. Lemma 5.8
proves that this maintains the blocked invariant.

Delete e = (u,v). Let the level of e be i = I(e) prior to deletion.
Similar to before, let C,, = cluster(u,i—1) and C, = cluster(u,i—1),
the two level (i — 1) clusters containing u and v. Let P be the parent
cluster of C,, and C,, and GP be the grandparent. Let G; = CG(P)
be the cluster graph of P. Like before, if C;, = Cy then the edge is a
self-loop we can quit here since the connectivity is unaffected. If
the edge is unblocked it can be safely deleted because either it is a
self loop or the clusters are connected by 1 or 2 blocked edges. If
Cy # Cy and the edge is blocked, deletion of the edge may cause
Cy, and Cy to be in violation of the blocked invariant.

Consider a level i edge. Any unblocked level i edges that we
encounter can be pushed down (repeatedly until blocked). Any
blocked level i edges must remain at this level. Since there can be
multiple (parallel) edges between two level (i — 1) clusters that
are all blocked, we need to be careful that we don’t process too
many blocked edges, since we can’t push these down. To restore
the blocked invariant at this level (the lowest level that the deletion
affects), we repeatedly fetch and push down a level i edge incident
to Cy or Cyp in an alternating fashion until we have certified that



Figure 5: A cluster graph before and after the center cluster P
splits. The edges incident to P are divided between P; and P,.

both are incident to a blocked edge (or have no more incident
edges). Restoring the invariant at higher levels turns out to be more
involved, and we describe this shortly.

Once we have restored the invariant at this level, we can certify
the connectivity of C, and C, as follows. If both have no more
incident edges, then they are connected if and only if C;, = Cy.
If one has no more incident edges and the other is incident to a
blocked edge, they must not be connected. If both are incident to a
blocked edge, they must be connected (otherwise the two blocked
edges form a matching of size 2 over the blocked edges in CG(P)).

Just as in original CF algorithm, if the connectivity search failed
at level i, the algorithm must continue to level (i + 1) and perform
connectivity search over the level (i + 1) edges. In this case, one
of the components must have merged into a single level (i — 1)
cluster. Let W be this cluster. We (1) remove W as a child of P and
decrement n(P) by n(W), (2) create a new level i cluster P’, set the
parent of W to P/, and (3) add P’ as a child of GP.

When W is removed as a child of P and added as a child of a new
cluster P’, P is essentially being split into two clusters, P; and P,
(see Figure 5). The size of P is split between P; and P,. Any edges
previously incident to P are now incident to either P; or P, (or
possibly both if it was a self-loop). Since the sizes of both P; and
P, are less than that of P, these edges may now be unblocked, thus
the cluster graph of GP potentially violates the blocked invariant.

Restoring the Blocked Invariant at Higher Levels. Unlike
restoring the blocked invariant at the lowest level that an edge
was deleted, which is straightforward, restoring the invariant at
higher levels is much trickier since clusters can be split as illus-
trated in Figure 5. If the number of clusters in CG(c) is bounded by
some constant, we can afford to restore the invariant by checking
that every single cluster is incident to a blocked edge, pushing any
found unblocked edges down.

Otherwise (if the number of clusters is w(1)), Lemmas 5.5 and 5.6
tell us that there is a well-defined center cluster that is connected
to every other cluster by a blocked edge, and this cluster has the
largest size in the cluster graph. Thus we can naturally think of
two cases: P was the center cluster or P was a satellite cluster. We
define a satellite cluster as a cluster that is not the center, but was
connected to the center via a blocked edge before the split of P.

If P was a satellite cluster that split into fragments P; and Ps,
then only those two clusters could violate the blocked invariant. We
can restore the invariant by simply fetching and pushing down one
outbound edge incident to both fragments. We define an outbound
edge as an edge incident to a cluster that is not a self-loop. If the
outbound edge is blocked, then we are done. If it is unblocked, we
push it down thus merging the fragment into another cluster that
is incident to a blocked edge.
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Restoring the Blocked Invariant With Split Center. When P
is the center cluster, the blocked invariant may become violated
for P; and P, themselves, as well as many or all satellite clusters.
The difficulty in restoring the blocked invariant in this case is
that we have to restore the blocked invariant for potentially many
satellites without examining too many blocked edges since they
cannot be pushed down to charge the work. The structure of this
new cluster graph consists of the two centers, P; and Py, and a set
of satellite clusters connected by edges to P; and/or P,. There may
also be edges between P; and P, (previously self-loops on P), edges
between satellites, and self-loops on any cluster (see example in
Figure 5). Here we give a high-level description of how to restore
the blocked invariant after a center has been split. We leave a more
careful description and analysis to the full paper [36] due to space
constraints. Our result is summarized by the following lemma:

LEMMA 5.9. When a cluster X is split in a cluster graph CG(c) that
previously maintained Invariant 5.2, the invariant can be restored in
O((k + 1) logn) time where k is the total number of edges pushed
down by this process.

