
Towards Scalable and Practical Batch-Dynamic Connectivity
Quinten De Man

University of Maryland

deman@umd.edu

Laxman Dhulipala

University of Maryland

laxman@umd.edu

Adam Karczmarz

University of Warsaw & IDEAS NCBR

a.karczmarz@mimuw.edu.pl

Jakub Łącki

Google Research

jlacki@google.com

Julian Shun

MIT CSAIL

jshun@mit.edu

Zhongqi Wang

University of Maryland

zqwang@umd.edu

ABSTRACT
We study the problem of dynamically maintaining the connected

components of an undirected graph subject to edge insertions and

deletions. We give the first parallel algorithm for the problem that is

work-efficient, supports batches of updates, runs in polylogarithmic

depth, and uses only linear total space. The existing algorithms for

the problem either use super-linear space, do not come with strong

theoretical bounds, or are not parallel.

On the empirical side, we provide the first implementation of the

cluster forest algorithm, the first linear-space and polylogarithmic

update time algorithm for dynamic connectivity. Experimentally,

we find that our algorithm uses up to 19.7× less space and is up

to 6.2× faster than the level-set algorithm of Holm, de Lichten-

berg, and Thorup, arguably the most widely-implemented dynamic

connectivity algorithm with strong theoretical guarantees.

PVLDB Reference Format:
Quinten De Man, Laxman Dhulipala, Adam Karczmarz, Jakub Łącki, Julian

Shun, and Zhongqi Wang. Towards Scalable and Practical Batch-Dynamic

Connectivity. PVLDB, 18(3): 889 - 901, 2024.

doi:10.14778/3712221.3712250

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/ParAlg/DynamicConnectivity.

1 INTRODUCTION
The problem of dynamically maintaining the connected compo-

nents of a graph is a critical subroutine that is often used when

designing dynamic algorithms for other fundamental and practi-

cal problems, e.g., dynamic DBSCAN [21, 31], hierarchical cluster-

ing [38, 43], approximate MST [17], among other problems. It is

also one of the most intensely studied dynamic graph problems,

and has seen extensive algorithmic development over the past three

decades [18, 24–27, 29, 30, 39, 44, 45, 47, 48]. In the fully-dynamic

graph connectivity problem, the goal is to build a data structure

that supports the following operations on an undirected graph 𝐺 :

• Insert(𝑢, 𝑣) inserts edge (𝑢, 𝑣) into 𝐺 .
• Delete(𝑢, 𝑣) deletes edge (𝑢, 𝑣) from 𝐺 .

• Connected(𝑢, 𝑣) returns whether 𝑢 and 𝑣 are connected in 𝐺 .

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712250

Despite its importance, dynamic connectivity has not yet been

efficiently solved in practice, and marks a major gap in our under-

standing of how to bridge theory and practice in dynamic algo-

rithms. In the special case of dynamic forest-connectivity, there

are data structures, such as Euler Tour Trees (ETTs) [24], that are
reasonably practical and have been adapted to support parallel

updates [46]. However, few implementations exist for the more

complex case of general graphs. For general graphs, perhaps the

best known dynamic connectivity data structure that provides good

theoretical guarantees and has been implemented [28] is due to

Holm, de Lichtenberg, and Thorup [26], who developed a dynamic

connectivity algorithm that performs updates in 𝑂 (log2 𝑛) amor-

tized time and requires 𝑂 (𝑛 log𝑛 +𝑚) space, for a graph with 𝑛

vertices and𝑚 edges. Their algorithm is based on 𝑂 (log𝑛) layers
of dynamic forest-connectivity data structures; we refer to their

idea as the HLT algorithm.

However, existing implementations of the HLT algorithm suffer

from high overheads in space and time, limiting their practical

applicability. For example, we found that to run on a 1.2 billion

edge graph, an optimized dynamic connectivity implementation

based on the HLT algorithm requires up to 360 billion bytes—over

70 times more than what it takes to store the graph using a simple

(static) representation. The key limitation of implementations based

on the HLT algorithm is that the connectivity information is stored

redundantly in separate forest-connectivity data structures across

a logarithmic number of different layers. At a high level, the HLT

algorithm maintains a spanning forest 𝐹 and a hierarchy of nested

edge subsets 𝐹1 ⊆ 𝐹2 ⊆ . . . 𝐹𝑘 = 𝐹 . With this representation, the

vertices of 𝐺 are present in 𝑘 trees, which results in a space usage

of 𝑂 (𝑛 log𝑛) across all of the trees.
On the theoretical side, the space usage was improved to linear

by an elegant cluster forest algorithm (CF algorithm) that is inspired
by the HLT algorithm [45]. The key idea in the CF algorithm is to

store a single forest of trees (called the cluster forest) that implic-

itly represents the connectivity information stored in the nested

𝑂 (log𝑛) layers of the HLT algorithm. In its basic version, the CF al-

gorithm achieves similar update times to HLT, while improving the

space bound to 𝑂 (𝑛 +𝑚). This was the first algorithm that solved

dynamic graph connectivity in polylogarithmic update time and

linear space. The CF algorithm was later simplified and optimized

by Wulff-Nilsen [47].

Given the theoretical advantages of the CF algorithm, an impor-

tant question is: is the CF algorithm practical? For example, does

it yield improved space-efficiency or faster runtime in practice rela-

tive to existing dynamic connectivity implementations? This ques-

tion is highly non-trivial due to the complexity of implementing

889

https://doi.org/10.14778/3712221.3712250
https://github.com/ParAlg/DynamicConnectivity
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712250
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3712221.3712250&domain=pdf&date_stamp=2024-11-01

0
2 E

3
4

7 F

6

01

10
03

32

30
23

45

54
46

67

76
64

0
1 2

3
4 5

6 7
(a) : 𝖨𝗇𝗉𝗎𝗍

0
1

2
3

4
5

6
7

A

B D

C
01

10 54

45

67

76

23

32

1

5
(d) : 𝖧𝖫𝖳

0
1

2
3

4
5

6
7

45 01

10
03

322337
76

64

54 46 67 73 30

G
C D46

56

57

(c) : 𝖢𝗅𝗎𝗌𝗍𝖾𝗋 𝖦𝗋𝖺𝗉𝗁
𝗈𝖿 F

0 1
A

2 3
B

4 5
C

6 7
D

E F

G(b) : 𝖢𝗅𝗎𝗌𝗍𝖾𝗋 𝖥𝗈𝗋𝖾𝗌𝗍

Figure 1: The core data structures used by the cluster forest (CF) and HLT algorithms. The input graph is shown in (a). The
cluster forest is given in (b), and represents the nested hierarchy of connected components. (c) shows the cluster graph of the
level 2 component 𝐹 . Lastly, (d) shows the same component hierarchy as (b), but as stored by the HLT algorithm.

and optimizing the CF algorithm, which uses a significant amount

of indirection and requires performing sophisticated tree traversals

and amortization to obtain its update bounds. A second important

question is: can the CF algorithm be efficiently parallelized?
In particular, can we ensure that each update is processed with

low depth (longest chain of sequentially dependent instructions)

in the worst case? Furthermore, can we also make the algorithm

work-efficient in the parallel batch-dynamic setting? We note that

the batch-dynamic setting, in which updates come in batches of

arbitrary size, is the standard modern setting for parallelizing dy-

namic algorithms [1, 5, 16, 20, 23, 35, 41]. Ideally, we would like

to parallelize the algorithm without sacrificing space-efficiency

or work-efficiency. That is, each batch of updates should be per-

formed with low depth, and work (total number of operations) and

space matching that of the sequential CF algorithm. We note that

while the HLT algorithm was recently shown to be amenable to an

efficient batch-dynamic algorithm [1], it is not space-efficient.

In this paper, we carefully study the CF approach in theory and

practice to answer these open questions. On the theoretical side,

we extend the CF algorithm to the parallel setting and show how

to achieve low depth. Specifically, we introduce a new invariant

(the blocked invariant), which provides important additional struc-

ture that we exploit. Using our new invariant and our approach to

maintaining it, we obtain the first space-efficient and work-efficient

parallel algorithm that has polylogarithmic depth.

On the empirical side, we perform the first experimental study

of the CF approach in the sequential setting. Compared with the

existing state-of-the-art dynamic connectivity implementations

with worst-case guarantees based on the HLT algorithm, we find

that our implementations use up to 19.7× less space and are up

to 6.2× faster than an optimized implementation of HLT. In the

next two sections, we formalize the data structures, and present a

technical overview of our results.

2 PRELIMINARIES
Model. We use the work-depth (or work-span) model for fork-

join parallelism to analyze parallel algorithms [7, 13]. The model

assumes a set of threads that share memory. A thread can fork 𝑘
child threads that run in parallel. When all children complete, the

parent thread continues. The work𝑊 of an algorithm is the total

number of instructions and the depth (span) 𝐷 is the length of the

longest sequence of dependent instructions. Computations can be

executed using a randomized work-stealing scheduler in practice in

𝑊 /𝑃 +𝑂 (𝐷) time with high probability on 𝑃 processors [2, 8, 22].

Definitions. We start by introducing definitions used through-

out the paper when describing the dynamic connectivity algo-

rithm. We are given an undirected graph 𝐺 , with vertices 𝑉 and

edges 𝐸. We use 𝑛 to denote the number of vertices and 𝑚 to

denote the number of edges. Each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 has a

level 𝑙 (𝑒) ∈ [1, 𝐿max] assigned to it, where 𝐿max = ⌈log𝑛⌉. Let
𝐸𝑖 = {𝑒 = (𝑢, 𝑣) ∈ 𝐸 | 𝑙 (𝑒) ≤ 𝑖} be the set of all edges with levels ≤ 𝑖 .
Let 𝐺𝑖 = (𝑉 , 𝐸𝑖). We maintain the following size invariant on the

connected components of each 𝐺𝑖 :

Invariant 2.1 (Size Invariant). The maximum size of a connected
component of 𝐺𝑖 is 2𝑖 .