The high-level procedure is to sequentially fetch an outbound
edge incident to each satellite cluster. We maintain a running total
of the sizes of P; and P2 combined with the sizes of their adjacent
satellites that have been discovered and sets of the adjacent satellites
found. We update these total sizes when the fetched edge connects
to one of the center fragments. If it connects to another satellite,
the two satellites merge together (the edge may be blocked, but we
prove in the full paper [36] that this can only happen once). This
continues until either (1) a blocked edge from every satellite has
been found, or (2) P; or P, has found two neighboring satellites
that could not merge with it due to the size constraint (e.g. the two
edges to the center fragment would be blocked if all previously
discovered satellites were merged with their center). In the first
case it is easy to restore the blocked invariant by pushing down all
but at most two of the edges found to the center fragments. In the
second case, assume without loss of generality that this happened
with P;. Then it is certain that Py is able to merge with all of its
neighboring satellites without violating the size constraint. Thus,
we can fetch all of the edges out of P, and merge it with all of its
neighbors to restore the blocked invariant.

Once the invariant has been restored, the same procedure as
used at the original level is used to check the connectivity of P;
and Pz and then possibly continue to higher levels.

Analysis. Lemma 5.10 proves the correctness of our deletion al-
gorithm in maintaining the size invariant and the blocked edge
invariant, the formal proof of which is described in the full pa-
per [36]. The overall correctness of the algorithm follows from this
lemma and the original cluster forest algorithm.

LEMMA 5.10. Invariants 2.1 and 5.2 are preserved by edge deletion.

Deletions can take O(log n) work per level that is not charged
to an edge being pushed down if a blocked edge is immediately
encountered when certifying connectivity. This results in a total of
O(log? n) uncharged work. Combining this with Lemma 5.9 yields
the following theorem:

THEOREM 5.11. The amortized cost of insert and delete operations
is O(log? n) using the blocked cluster-forest data structure.



6 PARALLELIZING INDIVIDUAL UPDATES

Next, we step towards our goal of a parallel batch-dynamic algo-
rithm by describing how to perform a single update in parallel.
Many ideas and primitives developed in this setting are also useful
in the batch-dynamic setting (Section 7). The depth of insertion is
O(log? n) already, so we focus on deletion.

6.1 Batch-Dynamic Local Trees

We use a modified version of the local trees used in [47] that also
supports parallel operations. Additionally, our parallel algorithm
requires an operation that returns a prefix of the smallest clusters
in the local tree, sorted by size. The interface for the modified local
trees is defined as follows:

e BatchlInsert(cy, ..., c) takes a list of k new clusters and adds
them to the local tree.

e BatchDelete(cy, ..., ci) takes a list of k clusters in the local tree
and removes them.

o GetMaximalPrefix(s) returns a maximal prefix of the clusters
in the local tree sorted by size such that their total size is less
than or equal to s.

To support these operations efficiently, we divide the elements
in the tree into O(logn) size classes of geometrically increasing
buckets and store a separate weight-balanced tree for the clusters
in each size class. In the weight-balanced trees, elements are keyed
by the size of the cluster they represent. This approach allows
us to efficiently return a prefix of the elements. Since the sizes
of all elements are within a constant fraction of each other, the
telescoping sum argument of [47] still applies. Additionally, since
weight-balanced trees are known to support efficient batch-parallel
insertion and deletion [6], our local trees can also support efficient
batch insertions and deletions by first semi-sorting by size class
and then separately and in parallel batch inserting and deleting
elements into/from the weight-balanced tree for each size class. All
operations can be done in O(logn) depth and O(klog(1 + n/k))
work, which we carefully describe and prove in the full paper [36].

6.2 Searching for Edges in Parallel

To achieve low depth in batch updates we need an operation to
fetch k level i edges incident to a given cluster in low depth:

e FetchEdges(k, C, i) returns k level-i edges incident to a clus-

ter C, or all of the level-i edges if there are less than k.

To implement this operation, we traverse down the nested local tree
structure one level at a time, maintaining a set of approximately k
clusters that have a level i edge incident to them by following the
set bits in the bitmaps. The algorithm is described in detail in the
full paper [36]. This yields the following lemma:

LEMMA 6.1. Fetching k level-i edges incident to a given cluster (or
all edges if < k exist) in a cluster forest implemented with local trees
can be done in O(log n) depth and O(k’ log n) work where k’ is the
number of edges returned.

Now we describe two useful routines to fetch edges in parallel
which will be used in the rest of this section. These are (1) fetching
all edges incident to a cluster and (2) fetching a single outbound
edge incident to a cluster. Note that fetching a single outbound edge
is not trivial because it is possible to repeatedly find self-loops when
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fetching an edge incident to a cluster. The goal is to implement
both of these operations in O(log? n) depth and work within a
constant factor of the work of their sequential implementations
(e.g. O(klog n) where k is the total number of edges fetched).

To accomplish this, we perform a doubling search where we
fetch edges in rounds, doubling the number of edges fetched in each
round. In each round, we use the parallel FetchEdges operation
which fetches k edges incident to a cluster in O(log n) depth and
O(klogn) work. This process takes O(log n) rounds of doubling
since there are at most O(n?) edges. After each round, we check if
the search is complete. For the first operation, we know it is done if
FetchEdges returns < k edges. For the second operation, we check
all of the edges returned in parallel to see if they are a self-loop.
This process takes O(log n) depth and O(log n) work per edge. For
both operations we have fetched at most twice as many edges as
the sequential implementation and thus performed work within a
constant factor of the sequential work. Each of the O(log n) rounds
of doubling search takes O(logn) depth, giving a total depth of
O(log? n). This yields the following Lemma:

LEMMA 6.2. Fetching all of the edges incident to a cluster or fetching
an outbound edge incident to a cluster can be done in O(log? n) depth
and O(k log n) work where k is the total number of edges fetched.

6.3 Pushing Down Edges in Parallel

Updating Bitmaps in Parallel. First we describe the simpler
problem of updating the bitmaps in the local trees for a batch of
edges that are pushed down from the same level. Updating the
bitmaps is equivalent to updating a batch of k augmented values
in the nested local trees structure and can be implemented using
an atomic compare-and-swap (CAS) operation on each bit along
the leaf-to-root path that needs to be updated, quitting early if the
CAS fails. In total, the batch bitmap update takes O(log n) depth
and O(klog(1 + n/k)) work.

Pushing Down Groups of Edges in Parallel. Next, we describe
how to handle pushing edges down in parallel. We provide the
following two routines:

e PushDownGroup(E) pushes down a set E of k level i edges,
where the edges in E are all incident to a common level (i — 1)
cluster and the total size in level (i — 1) clusters containing
their endpoints is < 2/~ (e.g. all of E can be pushed down).

e BatchPushDown(E) given a set E of level i edges, this pushes
down as many edges of E as possible until the only remaining
ones are blocked. Formally, this operation ensures that every
level (i — 1) cluster containing an endpoint of any edge in E is
incident to a blocked edge or its parent is isolated.

Pushing down a single level i edge e to level (i — 1) requires
updating the level i and level (i — 1) bitmaps, and possibly combin-
ing the local trees of the two level (i — 1) clusters containing the
endpoints of e. In the sequential setting, our method to maintain
the blocked invariant and the size invariant after a single edge push
was to push down an edge as far as possible until it became blocked.

When pushing down multiple edges in parallel, there are a few
challenges that arise. There may be situations where pushing down
one edge causes a different previously unblocked edge to become
blocked. Also, combining several local trees in parallel is non-trivial.



Our Approach: Reducing to PushDownGroup. Consider push-
ing down a batch of k edges incident to a common cluster. Updating
the bitmaps for this batch of edges can be done efficiently as de-
scribed at the beginning of this section. Lemma 6.3 proves that
when pushing down a group of unblocked edges incident to a com-
mon cluster, at most one of the clusters can be non-isolated (i.e. the
cluster has multiple children).

LEMMA 6.3. For any set of k level i clusters in the same cluster
graph whose combined size is < 2!, at most one of the clusters can
have multiple children (it is not isolated).

ProoF. Assume that two or more of the clusters are not isolated.
Then there are at least two disjoint blocked edges between level
(i — 1) clusters. Each blocked edge must have > 2:~! size. Having at
least two of these, the total size is > 2! which is a contradiction. O

This means that all but one of the cluster graphs will consist of
a single cluster. Given this observation, we avoid the challenge of
merging several level i local trees in parallel, and simply need to
delete the isolated clusters from the level i cluster graph and insert
them into the cluster graph of the level (i — 1) cluster that is not
isolated, both of which can be done batch-parallel using our batch-
dynamic local trees. We include the full description and analysis
for PushDownGroup in the full paper [36].

LEMMA 6.4. Pushing down a batch of k level i edges incident to
a common level (i — 1) cluster can be done in O(logn) depth and
O(klog(1+ n/k)) work.

Given this routine, we can reduce the problem of pushing down
an arbitrary batch of edges to multiple calls of PushDownGroup.
The general strategy is to take a spanning forest of the edges and
decompose it into disjoint stars. Then for each star we merge into
the center a maximal prefix of the clusters sorted by size that can
be merged into the center without violating the size constraint.
We give the algorithmic details of PushDownBatch in the full
paper [36], which proves the following lemma:

LEMMA 6.5. Given a set E of k level i edges, enforcing that every
level (i—1) cluster containing an endpoint of any edge in E is incident
to a blocked edge or its parent is isolated, can be done in O(log® n)
depth and O(k log n) work.