We can imagine contracting each of the connected components

of 𝐺𝑖 to obtain 𝑉𝑖 , the set of clusters at level 𝑖 . The children of

a cluster 𝑐 ∈ 𝑉𝑖 are the clusters in 𝑉𝑖−1 that are merged together

using level 𝑖 edges to obtain 𝑐 .

Cluster Forest. By explicitly representing the relationship between
clusters on different levels, we obtain the cluster forest, which
we denote using C, in which each node has a level in [0, 𝐿max],
and where the nodes at level 𝑖 represent the clusters of connected

components of 𝐺𝑖 (the graph containing all edges with level ≤ 𝑖).
The root(s) of C are nodes representing clusters at level 𝐿max in 𝐺

and correspond to the connected components of the graph. The

leaves of C are nodes representing the clusters at level 0 in 𝐺 ,

and correspond to the original vertices of the graph. Figure 1(b)

illustrates the cluster forest for the graph in Figure 1(a). If clusters

with only a single child are not stored, it is not difficult to see that

the number of nodes in C is 𝑂 (𝑛).
Each node 𝑣 in C also stores the size of the cluster that it repre-

sents, 𝑛(𝑣), which is equal to the number of leaves in the subtree

rooted at 𝑣 (𝑛(𝑣) = 1 for leaf nodes). By the size invariant above

(Invariant 2.1), for any level 𝑖 cluster 𝑐 , we have 𝑛(𝑐) ≤ 2
𝑖
.

For a cluster 𝑐 ∈ C at level 𝑖 , the cluster graph, 𝐶𝐺 (𝑐) of the
node is the graph formed by taking its child clusters at level (𝑖 − 1)
as the vertices, and where the edges are the level 𝑖 edges incident

to all leaf vertices in 𝑐 . Figure 1(c) illustrates the cluster graph for a

vertex in the cluster forest illustrated in Figure 1(b).

We define a self-loop edge as a level 𝑖 edge for which its end-

points are contained within the same level (𝑖 − 1) cluster. Note that
a level 𝑖 self-loop edge on a level (𝑖 − 1) cluster 𝐶 differs from a

level (𝑖 − 1) edge with both endpoints in 𝐶 . The level 𝑖 self-loop

edge appears in the cluster graph of the parent of 𝐶 as a self-loop

on 𝐶 (thus the name). The level (𝑖 − 1) edge appears in the cluster

graph of 𝐶 and connects two children of 𝐶 .

890

3 TECHNICAL OVERVIEW
Parallelizing the CF Approach with Low Depth. In both the

CF and HLT approaches, replacement edge search, i.e., the search
for an edge that certifies the connectivity between the endpoints

of a deleted edge (i.e., “replaces” it) is the most complex aspect of

the data structure. Both algorithms maintain a hierarchy of nested

edge subsets 𝐸1 ⊆ 𝐸2 ⊆ . . . ⊆ 𝐸𝑘 , with the HLT approach storing a

spanning tree of each subset, and the CF algorithm using a more

space-efficient representation (see Figure 1). In both algorithms,

replacement search is handled by carefully searching the nested

hierarchy of components from the lowest level component contain-

ing the deleted edge to the highest level. For example, in Figure 1, if

the edge 4–6 is deleted, the edges in component 𝐹 will be searched,

and either 5–6 or 5–7 can be used as a replacement edge. Both al-

gorithms maintain the size invariant (Invariant 2.1), which ensures

that components at level 𝑖 have size at most 2
𝑖
. In each component,

the non-tree edges are searched to find a replacement edge, and

the unsuccessfully searched edges are pushed to a lower level to

pay for the cost of searching them. The parallel version of the HLT

algorithm by Acar et al. [1] obtains parallelism by performing a

doubling search over the non-tree edges incident to the smaller

of the two components induced by the deleted edge (obtaining

the smaller component, and indexing the non-tree edges is made

possible using Euler Tour Trees). Note that it is critical that the

edges searched are incident to the smaller component, since this

component (and its non-tree edges) will be pushed to a lower level

to pay for the search.

Unlike the HLT algorithm, which maintains an Euler Tour Tree

for every component (see Figure 1(d)), and can easily split a com-

ponent into the smaller/larger halves by deleting the edge in the

ETT, the CF algorithm only has access to the cluster graph of the

component that an edge is deleted from, due to being more space-

efficient. Recall that the cluster graph of a level 𝑖 node consists of all
edges at level 𝑖 (all such edges go between the level 𝑖 − 1 children of

this node). Since the CF algorithm cannot simply remove the edge

and split the component into smaller/larger halves, the algorithm

performs a more careful graph search that effectively interleaves

two searches (e.g., breadth-first searches) from both level 𝑖 − 1 clus-
ters incident to the deleted edge. Like in the HLT algorithm, level 𝑖

edges that are unsuccessfully inspected can be paid for by pushing

them down to level 𝑖 − 1. We give more details in Section 4.

The graph search, which needs to discover the connected com-

ponent of a graph undergoing changes, seems extremely difficult

to parallelize work-efficiently using the existing CF algorithm. The

main issue is that the graph in the cluster forest at this level can

have a very high diameter; in fact, the diameter can be as high as

Θ(𝑛), making a work-efficient parallelization of this process very

challenging unless we are willing to sacrifice having low depth.

We solve this problem by introducing a new invariant called the

blocked invariant that ensures that the cluster graph stored at every

internal node in the cluster forest is guaranteed to have constant
diameter (in fact the diameter is always at most 2). The key idea

of the invariant is simple to state: we ensure that every cluster is

incident to at least one edge that cannot be further pushed down to

a lower level without violating the size invariant. We prove that this

property implies that the cluster graph at each node is guaranteed

to have diameter at most 2. As a result, during replacement search

any parallel graph procedure (e.g., parallel breadth-first search)

will suffice, and help us obtain low depth, since the diameter is

low. However, maintaining this property dynamically turns out

to be very tricky, even in the sequential setting; our main algo-

rithmic contributions are novel sequential and parallel algorithms

to maintain the invariant under (batch-)dynamic updates. Overall,

our new parallel batch-dynamic algorithm can perform insertions

and deletions with 𝑂 (log2 𝑛) amortized work per edge update and

𝑂 (log3 𝑛) depth per batch.

The CF Approach in Practice. In addition to our theoretical con-

tributions, in this paper we give the first implementations of any

cluster forest data structure, and study the practicality of the CF

approach and our new invariants in the sequential setting. As we

discuss in more detail in Section 8, implementing CF algorithms

seems to be even more involved than implementations of the HLT

algorithm. A significant implementation challenge is that a sin-

gle data structure—the cluster forest—stores both the hierarchy of

connected components and the non-tree edges stored at each com-

ponent in the hierarchy (in the HLT algorithm, the implementation

complexity is somewhat lower since each component is stored as

a separate Euler Tour Tree). Our experiments show that our new

implementations of the CF approach are significantly more space-

efficient and process updates faster than existing state-of-the-art

dynamic connectivity implementations. For example, across a di-

verse set of graph inputs, our CF implementations achieve up to

19.7× lower space usage and up to 6.2× faster updates compared to

a carefully designed implementation of HLT.

4 SEQUENTIAL CF ALGORITHM
Next, we give a more detailed overview of how the sequential CF

algorithm performs insertions and deletions.

Insert 𝑒 = (𝑢, 𝑣). The CF algorithm first sets the level of the edge,

𝑙 (𝑒) = 𝐿max. Let 𝑟𝑢 and 𝑟𝑣 be the roots of the trees containing 𝑢

and 𝑣 , respectively, in C. If 𝑟𝑢 = 𝑟𝑣 , then nothing further needs to

be done. If 𝑟𝑢 ≠ 𝑟𝑣 , then we have increased the connectivity of the

graph and must merge 𝑟𝑢 and 𝑟𝑣 together. This requires a merge
operation on C that takes the roots of two trees and merges them

together by adding the children of (without loss of generality) 𝑟𝑣 as

children of 𝑟𝑢 and deleting 𝑟𝑣 .

Delete 𝑒 = (𝑢, 𝑣). As in the HLT algorithm, deletion requires per-

forming a replacement edge search to check if the deletion of (𝑢, 𝑣)
affects the connectivity of 𝐺 . Let 𝑖 = 𝑙 (𝑒). In the CF algorithm,

the problem boils down to certifying the connectivity of the level

𝑖 cluster, 𝑃 , containing 𝑢 and 𝑣 . Recall that the cluster graph of 𝑃

consists of the level (𝑖 − 1) clusters that are children of 𝑃 and the

level 𝑖 edges with both endpoints in 𝑃 . Let the level (𝑖 − 1) clusters
containing𝑢 and 𝑣 be𝐶𝑢 and𝐶𝑣 , respectively, and the cluster graph

of 𝑃 , 𝐶𝐺 (𝑃), be 𝐺𝑖 . If 𝐶𝑢 = 𝐶𝑣 (𝑒 is a self-loop), then we can quit

since the connectivity of 𝐺𝑖 is unaffected after deleting 𝑒 .

If 𝐶𝑢 ≠ 𝐶𝑣 , then we need to check whether (𝑢, 𝑣) was a bridge
of 𝐺𝑖 (i.e., every possible spanning tree of 𝐺𝑖 must use this edge).

If the deleted edge is a bridge, then 𝐺𝑖 splits into two components.

This means that the cluster forest C must be updated, and then the

algorithm must recursively check at level (𝑖 + 1) whether the two
split pieces of 𝐺𝑖 can be reconnected using a level (𝑖 + 1) edge.

891

Cb
Ca

Cv

CdCu 𝖣𝖾𝗅𝖾𝗍𝖾(u, v)

Cb
Ca

Cv

CdCu

𝗌𝖾𝖺𝗋𝖼𝗁(Cu)

𝗌𝖾𝖺𝗋𝖼𝗁(Cv)

Ce

Cv

Cd

Ce = 𝗆𝖾𝗋𝗀𝖾({Cu,Ca,Cb})CG(P)

(1) (2) (3)

Figure 2: (1): The cluster graph of the level 𝑖 cluster 𝑃 con-
taining a deleted level 𝑖 edge (𝑢, 𝑣); the vertices of the cluster
graph are the level (𝑖−1) child clusters of 𝑃 . (2): Deleting (𝑢, 𝑣)
may disconnect 𝐶𝐺 (𝑃), so search(𝐶𝑢) and search(𝐶𝑣) are run
to check if𝐶𝑢 and𝐶𝑣 are still connected using level 𝑖 edges in
𝐶𝐺 (𝑃). Green edges are edges explored during the search. (3):
In this example, 𝐶𝐺 (𝑃) remains connected, {𝐶𝑢 ,𝐶𝑎,𝐶𝑏 } are
merged, and the explored level 𝑖 edges of the smaller search
are pushed down to level (𝑖 − 1).

To certify connectivity in 𝐺𝑖 , the algorithm runs two searches

from𝐶𝑢 and𝐶𝑣 using any graph search procedure, such as breadth-

first search. Call these searches search(𝐶𝑢) and search(𝐶𝑣). The
searches explore the multi-graph of level (𝑖 − 1) clusters that are
children of 𝑃 , and level 𝑖 edges between them (see Figure 2). Unlike

in the HLT algorithm, the CF algorithm does not know which of𝐶𝑢
or 𝐶𝑣 is in the smaller component after deleting (𝑢, 𝑣). To obtain

good amortized work bounds, the CF algorithm alternates between

steps of search(𝐶𝑢) and search(𝐶𝑣). The searches stop when either

(1) a common vertex in 𝐺𝑖 is explored by both searches, or (2) one

of the searches runs out of level 𝑖 edges to explore, certifying that

𝐶𝑢 and 𝐶𝑣 are no longer connected using level 𝑖 edges.

In case (1),𝐶𝑢 and𝐶𝑣 must be connected so𝐺𝑖 is unaffected, and

thus the cluster forest C does not change. Let 𝑆𝑢 and 𝑆𝑣 be the set of

level (𝑖−1) clusters explored by𝑢 and 𝑣 ’s searches, respectively. Let

𝑛𝑢 =
∑
𝑐∈𝑆𝑢 𝑛(𝑐) and 𝑛𝑣 =

∑
𝑐∈𝑆𝑣 𝑛(𝑐). Then min(𝑛𝑢 , 𝑛𝑣) ≤ 2

𝑖−1
,

and so we can push all of the level 𝑖 edges explored by the smaller

search down to level (𝑖 − 1). The alternating search ensures that

we do not need to worry about pushing down edges incident to

the larger component as the work on these edges is paid for by the

pushing down of edges in the smaller component. Pushing edges

to level (𝑖 − 1) can require merging level (𝑖 − 1) clusters.
In case (2), we take the search with a smaller total size value,

without loss of generality search(𝐶𝑢), and push all of the level 𝑖

edges it explored down to level (𝑖 − 1) to pay for the search. This

requires merging all level (𝑖 − 1) clusters explored by search(𝐶𝑢).
Let𝑊 be this new level (𝑖 − 1) node that they were all merged into.

Next, we need to update C to reflect the fact that 𝐺𝑖 split. We first

remove𝑊 as a child of 𝑃 in C and decrement 𝑛(𝑃) by 𝑛(𝑊). We

then create a new level 𝑖 node 𝑃 ′ and set the parent of𝑊 to 𝑃 ′, and
add 𝑃 ′ as a child of the parent of 𝑃 . Only in case (2) do we need to

continue (recursively) at level (𝑖 + 1) to check if the level 𝑖 clusters

containing 𝑢 and 𝑣 remain connected using the level (𝑖 + 1) edges,
or whether a similar split needs to happen at level (𝑖 + 1) or above.
Cluster Forest Interface. Studying this algorithm, we can identify

the following necessary operations on the cluster forest C:
(1) FetchEdge(𝐶, 𝑖) the search needs to be able to iterate over

the level 𝑖 edges incident to a level (𝑖 − 1) cluster 𝐶 .
(2) Parent(𝐶) returns the parent of 𝐶 in the cluster forest.

(3) AddChild(𝑃,𝐶) adds a node 𝐶 as a child of node 𝑃 .

(4) RemoveChild(𝑃,𝐶) removes 𝐶 from the children of 𝑃 .

(5) Cluster(𝑣, 𝑙) returns the level 𝑙 cluster containing 𝑣 .
(6) Merge(𝐶1,𝐶2) merges two level (𝑖 − 1) clusters 𝐶1 and 𝐶2.
(7) PushDown(𝑒) pushes down a level 𝑖 edge 𝑒 .

Local Trees Implementation. Since a node in the cluster forest

may have at most𝑛 children, the CF algorithm represents the cluster

graph of each cluster in C using local trees to allow performing all

of the above operations in 𝑂 (log𝑛) time. A local tree for a cluster

𝑢 in C is a binary tree whose leaves are the children of 𝑢 in C. Let
the rank of a child 𝑣 of 𝑢 be 𝑟 (𝑣) = ⌊log𝑛(𝑣)⌋. Initially, each child

cluster is in its own tree. While there are two trees 𝑟 and 𝑟 ′ of the
same rank, they are paired up into a new tree 𝑟 ′′ with rank one

larger. Once this pairing process terminates, there are at most log𝑛

trees𝑇1, . . . ,𝑇𝑘 , which are called rank trees. The collection of rank

trees are combined into a single binary tree by connecting them in

order of rank along the right spine of a binary tree.

To efficiently iterate over level 𝑖 edges during the search, the trees

are augmented using a log𝑛-length bitmap (stored as a single word),
where the 𝑖-th bit is 1 if and only if there is a level 𝑖 edge incident

to some leaf vertex in the subtree. All of the operations needed

in the sequential CF algorithm can be implemented in 𝑂 (log𝑛)
worst-case time using local trees [47].

Advantages and Challenges of the CF Algorithm. One im-

mediate advantage of the cluster forest algorithm [47] is that the

space requirement for the cluster forest can be made 𝑂 (𝑛 +𝑚) by
simply ensuring that the cluster forest is path compressed, i.e., a

level-𝑖 cluster 𝑐 is explicitly represented if and only if either 𝑖 = 0

or there is a level 𝑖 edge 𝑒 with both endpoints in 𝑐 (thus either 𝑒

is a self-loop or 𝑐 has at least two level-(𝑖 − 1) child clusters). On

the other hand, the HLT algorithm requires 𝑂 (𝑛 log𝑛 +𝑚) space,
since each vertex is potentially present in an Euler Tour Tree at all

𝑂 (log𝑛) levels. Since large graphs in practice are often extremely

sparse [15], achieving linear total space is an important goal that

can lead the community towards practical and theoretically efficient

implementations of dynamic graph connectivity.

As discussed in Section 3, the main challenge with parallelizing

the CF algorithm is how to perform the replacement edge search,

which requires work-efficiently traversing the cluster graph (which

can potentially have very high diameter).

5 THE BLOCKED CLUSTER FOREST
We will use the idea of blocked edges to obtain more structured clus-

ter graphs that have bounded diameter and enable us to parallelize

the connectivity search. Here we define blocked edges and establish

the main invariant of our new data structure:

Definition 5.1 (Blocked Edge). A level 𝑖 edge 𝑒 = (𝑢, 𝑣) is a blocked
edge if it cannot be pushed to level (𝑖 − 1) without violating In-

variant 2.1. That is, a level 𝑖 edge (𝑢, 𝑣) is blocked if and only if

𝑛(cluster(𝑢, 𝑖)) + 𝑛(cluster(𝑣, 𝑖)) > 2
𝑖−1

. An unblocked edge is an
edge that is not blocked.

Invariant 5.2 (Blocked Edge Invariant). Consider any cluster graph
𝐶𝐺 (𝑐) of a level 𝑖 cluster 𝑐 . Then every level (𝑖 −1) cluster𝑋 ∈ 𝐶𝐺 (𝑐)
is incident to at least one blocked level 𝑖 edge or 𝑐 is an isolated cluster
and only has one child 𝑋 .

892

Blocked Edge Unblocked Edge

(1) Star (2) Triangle (3) Isolated

Figure 3: The three possible cases for what the cluster graph
of a level 𝑖 cluster in a blocked cluster-forest can look like.

A blocked cluster-forest is defined as a cluster forest where

every cluster satisfies Invariant 5.2. An isolated cluster in the

cluster forest is a cluster that has only a single child. The blocked

edge invariant is useful since we can show that it implies that every

cluster graph has low diameter, making them more amenable to

parallel search. Next, we describe several important and useful

properties of the blocked cluster-forest. The proofs are left to the

full paper [36]. The key property is that a maximum matching

computed over the blocked edges must have size at most 1, as

summarized by the following lemma:

Lemma 5.3. Suppose Invariant 5.2 holds for a cluster graph 𝐶𝐺 (𝑐)
of a level 𝑖 cluster 𝑐 . Let𝑀 be the size of the maximum matching in
𝐶𝐺 (𝑐) over only the blocked edges. Then𝑀 ≤ 1.

The invariant also implies that we cannot have a path using

only blocked edges of length ≥ 3, since such a path has a blocked

matching of size𝑀 > 1. This allows to prove the following lemma

that bounds the diameter of any cluster graph.

Lemma 5.4. Suppose Invariant 5.2 holds for a cluster graph 𝐶𝐺 (𝑐)
of a level 𝑖 cluster 𝑐 . Then 𝐶𝐺 (𝑐) has diameter diam(𝐶𝐺 (𝑐)) ≤ 2.