6.4 Parallelizing Deletion

Here we describe how to parallelize a single update in the blocked
cluster forest using the results of the previous subsections. We focus
on deletion since insertion already takes O(log? n) depth.

Pushing Down Edges. During a deletion, the algorithm sweeps
up the levels of the cluster forest until a replacement edge is found
or the top is reached. At each level some edges may be pushed
down. In the sequential case, these edges were immediately pushed
down as far as possible. To parallelize deletion, we will collect all
of the edges that are pushed down at each level during this upward
sweep, and handle them later in a downward sweep to restore the
blocked invariant. Let E; be the set of edges pushed down during
the upward sweep of deletion at a level ¢.

Once the upward sweep has finished at level £, we start a down-
ward sweep, starting at level £; = (£, — 1). At each level ¢; in the
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downward sweep, we call BatchPushDown(E;,). Every edge that
is pushed down by this call is added to the set E(;, _1).

Restoring the Blocked Invariant. When a cluster is split at higher
levels during deletion, the algorithm must restore the blocked in-
variant in that cluster graph before continuing. As in the sequential
setting, if the split cluster was a satellite, we just need to find and/or
push down a single outbound edge incident to both fragment clus-
ters. Lemma 6.2 proves that we can find such an edge in O(log? n)
depth and O(k log n) work which can be charged to the self-loops
that are found and pushed down. If the split cluster is the center,
restoring the blocked invariant is much more complex. Due to space
constraints, we leave the description of this to the full paper [36].
Our result is summarized by the following lemma:

LEMMA 6.6. When a cluster X is split in a cluster graph CG(c) that
previously maintained Invariant 5.2, the invariant can be restored
in O(log? n) depth and O((k + 1) logn) work where k is the total
number of edges pushed down by this process.

We leave the full analysis of deletion to the full paper [36]. Our
result is the following lemma:

LEMMA 6.7. A deletion in a blocked cluster forest can be done in
O(log® n) depth and O(klogn + log? n) work where k is the total
number of edges pushed down during the deletion.

7 PARALLEL BATCH-DYNAMIC UPDATES

In this section we show how to extend blocked cluster forests to
support parallel batch-dynamic operations.

7.1 Batch Insertion

Consider a batch E of k edge insertions. All of the edges in the
batch are inserted at level (Lmax + 1). Let the set of edges be Er__ 41.
Then we call BatchPushDown on Ef___4i. Let E;_ be the set
of edges that were pushed down by this call. We repeatedly call
BatchPushDown on E;, the set of edges pushed down by the call

on Ejyq. Algorithm 1 shows the pseudo-code for batch insertion.

Algorithm 1 Batchlnsertion(CF, E)

1: Insert all of E into the edge lists of their endpoints
2: Batch update bitmaps for level (Lmax + 1) edges

3. while |E| > 0 do

4: E « BatchPushDown(E)

When a batch of edges is introduced into a level, only the clusters
incident to those edges may violate the blocked invariant. Calling
BatchPushDown ensures that these clusters follow the blocked
invariant when it is finished. Doing this for every level ensures that
the blocked invariant is maintained throughout the cluster forest.
Each call to BatchPushDown takes O(log? n) depth, so the total
depth of batch insertion across all levels is O(log3 n). The work in
the first call to BatchPushDown is O(k log n). This work can be
charged to the k edges in E being inserted. Each subsequent level i
performs O(|E;|log n) work which can be charged to the |E;| edges
pushed down at the previous level.



Algorithm 2 BatchDeletion(CF, E)

1: Delete all of E from the edge lists of their endpoints

2: Batch update bitmaps for each edge’s level prior to deletion
3: [Ey...Er, ] < semisort(E), f < 1, A < E;
4: while [A] > 0 do

5 Groups < sort A by parent

> sweep up

6: for (Group, P) € Groups do > parallel for
7: RestoreBlockedInvariant(CG(P))

8: Components «— {}

9 for Cluster € Group do > parallel for
10: e « Cluster.FetchOutboundEdge()

11: if —e then Components.Insert(Cluster)

12: else Components.Insert(null)

13: if |Components| > 1 then

14: for (CC # null) € Components do » parallel for
15: Create a new parent cluster for CC

16: P.RemoveChildren(Components)

17: Parent(P).AddChildren(new parents)

18: A « P U new parents created

19: t—t+1,A—AU{alaceckE}

20: for £ € [Lyax — 1,1] do > sweep down

D(¢-1) < D(¢-1) U BatchPushDown(Dy)

7.2 Batch Deletion

Consider a batch of k edge deletions. The general strategy will be to
keep an active set A of fragment clusters whose connectivity may
have changed. First there will be a bottom-up sweep on the levels
at the cluster forest. At every level the algorithm (1) restores the
blocked invariant (2) performs connectivity search, and (3) possibly
splits clusters in the level above. In this upward sweep, edges will
be pushed down only one level which may temporarily violate
the blocked invariant in the lower levels that have already been
processed. Afterwards, there will be a downward sweep to push
down any edges that were not pushed down as far as possible to
maintain the blocked invariant. Algorithm 2 shows the pseudo-code
for batch deletion.

First all of the edges in the batch are deleted from the list of edges
at the leaves of the cluster forest and the bitmaps are updated. The
next step is to semisort all of the deleted edges in the batch by their
(former) level. During the upward sweep at level i, we will add the
level i clusters containing the endpoint of each level (i + 1) edge to
our set of fragment clusters. When subject to k deletions, clusters
at upper levels may be split into as many as k + 1 fragments now
instead of just two. The full paper [36] describes how the blocked
invariant can be restored in parallel given the possibility of several
clusters being split by the batch of deletions. This yields Lemma 7.1.

LEMMA 7.1. Given a cluster graph CG(c) that was subject to k
clusters being split and previously maintained Invariant 5.2, the in-
variant can be restored in O(log2 n) depth and O((x + k) log n) work
where x is the total number of edges pushed down by this process.

Parallel Connectivity Search and Splitting Clusters. Consider
the active set of O(k) clusters at level i. They can be grouped based
on their level (i + 1) parent cluster, by finding the parent of every
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cluster in O(klogn) work, and sorting the clusters by parent in
O(log k) depth and O(k log k) work (line 5) [12]. Then each group
can be processed independently in parallel. Let k” be the number of
active clusters in a given group. Within each group, we first fix the
blocked invariant in the cluster graph of the parent (line 7). This
takes O(log? n) depth and results in O(k’ log n) uncharged work
by Lemma 7.1.

Then we want to determine the connected components of the
cluster graph CG(P) of the parent P. We will take advantage of
the fact there cannot be a matching of size greater than one over
the blocked edges in CG(P). Since the blocked invariant has been
restored, only one connected component can contain multiple clus-
ters in CG(P). The strategy will be to attempt to find an outbound
edge for each cluster in the active set. This can be done in O(log? n)
depth with O(logn) uncharged work per cluster, the rest of the
work is charged to the self-loops that were found and pushed down.
There will be O(k” log n) total uncharged work. If an outbound
edge is found, it is a part of the component with multiple clusters.
Each other component is defined by a single cluster. We produce
a set of the connected components, representing each singleton
component with its cluster and representing the component with
multiple clusters as null if it exists (lines 8-12).

If there is only one component, the deletion is done within this
component, meaning every edge deletion in this cluster graph has
certified connectivity (line 13). Otherwise, each lone cluster is re-
moved as a child of P, and will get a new parent node at level (i+1)
(lines 14-15). These will be added to the modified local tree of the
parent of P using BatchInsert, and their sizes will be subtracted
from n(P) within the AddChildren function (line 17). The com-
ponent with multiple clusters will keep the original P as its parent.
If it didn’t exist (e.g. n(P) = 0 now), we delete P by removing it as
a child of its parent. The active set at the next level up will be the
set of new level (i + 1) clusters and possibly P for any group that
still had multiple components, along with the clusters containing
endpoints of level (i + 2) edge deletions (lines 18-19).
Downward Sweep. Just like in parallelizing a single deletion, we
will collect all of the edges that are pushed down at each level
during the upward sweep, and handle them later in a downward
sweep to restore the blocked invariant. Let Dy be the set of edges
pushed down during the upward sweep of deletion at a level £. We
start the downward sweep at level Lyax — 1. At each level ¢ in the
downward sweep, we call BatchPushDown(Dy) (lines 20-21). For
every edge that this call pushes down, we add it to the set D(,_1).

Cost Analysis. We analyze the work and depth of our batch update
algorithms in the full paper [36], yielding the following theorem:

THEOREM 7.2. Batch insertions and batch deletions of edges in the
blocked cluster forest can be done in O(log® n) depth per batch with
an amortized work of O(log? n) per edge.