The following two lemmas describe other properties of the

blocked cluster forest which enable efficient updates:

Lemma 5.5. Suppose Invariant 5.2 holds for a graph 𝐶𝐺 (𝑐) of a
level 𝑖 cluster 𝑐 . Then, there exists a center node in 𝐶𝐺 (𝑐) that is
connected to every other node by a blocked edge.

Lemma 5.6. Suppose Invariant 5.2 holds for a graph 𝐶𝐺 (𝑐) of a
level 𝑖 cluster 𝑐 , and 𝐶𝐺 (𝑐) has 𝑘 ≥ 4 nodes. Then, the center node
corresponds to the largest cluster in 𝐶𝐺 (𝑐).

Using Structure for Parallel Connectivity Search. Consider a
level 𝑖 cluster 𝑐 . We can characterize 𝐶𝐺 (𝑐) as one of following:
• The cluster graph is a star (case (1) in Figure 3).

• The cluster graph is a triangle (case (2) in Figure 3).

• The cluster graph is a single node (case (3) in Figure 3).

Figure 4 illustrates the relationship between clusters in the clus-

ter forest C and the cluster graph of a node. Since the graphs are

guaranteed to have low diameter, performing a graph search on

𝐶𝐺 (𝑐) from two clusters 𝐶𝑢 and 𝐶𝑣 can be done in low depth by

running the searches in lock step and doubling the number of edges

that we explore at each step. The doubling ensures that we can still

amortize the exploration cost to level decreases on the edges in

previous steps while ensuring that the search runs in polylogarith-

mic depth. The main challenge now is how to maintain the blocked

invariant dynamically.

P

C2 C3 C5C4

C3

C2 C1 C5C4

Cluster Forest

level i

level i − 1C1

, the cluster graph of CG(P) P
Blocked Edge

Unblocked Edge

Cluster Forest Node

Cluster Graph Node

Figure 4: Illustration of the cluster graph for a node in the
blocked cluster-forest, and its star structure. The center node
of𝐶𝐺 (𝑃) is𝐶3, and all other nodes are satellites connected to
the center through a blocked edge.

5.1 Updating the Blocked Cluster-Forest
In this section, we describe how to maintain Invariant 5.2 while per-

forming single edge insertions and deletions. Surprisingly, achiev-

ing this goal even in the sequential setting requires some non-trivial

ideas and analysis.

Pushing Edges Down.Note that pushing an edge from level (𝑖+1)
to 𝑖 may violate the blocked invariant for its new level (𝑖 − 1) end-
points. Lemma 5.7 and 5.8 prove that if an unblocked edge is repeat-
edly pushed down until it is blocked, then the blocked invariant

will be maintained. The proofs are left to the full paper [36] due to

space constraints.

Lemma 5.7. If a level 𝑖 edge 𝑒 between two distinct level (𝑖 − 1)
clusters 𝐶1 and 𝐶2 is unblocked, then either 𝐶1 or 𝐶2 is an isolated
cluster, i.e., its cluster graph consists of a single level (𝑖 − 2) cluster.

Lemma 5.8. If an unblocked edge is pushed down until it is blocked
then Invariant 5.2 is preserved.

Insert 𝑒 = (𝑢, 𝑣).We give a simple top-down algorithm for inser-

tion. In the cluster forest we include a single global level 𝐿max + 1
cluster whose children are the roots of all the components. Then for

insertion, add the edge as a level (𝐿max+1) edge. No level (𝐿max+1)
edge can be blocked as the size constraint for level 𝐿max clusters is

≥ 𝑛. Next repeatedly push down 𝑒 until it is blocked. Lemma 5.8

proves that this maintains the blocked invariant.

Delete 𝑒 = (𝑢, 𝑣). Let the level of 𝑒 be 𝑖 = 𝑙 (𝑒) prior to deletion.

Similar to before, let𝐶𝑢 = cluster(𝑢, 𝑖−1) and𝐶𝑣 = cluster(𝑢, 𝑖−1),
the two level (𝑖 − 1) clusters containing 𝑢 and 𝑣 . Let 𝑃 be the parent

cluster of 𝐶𝑢 and 𝐶𝑣 , and 𝐺𝑃 be the grandparent. Let 𝐺𝑖 = 𝐶𝐺 (𝑃)
be the cluster graph of 𝑃 . Like before, if 𝐶𝑢 = 𝐶𝑣 then the edge is a

self-loop we can quit here since the connectivity is unaffected. If

the edge is unblocked it can be safely deleted because either it is a

self loop or the clusters are connected by 1 or 2 blocked edges. If

𝐶𝑢 ≠ 𝐶𝑣 and the edge is blocked, deletion of the edge may cause

𝐶𝑢 and 𝐶𝑣 to be in violation of the blocked invariant.

Consider a level 𝑖 edge. Any unblocked level 𝑖 edges that we

encounter can be pushed down (repeatedly until blocked). Any

blocked level 𝑖 edges must remain at this level. Since there can be

multiple (parallel) edges between two level (𝑖 − 1) clusters that
are all blocked, we need to be careful that we don’t process too

many blocked edges, since we can’t push these down. To restore

the blocked invariant at this level (the lowest level that the deletion

affects), we repeatedly fetch and push down a level 𝑖 edge incident

to 𝐶𝑢 or 𝐶𝑣 in an alternating fashion until we have certified that

893

P P1 P2

Figure 5: A cluster graph before and after the center cluster 𝑃
splits. The edges incident to 𝑃 are divided between 𝑃1 and 𝑃2.

both are incident to a blocked edge (or have no more incident

edges). Restoring the invariant at higher levels turns out to be more

involved, and we describe this shortly.

Once we have restored the invariant at this level, we can certify

the connectivity of 𝐶𝑢 and 𝐶𝑣 as follows. If both have no more

incident edges, then they are connected if and only if 𝐶𝑢 = 𝐶𝑣 .

If one has no more incident edges and the other is incident to a

blocked edge, they must not be connected. If both are incident to a

blocked edge, they must be connected (otherwise the two blocked

edges form a matching of size 2 over the blocked edges in 𝐶𝐺 (𝑃)).
Just as in original CF algorithm, if the connectivity search failed

at level 𝑖 , the algorithm must continue to level (𝑖 + 1) and perform

connectivity search over the level (𝑖 + 1) edges. In this case, one

of the components must have merged into a single level (𝑖 − 1)
cluster. Let𝑊 be this cluster. We (1) remove𝑊 as a child of 𝑃 and

decrement 𝑛(𝑃) by 𝑛(𝑊), (2) create a new level 𝑖 cluster 𝑃 ′, set the
parent of𝑊 to 𝑃 ′, and (3) add 𝑃 ′ as a child of 𝐺𝑃 .

When𝑊 is removed as a child of 𝑃 and added as a child of a new

cluster 𝑃 ′, 𝑃 is essentially being split into two clusters, 𝑃1 and 𝑃2
(see Figure 5). The size of 𝑃 is split between 𝑃1 and 𝑃2. Any edges

previously incident to 𝑃 are now incident to either 𝑃1 or 𝑃2 (or

possibly both if it was a self-loop). Since the sizes of both 𝑃1 and

𝑃2 are less than that of 𝑃 , these edges may now be unblocked, thus

the cluster graph of 𝐺𝑃 potentially violates the blocked invariant.

Restoring the Blocked Invariant at Higher Levels. Unlike
restoring the blocked invariant at the lowest level that an edge

was deleted, which is straightforward, restoring the invariant at

higher levels is much trickier since clusters can be split as illus-

trated in Figure 5. If the number of clusters in𝐶𝐺 (𝑐) is bounded by
some constant, we can afford to restore the invariant by checking

that every single cluster is incident to a blocked edge, pushing any

found unblocked edges down.

Otherwise (if the number of clusters is𝜔 (1)), Lemmas 5.5 and 5.6

tell us that there is a well-defined center cluster that is connected

to every other cluster by a blocked edge, and this cluster has the

largest size in the cluster graph. Thus we can naturally think of

two cases: 𝑃 was the center cluster or 𝑃 was a satellite cluster. We

define a satellite cluster as a cluster that is not the center, but was
connected to the center via a blocked edge before the split of 𝑃 .

If 𝑃 was a satellite cluster that split into fragments 𝑃1 and 𝑃2,

then only those two clusters could violate the blocked invariant. We

can restore the invariant by simply fetching and pushing down one

outbound edge incident to both fragments. We define an outbound

edge as an edge incident to a cluster that is not a self-loop. If the

outbound edge is blocked, then we are done. If it is unblocked, we

push it down thus merging the fragment into another cluster that

is incident to a blocked edge.

Restoring the Blocked Invariant With Split Center.When 𝑃

is the center cluster, the blocked invariant may become violated

for 𝑃1 and 𝑃2 themselves, as well as many or all satellite clusters.

The difficulty in restoring the blocked invariant in this case is

that we have to restore the blocked invariant for potentially many

satellites without examining too many blocked edges since they

cannot be pushed down to charge the work. The structure of this

new cluster graph consists of the two centers, 𝑃1 and 𝑃2, and a set

of satellite clusters connected by edges to 𝑃1 and/or 𝑃2. There may

also be edges between 𝑃1 and 𝑃2 (previously self-loops on 𝑃), edges

between satellites, and self-loops on any cluster (see example in

Figure 5). Here we give a high-level description of how to restore

the blocked invariant after a center has been split. We leave a more

careful description and analysis to the full paper [36] due to space

constraints. Our result is summarized by the following lemma:

Lemma 5.9. When a cluster𝑋 is split in a cluster graph𝐶𝐺 (𝑐) that
previously maintained Invariant 5.2, the invariant can be restored in
𝑂 ((𝑘 + 1) log𝑛) time where 𝑘 is the total number of edges pushed
down by this process.

The high-level procedure is to sequentially fetch an outbound

edge incident to each satellite cluster. We maintain a running total

of the sizes of 𝑃1 and 𝑃2 combined with the sizes of their adjacent

satellites that have been discovered and sets of the adjacent satellites

found. We update these total sizes when the fetched edge connects

to one of the center fragments. If it connects to another satellite,

the two satellites merge together (the edge may be blocked, but we

prove in the full paper [36] that this can only happen once). This

continues until either (1) a blocked edge from every satellite has

been found, or (2) 𝑃1 or 𝑃2 has found two neighboring satellites

that could not merge with it due to the size constraint (e.g. the two

edges to the center fragment would be blocked if all previously

discovered satellites were merged with their center). In the first

case it is easy to restore the blocked invariant by pushing down all

but at most two of the edges found to the center fragments. In the

second case, assume without loss of generality that this happened

with 𝑃1. Then it is certain that 𝑃2 is able to merge with all of its

neighboring satellites without violating the size constraint. Thus,

we can fetch all of the edges out of 𝑃2 and merge it with all of its

neighbors to restore the blocked invariant.

Once the invariant has been restored, the same procedure as

used at the original level is used to check the connectivity of 𝑃1
and 𝑃2 and then possibly continue to higher levels.

Analysis. Lemma 5.10 proves the correctness of our deletion al-

gorithm in maintaining the size invariant and the blocked edge

invariant, the formal proof of which is described in the full pa-

per [36]. The overall correctness of the algorithm follows from this

lemma and the original cluster forest algorithm.

Lemma 5.10. Invariants 2.1 and 5.2 are preserved by edge deletion.

Deletions can take 𝑂 (log𝑛) work per level that is not charged

to an edge being pushed down if a blocked edge is immediately

encountered when certifying connectivity. This results in a total of

𝑂 (log2 𝑛) uncharged work. Combining this with Lemma 5.9 yields

the following theorem:

Theorem 5.11. The amortized cost of insert and delete operations
is 𝑂 (log2 𝑛) using the blocked cluster-forest data structure.

894

6 PARALLELIZING INDIVIDUAL UPDATES
Next, we step towards our goal of a parallel batch-dynamic algo-

rithm by describing how to perform a single update in parallel.

Many ideas and primitives developed in this setting are also useful

in the batch-dynamic setting (Section 7). The depth of insertion is

𝑂 (log2 𝑛) already, so we focus on deletion.

6.1 Batch-Dynamic Local Trees
We use a modified version of the local trees used in [47] that also

supports parallel operations. Additionally, our parallel algorithm

requires an operation that returns a prefix of the smallest clusters

in the local tree, sorted by size. The interface for the modified local

trees is defined as follows:

• BatchInsert(𝑐1, ..., 𝑐𝑘) takes a list of 𝑘 new clusters and adds

them to the local tree.

• BatchDelete(𝑐1, ..., 𝑐𝑘) takes a list of 𝑘 clusters in the local tree

and removes them.

• GetMaximalPrefix(𝑠) returns a maximal prefix of the clusters

in the local tree sorted by size such that their total size is less

than or equal to 𝑠 .

To support these operations efficiently, we divide the elements

in the tree into 𝑂 (log𝑛) size classes of geometrically increasing

buckets and store a separate weight-balanced tree for the clusters

in each size class. In the weight-balanced trees, elements are keyed

by the size of the cluster they represent. This approach allows

us to efficiently return a prefix of the elements. Since the sizes

of all elements are within a constant fraction of each other, the

telescoping sum argument of [47] still applies. Additionally, since

weight-balanced trees are known to support efficient batch-parallel

insertion and deletion [6], our local trees can also support efficient

batch insertions and deletions by first semi-sorting by size class

and then separately and in parallel batch inserting and deleting

elements into/from the weight-balanced tree for each size class. All

operations can be done in 𝑂 (log𝑛) depth and 𝑂 (𝑘 log(1 + 𝑛/𝑘))
work, which we carefully describe and prove in the full paper [36].

6.2 Searching for Edges in Parallel
To achieve low depth in batch updates we need an operation to

fetch 𝑘 level 𝑖 edges incident to a given cluster in low depth:

• FetchEdges(𝑘,𝐶, 𝑖) returns 𝑘 level-𝑖 edges incident to a clus-

ter 𝐶 , or all of the level-𝑖 edges if there are less than 𝑘 .

To implement this operation, we traverse down the nested local tree

structure one level at a time, maintaining a set of approximately 𝑘

clusters that have a level 𝑖 edge incident to them by following the

set bits in the bitmaps. The algorithm is described in detail in the

full paper [36]. This yields the following lemma:

Lemma 6.1. Fetching 𝑘 level-𝑖 edges incident to a given cluster (or
all edges if < 𝑘 exist) in a cluster forest implemented with local trees
can be done in 𝑂 (log𝑛) depth and 𝑂 (𝑘′ log𝑛) work where 𝑘′ is the
number of edges returned.

Now we describe two useful routines to fetch edges in parallel

which will be used in the rest of this section. These are (1) fetching

all edges incident to a cluster and (2) fetching a single outbound

edge incident to a cluster. Note that fetching a single outbound edge

is not trivial because it is possible to repeatedly find self-loops when

fetching an edge incident to a cluster. The goal is to implement

both of these operations in 𝑂 (log2 𝑛) depth and work within a

constant factor of the work of their sequential implementations

(e.g. 𝑂 (𝑘 log𝑛) where 𝑘 is the total number of edges fetched).

To accomplish this, we perform a doubling search where we

fetch edges in rounds, doubling the number of edges fetched in each

round. In each round, we use the parallel FetchEdges operation
which fetches 𝑘 edges incident to a cluster in 𝑂 (log𝑛) depth and

𝑂 (𝑘 log𝑛) work. This process takes 𝑂 (log𝑛) rounds of doubling
since there are at most 𝑂 (𝑛2) edges. After each round, we check if

the search is complete. For the first operation, we know it is done if

FetchEdges returns < 𝑘 edges. For the second operation, we check

all of the edges returned in parallel to see if they are a self-loop.

This process takes 𝑂 (log𝑛) depth and 𝑂 (log𝑛) work per edge. For

both operations we have fetched at most twice as many edges as

the sequential implementation and thus performed work within a

constant factor of the sequential work. Each of the𝑂 (log𝑛) rounds
of doubling search takes 𝑂 (log𝑛) depth, giving a total depth of

𝑂 (log2 𝑛). This yields the following Lemma:

Lemma 6.2. Fetching all of the edges incident to a cluster or fetching
an outbound edge incident to a cluster can be done in𝑂 (log2 𝑛) depth
and 𝑂 (𝑘 log𝑛) work where 𝑘 is the total number of edges fetched.

6.3 Pushing Down Edges in Parallel
Updating Bitmaps in Parallel. First we describe the simpler

problem of updating the bitmaps in the local trees for a batch of

edges that are pushed down from the same level. Updating the

bitmaps is equivalent to updating a batch of 𝑘 augmented values

in the nested local trees structure and can be implemented using

an atomic compare-and-swap (CAS) operation on each bit along

the leaf-to-root path that needs to be updated, quitting early if the

CAS fails. In total, the batch bitmap update takes 𝑂 (log𝑛) depth
and 𝑂 (𝑘 log(1 + 𝑛/𝑘)) work.
Pushing Down Groups of Edges in Parallel. Next, we describe
how to handle pushing edges down in parallel. We provide the

following two routines:

• PushDownGroup(𝐸) pushes down a set 𝐸 of 𝑘 level 𝑖 edges,

where the edges in 𝐸 are all incident to a common level (𝑖 − 1)
cluster and the total size in level (𝑖 − 1) clusters containing
their endpoints is ≤ 2

𝑖−1
(e.g. all of 𝐸 can be pushed down).

• BatchPushDown(𝐸) given a set 𝐸 of level 𝑖 edges, this pushes

down as many edges of 𝐸 as possible until the only remaining

ones are blocked. Formally, this operation ensures that every

level (𝑖 − 1) cluster containing an endpoint of any edge in 𝐸 is

incident to a blocked edge or its parent is isolated.

Pushing down a single level 𝑖 edge 𝑒 to level (𝑖 − 1) requires
updating the level 𝑖 and level (𝑖 − 1) bitmaps, and possibly combin-

ing the local trees of the two level (𝑖 − 1) clusters containing the
endpoints of 𝑒 . In the sequential setting, our method to maintain

the blocked invariant and the size invariant after a single edge push

was to push down an edge as far as possible until it became blocked.

When pushing down multiple edges in parallel, there are a few

challenges that arise. There may be situations where pushing down

one edge causes a different previously unblocked edge to become

blocked. Also, combining several local trees in parallel is non-trivial.

895

Our Approach: Reducing to PushDownGroup. Consider push-
ing down a batch of 𝑘 edges incident to a common cluster. Updating

the bitmaps for this batch of edges can be done efficiently as de-

scribed at the beginning of this section. Lemma 6.3 proves that

when pushing down a group of unblocked edges incident to a com-

mon cluster, at most one of the clusters can be non-isolated (i.e. the

cluster has multiple children).

Lemma 6.3. For any set of 𝑘 level 𝑖 clusters in the same cluster
graph whose combined size is ≤ 2

𝑖 , at most one of the clusters can
have multiple children (it is not isolated).

Proof. Assume that two or more of the clusters are not isolated.

Then there are at least two disjoint blocked edges between level

(𝑖 − 1) clusters. Each blocked edge must have > 2
𝑖−1

size. Having at

least two of these, the total size is > 2
𝑖
which is a contradiction. □

This means that all but one of the cluster graphs will consist of

a single cluster. Given this observation, we avoid the challenge of

merging several level 𝑖 local trees in parallel, and simply need to

delete the isolated clusters from the level 𝑖 cluster graph and insert

them into the cluster graph of the level (𝑖 − 1) cluster that is not
isolated, both of which can be done batch-parallel using our batch-

dynamic local trees. We include the full description and analysis

for PushDownGroup in the full paper [36].