8 EMPIRICAL EVALUATION

In this section, we provide the first experimental study of the clus-
ter forest algorithm. Our goals in this part of the paper are to
understand (1) whether the cluster forest algorithm is practical
and yields good query and update performance; (2) whether the
theoretical space improvements provided by the cluster forest algo-
rithm translate into meaningful space improvements in practice;



and (3) whether the algorithm can scale to large graphs and work
well across a variety of different graph types (both real-world and
synthetic). Since there have been no prior implementations of the
cluster forest approach, we focus our study on sequential imple-
mentations in order to carefully study different design choices in
the algorithm and carefully measure the impact of these choices on
runtime and query performance. In this section, we demonstrate
that a carefully optimized implementation of the cluster forest algo-
rithm can achieve all three of these goals, and that the cluster forest
approach may be the algorithm of choice when both theoretical
guarantees and practical performance are required.

8.1 CF Algorithm Optimization

One of the main contributions of this paper is the first practical and
highly-optimized implementation of the cluster forest algorithm.
A major bottleneck when implementing the algorithm is the cost
of traversing the cluster-forest hierarchy, a step that occurs in
nearly all aspects of the algorithm (e.g., replacement edge search,
fetching a level i edge, or pushing an edge from level i to i — 1).
Although the hierarchy has depth O(logn), traversals can still be
costly as they encounter both cluster forest nodes and local tree
nodes, and thus every traversal involves significant pointer jumping.
To address this issue, we designed our implementation to reduce
the cost of and eliminate tree traversals whenever possible. Due
to space constraints, we provide a more detailed description and
discussion of our optimizations in the full paper [36].

Our first optimization is called flattened local trees. As the
name suggests, we flatten the local tree structure into an array that
stores the roots of the rank trees in increasing order of rank instead
of combining the rank trees into a binary tree (see Section 4 for
local and rank tree definitions). Since there are at most log, n rank
trees, this array approach does not sacrifice the time complexity of
any local tree operation and improves locality. Additionally, we do
not combine rank trees nodes unless there are more than log, n of
them. This means that in many cases where a node in the cluster
forest has few children, the algorithm can avoid a large amount of
indirection in traversing the local trees and rank trees.

Our next optimization is called lowest common ancestor (LCA)
insertion. The optimization is to insert an edge at the level of the
lowest level node in the cluster forest that contains both endpoints
of the edge. A faithful implementation of the cluster forest algo-
rithm is to simply perform root insertion, i.e., every non-tree edge
insertion is simply placed at the root of its tree. The LCA optimiza-
tion trades off extra time spent during an insertion to find the LCA
to distribute the edges better across the levels to achieve faster
deletions, since fewer edges need to be searched, thus lowering
the amount of traversals. The performance overhead of performing
LCA insertion is negligible compared to root insertion—on average
LCA insertion is 1.06X faster on the graphs we evaluated when
comparing total insertion time. However, LCA insertion makes a
huge difference for speeding up deletions—on average, it speeds up
total deletion time by 1.5X on average over root insertion across
all of our graphs. We note that the LCA optimization is somewhat
unique to the cluster forest algorithm, since finding the LCA can
be done in O(logn) time using the cluster forest representation;
applying a similar optimization to HLT seems more complex as it
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Table 1: Graph datasets used in our experiments.

Name | Type V] |E| Avg Deg | Cite
GER | Road 1228M  16.12M  2.62 [40]
USA Road 23.95M 28.85M 241 [40]
HH K-NN 205M  650M  6.35 (37]
CHEM | K-NN 421IM  14.83M  7.05 [19]
YT Web 1L1I6M  299M  5.16 [49]
POKE | Web 1.63M 22.30M 27.32 [34]
WT Web 179M  2544M 2841 [50]
EW Web 421M  91.94M  43.72 [9]

SKIT AS 1.70M 11.10M 13.08 [33]
SO Temporal | 6.02M  28.18M  9.36 [42]
L Social 485M  42.85M  17.68 [4]

ORK Social 3.07M 117.19M  76.28 [49]
TWIT | Social 41.65M 1.20B 57.74 (32]
FR Social 65.61IM 1.81B 55.06 [49]
GRID Synthetic | 10.00M 10.22M 2.04 [14]
RMAT | Synthetic | 67.11M  670.83M  19.99 [10]

requires quickly finding the lowest level where the endpoints of an
edge are connected, which naively takes O(log? n) time.

When evaluating an early version of our algorithm, we found
that on dense graphs, our implementation was slower than HLT,
even when using the LCA optimization. The reason for HLT’s speed
is that > m — n + 1 edges are non-tree edges, and therefore, many
deletions in dense graphs target non-tree edges. HLT benefits from
this fact, since a non-tree edge deletion simply checks a hash-table
storing whether an edge is tree or non-tree in O(1) time, and up-
dates bitmaps after deleting the edge. To achieve similar benefits in
the cluster forest algorithm, we introduce a non-tree edge track-
ing optimization. We give a full description of the optimization in
the full paper [36]. The main idea of the optimization is to carefully
mark edges as either tree or non-tree—as in HLT, non-tree edges
do not affect the connectivity and can simply be deleted. On dense
graphs, the optimization yields a significant speedup—for example,
on Orkut, we observed a speedup of 1.87x after implementing the
optimization due to 87% of the deletions being detected as non-tree
edges. Compared to HLT, which detects 89% of the deletions as
non-tree edges our optimization shows that our CF implementation
can almost completely match the HLT implementation’s ability to
avoid unnecessary work during edge deletions.

8.2 Experimental Setup

All of the experiments presented in this paper were run on a ma-
chine with 4 x 2.1 GHz Intel Xeon(R) Platinum 8160 CPUs (each
with 33MiB L3 cache) and 1.5TB of main memory.

Implementations. Our cluster forest implementations are all writ-
ten in C++ and use B-tree sets and flat hash sets from Abseil [3]. We
refer to our implementations with and without the LCA insertion
optimization as CF-LCA and CF-Root, respectively. We compare
against a faithful implementation of the original HLT algorithm [26]
written in C++ also optimized using set data structures from Abseil.
Our implementations all use -O3 optimization. We also compare
against D-Tree [11], a recently published data structure for dynamic
connectivity that is written in Python. We note that since D-Tree



is implemented in Python comparing its running time and memory
usage with other implementations written in C++ may be unfair;
however, since D-tree is a recent linear-space dynamic connectivity
algorithm, we include it for completeness.

Input Data. The graphs used in our experiments are summarized
in Table 1. We use a variety of real-world and synthetic graphs with
varying sizes, densities, and types. To generate dynamic updates,
we generate a random permutation of all of the edges in the graph,
and insert all of the edges in this order. Then we generate another
random permutation of the edges and delete all of the edges in
this order. We break these random permutations into 10 stages
of inserting |E|/10 edges per stage and then 10 stages of deleting
|E|/10 edges. We use stages to understand how memory usage and
the insert and delete speeds change over time (e.g., as the graph
grows more dense, and then more sparse). At the end of each stage,
we perform 1M queries: half the queries are completely random
and half are endpoints of edges that exist in the graph at that point.

8.3 Performance Results

Memory Usage. We start by investigating whether the theoretical
guarantees on space provided by the CF algorithm translate into
practical improvements in memory usage. Our goal is to determine
(1) whether memory usage is a limiting factor in the ability of
HLT-based implementations to scale to extremely large graphs, (2)
whether implementations based on the CF algorithm using linear
space can overcome this obstacle, and (3) whether the memory
usage of implementations based on the CF algorithm can perform
better than existing state-of-the-art dynamic connectivity imple-
mentations using linear space. Our results affirmatively answer all
three of these questions.

The top of Figure 6 shows the peak memory usage of each al-
gorithm on the various graphs relative to the memory of CF-LCA.
We report the unnormalized numbers for peak memory usage in
the full paper [36]. Our main finding is that CF implementations
consistently require significantly less memory than HLT. CF-Root
uses 6.2x-19.7x less memory than HLT and CF-LCA uses 5.7X—
17.5% less memory than HLT. We note that across all the graphs
we tested, the memory efficiency of both CF-Root and CF-LCA are
very similar, with CF-Root having a slight edge (1.0x-1.2X less
memory). This is because with root insertion there are slightly
fewer nodes in the cluster forest. On the densest graph we tested
(Orkut) our best CF implementation uses 26 bytes/edge while HLT
uses 159 bytes/edge. On the sparsest graph we tested (Grid) the CF
algorithm uses 294 bytes/edge while HLT uses 5,809 bytes/edge.

These results clearly show the benefits of the CF algorithm over
HLT in practice across a wide variety of real-world graphs with
different characteristics. For sparse graphs (e.g., USA Roads, Stack-
Overflow, Grid) where m is closer to n, the O(n + m) space usage
of CF should beat the O(nlogn + m) space usage of HLT, and this
asymptotic difference can be clearly seen in the results. Interest-
ingly, even for dense graphs (e.g. ENWiki, Orkut, Twitter) where
m > nlog, n, CF still uses significantly less memory than HLT. This
is because in dynamic connectivity algorithms edges can be stored
very space efficiently (= 10 bytes/edge) while the space overhead of
the tree data structures used in virtually all dynamic connectivity
algorithms scales heavily with the number of vertices (at least a
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hundred bytes per vertex per tree). This supports the conclusion
that on real-world graphs (which are typically quite sparse) dy-
namic connectivity algorithms that require storing a large number
of trees over the vertices (like HLT) prevent scaling to very large
graphs. The extra log n factor on the space usage, which may easily
be overlooked in theory, has a massive impact in practice.

For the third question, we compare our implementations of the
CF approach with an existing implementation of D-Tree [11], which
uses linear space in theory but sacrifices worst-case theoretical
guarantees on update time. Although it is implemented in Python,
D-Tree still uses significantly less memory than HLT in all of our
experiments. This is again indicative of the large impact of using
data structures that have linear total space in practice.