Lemma 6.4. Pushing down a batch of 𝑘 level 𝑖 edges incident to
a common level (𝑖 − 1) cluster can be done in 𝑂 (log𝑛) depth and
𝑂 (𝑘 log(1 + 𝑛/𝑘)) work.

Given this routine, we can reduce the problem of pushing down

an arbitrary batch of edges to multiple calls of PushDownGroup.
The general strategy is to take a spanning forest of the edges and

decompose it into disjoint stars. Then for each star we merge into

the center a maximal prefix of the clusters sorted by size that can

be merged into the center without violating the size constraint.

We give the algorithmic details of PushDownBatch in the full

paper [36], which proves the following lemma:

Lemma 6.5. Given a set 𝐸 of 𝑘 level 𝑖 edges, enforcing that every
level (𝑖−1) cluster containing an endpoint of any edge in 𝐸 is incident
to a blocked edge or its parent is isolated, can be done in 𝑂 (log2 𝑛)
depth and 𝑂 (𝑘 log𝑛) work.

6.4 Parallelizing Deletion
Here we describe how to parallelize a single update in the blocked

cluster forest using the results of the previous subsections. We focus

on deletion since insertion already takes 𝑂 (log2 𝑛) depth.
Pushing Down Edges. During a deletion, the algorithm sweeps

up the levels of the cluster forest until a replacement edge is found

or the top is reached. At each level some edges may be pushed

down. In the sequential case, these edges were immediately pushed

down as far as possible. To parallelize deletion, we will collect all

of the edges that are pushed down at each level during this upward

sweep, and handle them later in a downward sweep to restore the

blocked invariant. Let 𝐸ℓ be the set of edges pushed down during

the upward sweep of deletion at a level ℓ .

Once the upward sweep has finished at level ℓ𝑢 , we start a down-

ward sweep, starting at level ℓ𝑑 = (ℓ𝑢 − 1). At each level ℓ𝑑 in the

downward sweep, we call BatchPushDown(𝐸ℓ𝑑). Every edge that

is pushed down by this call is added to the set 𝐸 (ℓ𝑑−1) .

Restoring the Blocked Invariant.When a cluster is split at higher

levels during deletion, the algorithm must restore the blocked in-

variant in that cluster graph before continuing. As in the sequential

setting, if the split cluster was a satellite, we just need to find and/or

push down a single outbound edge incident to both fragment clus-

ters. Lemma 6.2 proves that we can find such an edge in 𝑂 (log2 𝑛)
depth and 𝑂 (𝑘 log𝑛) work which can be charged to the self-loops

that are found and pushed down. If the split cluster is the center,

restoring the blocked invariant is much more complex. Due to space

constraints, we leave the description of this to the full paper [36].

Our result is summarized by the following lemma:

Lemma 6.6. When a cluster𝑋 is split in a cluster graph𝐶𝐺 (𝑐) that
previously maintained Invariant 5.2, the invariant can be restored
in 𝑂 (log2 𝑛) depth and 𝑂 ((𝑘 + 1) log𝑛) work where 𝑘 is the total
number of edges pushed down by this process.

We leave the full analysis of deletion to the full paper [36]. Our

result is the following lemma:

Lemma 6.7. A deletion in a blocked cluster forest can be done in
𝑂 (log3 𝑛) depth and 𝑂 (𝑘 log𝑛 + log2 𝑛) work where 𝑘 is the total
number of edges pushed down during the deletion.

7 PARALLEL BATCH-DYNAMIC UPDATES
In this section we show how to extend blocked cluster forests to

support parallel batch-dynamic operations.

7.1 Batch Insertion
Consider a batch 𝐸 of 𝑘 edge insertions. All of the edges in the

batch are inserted at level (𝐿max +1). Let the set of edges be 𝐸𝐿max+1.
Then we call BatchPushDown on 𝐸𝐿max+1. Let 𝐸𝐿max

be the set

of edges that were pushed down by this call. We repeatedly call

BatchPushDown on 𝐸𝑖 , the set of edges pushed down by the call

on 𝐸𝑖+1. Algorithm 1 shows the pseudo-code for batch insertion.

Algorithm 1 BatchInsertion(𝐶𝐹, 𝐸)
1: Insert all of 𝐸 into the edge lists of their endpoints

2: Batch update bitmaps for level (𝐿max + 1) edges
3: while |𝐸 | > 0 do
4: 𝐸 ← BatchPushDown(𝐸)

When a batch of edges is introduced into a level, only the clusters

incident to those edges may violate the blocked invariant. Calling

BatchPushDown ensures that these clusters follow the blocked

invariant when it is finished. Doing this for every level ensures that

the blocked invariant is maintained throughout the cluster forest.

Each call to BatchPushDown takes 𝑂 (log2 𝑛) depth, so the total

depth of batch insertion across all levels is 𝑂 (log3 𝑛). The work in

the first call to BatchPushDown is 𝑂 (𝑘 log𝑛). This work can be

charged to the 𝑘 edges in 𝐸 being inserted. Each subsequent level 𝑖

performs𝑂 (|𝐸𝑖 | log𝑛) work which can be charged to the |𝐸𝑖 | edges
pushed down at the previous level.

896

Algorithm 2 BatchDeletion(𝐶𝐹, 𝐸)
1: Delete all of 𝐸 from the edge lists of their endpoints

2: Batch update bitmaps for each edge’s level prior to deletion

3: [𝐸1 . . . 𝐸𝐿max
] ← semisort(𝐸), ℓ ← 1, 𝐴← 𝐸1

4: while |𝐴| > 0 do ⊲ sweep up

5: 𝐺𝑟𝑜𝑢𝑝𝑠 ← sort A by parent

6: for (𝐺𝑟𝑜𝑢𝑝, 𝑃) ∈ 𝐺𝑟𝑜𝑢𝑝𝑠 do ⊲ parallel for

7: RestoreBlockedInvariant(𝐶𝐺 (𝑃))
8: 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 ← {}
9: for 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝐺𝑟𝑜𝑢𝑝 do ⊲ parallel for

10: 𝑒 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 .FetchOutboundEdge()
11: if ¬𝑒 then 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.Insert(𝐶𝑙𝑢𝑠𝑡𝑒𝑟)
12: else 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠.Insert(𝑛𝑢𝑙𝑙)
13: if |𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 | > 1 then
14: for (𝐶𝐶 ≠ 𝑛𝑢𝑙𝑙) ∈ 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 do ⊲ parallel for

15: Create a new parent cluster for 𝐶𝐶

16: 𝑃 .RemoveChildren(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠)
17: Parent(𝑃).AddChildren(new parents)
18: 𝐴← 𝑃 ∪ new parents created

19: ℓ ← ℓ + 1, 𝐴← 𝐴 ∪ {𝑎 | 𝑎 ∈ 𝑒 ∈ 𝐸ℓ }
20: for ℓ ∈ [𝐿max − 1, 1] do ⊲ sweep down

21: 𝐷 (ℓ−1) ← 𝐷 (ℓ−1) ∪ BatchPushDown(𝐷ℓ)

7.2 Batch Deletion
Consider a batch of 𝑘 edge deletions. The general strategy will be to

keep an active set 𝐴 of fragment clusters whose connectivity may

have changed. First there will be a bottom-up sweep on the levels

at the cluster forest. At every level the algorithm (1) restores the

blocked invariant (2) performs connectivity search, and (3) possibly

splits clusters in the level above. In this upward sweep, edges will

be pushed down only one level which may temporarily violate

the blocked invariant in the lower levels that have already been

processed. Afterwards, there will be a downward sweep to push

down any edges that were not pushed down as far as possible to

maintain the blocked invariant. Algorithm 2 shows the pseudo-code

for batch deletion.

First all of the edges in the batch are deleted from the list of edges

at the leaves of the cluster forest and the bitmaps are updated. The

next step is to semisort all of the deleted edges in the batch by their

(former) level. During the upward sweep at level 𝑖 , we will add the

level 𝑖 clusters containing the endpoint of each level (𝑖 + 1) edge to
our set of fragment clusters. When subject to 𝑘 deletions, clusters

at upper levels may be split into as many as 𝑘 + 1 fragments now

instead of just two. The full paper [36] describes how the blocked

invariant can be restored in parallel given the possibility of several

clusters being split by the batch of deletions. This yields Lemma 7.1.

Lemma 7.1. Given a cluster graph 𝐶𝐺 (𝑐) that was subject to 𝑘
clusters being split and previously maintained Invariant 5.2, the in-
variant can be restored in𝑂 (log2 𝑛) depth and𝑂 ((𝑥 +𝑘) log𝑛) work
where 𝑥 is the total number of edges pushed down by this process.

Parallel Connectivity Search and Splitting Clusters. Consider
the active set of𝑂 (𝑘) clusters at level 𝑖 . They can be grouped based

on their level (𝑖 + 1) parent cluster, by finding the parent of every

cluster in 𝑂 (𝑘 log𝑛) work, and sorting the clusters by parent in

𝑂 (log𝑘) depth and 𝑂 (𝑘 log𝑘) work (line 5) [12]. Then each group

can be processed independently in parallel. Let 𝑘′ be the number of

active clusters in a given group. Within each group, we first fix the

blocked invariant in the cluster graph of the parent (line 7). This

takes 𝑂 (log2 𝑛) depth and results in 𝑂 (𝑘′ log𝑛) uncharged work

by Lemma 7.1.