Update Times. The goals of our next experiments are (1) to deter-
mine whether CF implementations can match or beat the perfor-
mance of HLT for updates despite the increased implementation
complexity of CF, (2) to compare the update performance of our CF
implementations with the performance of existing state-of-the-art
dynamic connectivity implementations, and (3) to investigate the
impact of the optimizations from Section 8.1 on update speed.

The middle of Figure 6 shows total update time of each algorithm
on the various graphs relative to the time for CF-LCA. We report the
raw (unnormalized) numbers for updates times in the full paper [36].
Additionally, we include Figure 7 to show an example of how the
update performance varies throughout the sequence of updates
(per-stage) on the LiveJournal graph.

Our results show that our CF implementations can achieve sig-
nificantly better performance than HLT for both insertions and
deletions for all all graphs in our experiments. CF-LCA performs
updates 1.4xX-6.2X faster than HLT, and CF-Root performs up-
dates 1.5x-3.8% faster than HLT. The improvements in update
speed for the CF implementations can be attributed to the optimiza-
tions we described in Section 8.1. For example, for non-tree edge
insertions, both algorithms must simply add the edge to the edge
set, and then traverse up to update O(log n) bitmaps; the flattened
local tree optimization decreases the cost of such traversals in the
CF implementation resulting in faster insertions. For non-tree edge
deletions, the non-tree edge tracking optimization enables our CF
implementation to match the performance of HLT. With the opti-
mization, both algorithms simply check the hash-table once, delete
the edges from the edge set, and traverse up to update the bitmaps.
The flattened local tree optimization once again allows the CF im-
plementations to outperform the HLT implementation due to the
lower cost of traversing the hierarchy. CF-LCA performs better than
CF-Root for total update time in most cases. This is because while
the LCA optimization slows down insertions slightly, deletions
become much faster due to fewer edges needing to be inspected.
However, CF-Root benefits from being able to find replacement
edges quickly in dense, well connected graphs like Twitter.

We also compared our CF implementations with D-Tree, which
sacrifices worst-case guarantees but obtains linear space usage. The
update performance of D-Tree varies greatly depending on the
graph due to its heuristic nature, but the CF algorithms perform
updates faster than D-Tree in all of our experiments. We note that
updates for D-Tree can take much longer on certain graphs; e.g.,
D-Tree is 173X slower than CF-LCA on the Household Lines graph.
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Figure 7: The total time in seconds for each stage of updates
on the LiveJournal graph. The points on the x-axis represent
the 10 stages of insertion followed by 10 stages of deletion.

Since the algorithm does not have worst-case guarantees, we believe
it is unlikely to be much faster on these bad cases even if it was
implemented in a different language.

Impact of Graph Properties. Interestingly, graph size does not
seem to play a major role in the relative performance of different
dynamic connectivity algorithms, and other properties such as
graph density, and graph diameter play a more important role. For
example, we observe a strong positive correlation between density
and improved running time for HLT; e.g., despite Twitter being one
of the largest graphs we evaluate on, its high density make HLT
perform significantly better.

Query Times. The bottom of Figure 6 shows the total query time
of each algorithm on the various graphs normalized to the time for
CF-LCA. We report the unnormalized numbers for query time in the
full paper [36]. Our main finding is that our CF implementations do
not sacrifice any performance in terms of query speed compared to
HLT. This is expected because, in both types of algorithms, queries
are answered by traversing to the root of the components of the two
vertices which requires O(log n) memory reads and a single equality
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check. Our results show that queries for our CF implementations
are slightly faster than HLT. We believe this is further indicative
that the height of the cluster forest hierarchy is generally lower
than that of the top level spanning forest data structure in HLT
due to the flattened local tree optimization. The query speed for
D-Tree varies greatly depending on the graph due to its heuristic
nature, but is almost always beaten by the CF algorithms and HLT
in our experiments. Comparing CF-LCA and CF-Root, we find that
CF-Root always has faster query times because the cluster forest
hierarchy has smaller height when performing root insertions.

9 CONCLUSION

This paper makes two significant contributions towards developing
a scalable and practical batch-dynamic connectivity algorithm. First,
on the theoretical side, we give the first parallel batch-dynamic algo-
rithm for maintaining the connected components of an undirected
graph that is work-efficient, runs in polylogarithmic depth, and
only uses linear total space. Second, we give the first empirical
study of the cluster forest algorithm in the sequential setting, intro-
duce new optimizations to improve its practicality, and demonstrate
its superior performance and space-efficiency in practice. Taken
together, our results indicate that the CF algorithm is an excellent
candidate for a practically scalable dynamic connected components
algorithm with good theoretical guarantees.
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