Then we want to determine the connected components of the

cluster graph 𝐶𝐺 (𝑃) of the parent 𝑃 . We will take advantage of

the fact there cannot be a matching of size greater than one over

the blocked edges in 𝐶𝐺 (𝑃). Since the blocked invariant has been

restored, only one connected component can contain multiple clus-

ters in 𝐶𝐺 (𝑃). The strategy will be to attempt to find an outbound

edge for each cluster in the active set. This can be done in𝑂 (log2 𝑛)
depth with 𝑂 (log𝑛) uncharged work per cluster, the rest of the

work is charged to the self-loops that were found and pushed down.

There will be 𝑂 (𝑘′ log𝑛) total uncharged work. If an outbound

edge is found, it is a part of the component with multiple clusters.

Each other component is defined by a single cluster. We produce

a set of the connected components, representing each singleton

component with its cluster and representing the component with

multiple clusters as null if it exists (lines 8–12).

If there is only one component, the deletion is done within this

component, meaning every edge deletion in this cluster graph has

certified connectivity (line 13). Otherwise, each lone cluster is re-

moved as a child of 𝑃 , and will get a new parent node at level (𝑖 + 1)
(lines 14–15). These will be added to the modified local tree of the

parent of 𝑃 using BatchInsert, and their sizes will be subtracted

from 𝑛(𝑃) within the AddChildren function (line 17). The com-

ponent with multiple clusters will keep the original 𝑃 as its parent.

If it didn’t exist (e.g. 𝑛(𝑃) = 0 now), we delete 𝑃 by removing it as

a child of its parent. The active set at the next level up will be the

set of new level (𝑖 + 1) clusters and possibly 𝑃 for any group that

still had multiple components, along with the clusters containing

endpoints of level (𝑖 + 2) edge deletions (lines 18–19).
Downward Sweep. Just like in parallelizing a single deletion, we

will collect all of the edges that are pushed down at each level

during the upward sweep, and handle them later in a downward

sweep to restore the blocked invariant. Let 𝐷ℓ be the set of edges

pushed down during the upward sweep of deletion at a level ℓ . We

start the downward sweep at level 𝐿max − 1. At each level ℓ in the

downward sweep, we call BatchPushDown(𝐷ℓ) (lines 20–21). For
every edge that this call pushes down, we add it to the set 𝐷 (ℓ−1) .

Cost Analysis.We analyze the work and depth of our batch update

algorithms in the full paper [36], yielding the following theorem:

Theorem 7.2. Batch insertions and batch deletions of edges in the
blocked cluster forest can be done in 𝑂 (log3 𝑛) depth per batch with
an amortized work of 𝑂 (log2 𝑛) per edge.

8 EMPIRICAL EVALUATION
In this section, we provide the first experimental study of the clus-

ter forest algorithm. Our goals in this part of the paper are to

understand (1) whether the cluster forest algorithm is practical

and yields good query and update performance; (2) whether the

theoretical space improvements provided by the cluster forest algo-

rithm translate into meaningful space improvements in practice;

897

and (3) whether the algorithm can scale to large graphs and work

well across a variety of different graph types (both real-world and

synthetic). Since there have been no prior implementations of the

cluster forest approach, we focus our study on sequential imple-

mentations in order to carefully study different design choices in

the algorithm and carefully measure the impact of these choices on

runtime and query performance. In this section, we demonstrate

that a carefully optimized implementation of the cluster forest algo-

rithm can achieve all three of these goals, and that the cluster forest

approach may be the algorithm of choice when both theoretical

guarantees and practical performance are required.

8.1 CF Algorithm Optimization
One of the main contributions of this paper is the first practical and

highly-optimized implementation of the cluster forest algorithm.

A major bottleneck when implementing the algorithm is the cost

of traversing the cluster-forest hierarchy, a step that occurs in

nearly all aspects of the algorithm (e.g., replacement edge search,

fetching a level 𝑖 edge, or pushing an edge from level 𝑖 to 𝑖 − 1).

Although the hierarchy has depth 𝑂 (log𝑛), traversals can still be

costly as they encounter both cluster forest nodes and local tree

nodes, and thus every traversal involves significant pointer jumping.

To address this issue, we designed our implementation to reduce

the cost of and eliminate tree traversals whenever possible. Due

to space constraints, we provide a more detailed description and

discussion of our optimizations in the full paper [36].

Our first optimization is called flattened local trees. As the
name suggests, we flatten the local tree structure into an array that

stores the roots of the rank trees in increasing order of rank instead

of combining the rank trees into a binary tree (see Section 4 for

local and rank tree definitions). Since there are at most log
2
𝑛 rank

trees, this array approach does not sacrifice the time complexity of

any local tree operation and improves locality. Additionally, we do

not combine rank trees nodes unless there are more than log
2
𝑛 of

them. This means that in many cases where a node in the cluster

forest has few children, the algorithm can avoid a large amount of

indirection in traversing the local trees and rank trees.

Our next optimization is called lowest common ancestor (LCA)
insertion. The optimization is to insert an edge at the level of the

lowest level node in the cluster forest that contains both endpoints

of the edge. A faithful implementation of the cluster forest algo-

rithm is to simply perform root insertion, i.e., every non-tree edge

insertion is simply placed at the root of its tree. The LCA optimiza-

tion trades off extra time spent during an insertion to find the LCA

to distribute the edges better across the levels to achieve faster

deletions, since fewer edges need to be searched, thus lowering

the amount of traversals. The performance overhead of performing

LCA insertion is negligible compared to root insertion—on average

LCA insertion is 1.06× faster on the graphs we evaluated when

comparing total insertion time. However, LCA insertion makes a

huge difference for speeding up deletions—on average, it speeds up

total deletion time by 1.5× on average over root insertion across

all of our graphs. We note that the LCA optimization is somewhat

unique to the cluster forest algorithm, since finding the LCA can

be done in 𝑂 (log𝑛) time using the cluster forest representation;

applying a similar optimization to HLT seems more complex as it

Table 1: Graph datasets used in our experiments.

Name Type |𝑉 | |𝐸 | Avg Deg Cite

GER Road 12.28M 16.12M 2.62 [40]

USA Road 23.95M 28.85M 2.41 [40]

HH 𝐾-NN 2.05M 6.50M 6.35 [37]

CHEM 𝐾-NN 4.21M 14.83M 7.05 [19]

YT Web 1.16M 2.99M 5.16 [49]

POKE Web 1.63M 22.30M 27.32 [34]

WT Web 1.79M 25.44M 28.41 [50]

EW Web 4.21M 91.94M 43.72 [9]

SKIT AS 1.70M 11.10M 13.08 [33]

SO Temporal 6.02M 28.18M 9.36 [42]

LJ Social 4.85M 42.85M 17.68 [4]

ORK Social 3.07M 117.19M 76.28 [49]

TWIT Social 41.65M 1.20B 57.74 [32]

FR Social 65.61M 1.81B 55.06 [49]

GRID Synthetic 10.00M 10.22M 2.04 [14]

RMAT Synthetic 67.11M 670.83M 19.99 [10]

requires quickly finding the lowest level where the endpoints of an

edge are connected, which naively takes 𝑂 (log2 𝑛) time.

When evaluating an early version of our algorithm, we found

that on dense graphs, our implementation was slower than HLT,

even when using the LCA optimization. The reason for HLT’s speed

is that ≥ 𝑚 − 𝑛 + 1 edges are non-tree edges, and therefore, many

deletions in dense graphs target non-tree edges. HLT benefits from

this fact, since a non-tree edge deletion simply checks a hash-table

storing whether an edge is tree or non-tree in 𝑂 (1) time, and up-

dates bitmaps after deleting the edge. To achieve similar benefits in

the cluster forest algorithm, we introduce a non-tree edge track-
ing optimization. We give a full description of the optimization in

the full paper [36]. The main idea of the optimization is to carefully

mark edges as either tree or non-tree—as in HLT, non-tree edges

do not affect the connectivity and can simply be deleted. On dense

graphs, the optimization yields a significant speedup—for example,

on Orkut, we observed a speedup of 1.87× after implementing the

optimization due to 87% of the deletions being detected as non-tree

edges. Compared to HLT, which detects 89% of the deletions as

non-tree edges our optimization shows that our CF implementation

can almost completely match the HLT implementation’s ability to

avoid unnecessary work during edge deletions.

8.2 Experimental Setup
All of the experiments presented in this paper were run on a ma-

chine with 4 × 2.1 GHz Intel Xeon(R) Platinum 8160 CPUs (each

with 33MiB L3 cache) and 1.5TB of main memory.

Implementations. Our cluster forest implementations are all writ-

ten in C++ and use B-tree sets and flat hash sets from Abseil [3]. We

refer to our implementations with and without the LCA insertion

optimization as CF-LCA and CF-Root, respectively. We compare

against a faithful implementation of the original HLT algorithm [26]

written in C++ also optimized using set data structures from Abseil.

Our implementations all use -O3 optimization. We also compare

against D-Tree [11], a recently published data structure for dynamic

connectivity that is written in Python. We note that since D-Tree

898

is implemented in Python comparing its running time and memory

usage with other implementations written in C++ may be unfair;

however, since D-tree is a recent linear-space dynamic connectivity

algorithm, we include it for completeness.

Input Data. The graphs used in our experiments are summarized

in Table 1. We use a variety of real-world and synthetic graphs with

varying sizes, densities, and types. To generate dynamic updates,

we generate a random permutation of all of the edges in the graph,

and insert all of the edges in this order. Then we generate another

random permutation of the edges and delete all of the edges in

this order. We break these random permutations into 10 stages
of inserting |𝐸 |/10 edges per stage and then 10 stages of deleting

|𝐸 |/10 edges. We use stages to understand how memory usage and

the insert and delete speeds change over time (e.g., as the graph

grows more dense, and then more sparse). At the end of each stage,

we perform 1M queries: half the queries are completely random

and half are endpoints of edges that exist in the graph at that point.

8.3 Performance Results
Memory Usage. We start by investigating whether the theoretical

guarantees on space provided by the CF algorithm translate into

practical improvements in memory usage. Our goal is to determine

(1) whether memory usage is a limiting factor in the ability of

HLT-based implementations to scale to extremely large graphs, (2)

whether implementations based on the CF algorithm using linear

space can overcome this obstacle, and (3) whether the memory

usage of implementations based on the CF algorithm can perform

better than existing state-of-the-art dynamic connectivity imple-

mentations using linear space. Our results affirmatively answer all

three of these questions.

The top of Figure 6 shows the peak memory usage of each al-

gorithm on the various graphs relative to the memory of CF-LCA.

We report the unnormalized numbers for peak memory usage in

the full paper [36]. Our main finding is that CF implementations

consistently require significantly less memory than HLT. CF-Root
uses 6.2×–19.7× less memory than HLT and CF-LCA uses 5.7×–
17.5× less memory than HLT. We note that across all the graphs

we tested, the memory efficiency of both CF-Root and CF-LCA are

very similar, with CF-Root having a slight edge (1.0×–1.2× less

memory). This is because with root insertion there are slightly

fewer nodes in the cluster forest. On the densest graph we tested

(Orkut) our best CF implementation uses 26 bytes/edge while HLT

uses 159 bytes/edge. On the sparsest graph we tested (Grid) the CF

algorithm uses 294 bytes/edge while HLT uses 5,809 bytes/edge.

These results clearly show the benefits of the CF algorithm over

HLT in practice across a wide variety of real-world graphs with

different characteristics. For sparse graphs (e.g., USA Roads, Stack-

Overflow, Grid) where𝑚 is closer to 𝑛, the 𝑂 (𝑛 +𝑚) space usage
of CF should beat the 𝑂 (𝑛 log𝑛 +𝑚) space usage of HLT, and this

asymptotic difference can be clearly seen in the results. Interest-

ingly, even for dense graphs (e.g. ENWiki, Orkut, Twitter) where

𝑚 > 𝑛 log
2
𝑛, CF still uses significantly less memory than HLT. This

is because in dynamic connectivity algorithms edges can be stored

very space efficiently (≈ 10 bytes/edge) while the space overhead of

the tree data structures used in virtually all dynamic connectivity

algorithms scales heavily with the number of vertices (at least a

hundred bytes per vertex per tree). This supports the conclusion

that on real-world graphs (which are typically quite sparse) dy-

namic connectivity algorithms that require storing a large number

of trees over the vertices (like HLT) prevent scaling to very large

graphs. The extra log𝑛 factor on the space usage, which may easily

be overlooked in theory, has a massive impact in practice.
For the third question, we compare our implementations of the

CF approach with an existing implementation of D-Tree [11], which

uses linear space in theory but sacrifices worst-case theoretical

guarantees on update time. Although it is implemented in Python,

D-Tree still uses significantly less memory than HLT in all of our

experiments. This is again indicative of the large impact of using

data structures that have linear total space in practice.

Update Times. The goals of our next experiments are (1) to deter-

mine whether CF implementations can match or beat the perfor-

mance of HLT for updates despite the increased implementation

complexity of CF, (2) to compare the update performance of our CF

implementations with the performance of existing state-of-the-art

dynamic connectivity implementations, and (3) to investigate the

impact of the optimizations from Section 8.1 on update speed.

The middle of Figure 6 shows total update time of each algorithm

on the various graphs relative to the time for CF-LCA.We report the

raw (unnormalized) numbers for updates times in the full paper [36].

Additionally, we include Figure 7 to show an example of how the

update performance varies throughout the sequence of updates

(per-stage) on the LiveJournal graph.

Our results show that our CF implementations can achieve sig-

nificantly better performance than HLT for both insertions and

deletions for all all graphs in our experiments. CF-LCA performs
updates 1.4×–6.2× faster than HLT, and CF-Root performs up-
dates 1.5×–3.8× faster than HLT. The improvements in update

speed for the CF implementations can be attributed to the optimiza-

tions we described in Section 8.1. For example, for non-tree edge

insertions, both algorithms must simply add the edge to the edge

set, and then traverse up to update 𝑂 (log𝑛) bitmaps; the flattened

local tree optimization decreases the cost of such traversals in the

CF implementation resulting in faster insertions. For non-tree edge

deletions, the non-tree edge tracking optimization enables our CF

implementation to match the performance of HLT. With the opti-

mization, both algorithms simply check the hash-table once, delete

the edges from the edge set, and traverse up to update the bitmaps.

The flattened local tree optimization once again allows the CF im-

plementations to outperform the HLT implementation due to the

lower cost of traversing the hierarchy. CF-LCA performs better than

CF-Root for total update time in most cases. This is because while

the LCA optimization slows down insertions slightly, deletions

become much faster due to fewer edges needing to be inspected.

However, CF-Root benefits from being able to find replacement

edges quickly in dense, well connected graphs like Twitter.

We also compared our CF implementations with D-Tree, which

sacrifices worst-case guarantees but obtains linear space usage. The

update performance of D-Tree varies greatly depending on the

graph due to its heuristic nature, but the CF algorithms perform

updates faster than D-Tree in all of our experiments. We note that

updates for D-Tree can take much longer on certain graphs; e.g.,

D-Tree is 173× slower than CF-LCA on the Household Lines graph.

899

U
pd

at
e

Ti
m

e

0

2

4

6

8

GER USA HH CHEM YT POKE WT EW SKIT SO LJ ORK TWIT FR GRID RMAT

CF-LCA CF-Root HLT DTree

Pe
ak

 S
pa

ce

0
5

10
15
20

GER USA HH CHEM YT POKE WT EW SKIT SO LJ ORK TWIT FR GRID RMAT

U
pd

at
e

Ti
m

e

0
2
4
6
8

GER USA HH CHEM YT POKE WT EW SKIT SO LJ ORK TWIT FR GRID RMAT

Q
ue

ry
 T

im
e

0

2

4

6

GER USA HH CHEM YT POKE WT EW SKIT SO LJ ORK TWIT FR GRID RMAT

Figure 6: The results of our experiments for peak space usage (top), total update time (middle), and total query time (bottom)
of each system on various inputs. All values are normalized to CF-LCA. The un-normalized results are presented in the full
paper [36]. A gray bar indicates that the time for D-Tree was over 100× longer than that of CF-LCA on the same input or it
terminated before completion with a timeout of 24 hours.

Ti
m

e
(s

)

8

20

40

80

200 CF-LCA CF-Root HLT DTree

Figure 7: The total time in seconds for each stage of updates
on the LiveJournal graph. The points on the 𝑥-axis represent
the 10 stages of insertion followed by 10 stages of deletion.

Since the algorithm does not haveworst-case guarantees, we believe

it is unlikely to be much faster on these bad cases even if it was

implemented in a different language.

Impact of Graph Properties. Interestingly, graph size does not

seem to play a major role in the relative performance of different

dynamic connectivity algorithms, and other properties such as

graph density, and graph diameter play a more important role. For

example, we observe a strong positive correlation between density

and improved running time for HLT; e.g., despite Twitter being one

of the largest graphs we evaluate on, its high density make HLT

perform significantly better.

Query Times. The bottom of Figure 6 shows the total query time

of each algorithm on the various graphs normalized to the time for

CF-LCA.We report the unnormalized numbers for query time in the

full paper [36]. Our main finding is that our CF implementations do

not sacrifice any performance in terms of query speed compared to

HLT. This is expected because, in both types of algorithms, queries

are answered by traversing to the root of the components of the two

vertices which requires𝑂 (log𝑛)memory reads and a single equality

check. Our results show that queries for our CF implementations

are slightly faster than HLT. We believe this is further indicative

that the height of the cluster forest hierarchy is generally lower

than that of the top level spanning forest data structure in HLT

due to the flattened local tree optimization. The query speed for

D-Tree varies greatly depending on the graph due to its heuristic

nature, but is almost always beaten by the CF algorithms and HLT

in our experiments. Comparing CF-LCA and CF-Root, we find that

CF-Root always has faster query times because the cluster forest

hierarchy has smaller height when performing root insertions.

9 CONCLUSION
This paper makes two significant contributions towards developing

a scalable and practical batch-dynamic connectivity algorithm. First,

on the theoretical side, we give the first parallel batch-dynamic algo-

rithm for maintaining the connected components of an undirected

graph that is work-efficient, runs in polylogarithmic depth, and

only uses linear total space. Second, we give the first empirical

study of the cluster forest algorithm in the sequential setting, intro-

duce new optimizations to improve its practicality, and demonstrate

its superior performance and space-efficiency in practice. Taken

together, our results indicate that the CF algorithm is an excellent

candidate for a practically scalable dynamic connected components

algorithm with good theoretical guarantees.

ACKNOWLEDGMENTS
This work is supported by NSF grants CCF-2403235, CNS-2317194,

CCF-1845763, CCF-2316235, CCF-2403237, Google Faculty Research

Award, Google Research Scholar Award, and Poland’s National Sci-

ence Centre grant no. 2022/47/D/ST6/02184. We thank the anony-

mous reviewers for their helpful feedback.

900

REFERENCES
[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019.

Parallel Batch-Dynamic Graph Connectivity. In The 31st ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’19). ACM.

[2] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 2001. Thread Scheduling for

Multiprogrammed Multiprocessors. Theory of Computing Systems (TOCS) 34, 2
(01 Apr 2001).

[3] Abseil C++ Authors. [n.d.]. abseil.io. abseil.io. Online; accessed September 2024.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group formation in large social networks: membership, growth, and evolution.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06). Association for

Computing Machinery, New York, NY, USA, 44–54.

[5] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten

Hoefler. 2019. Practice of streaming processing of dynamic graphs: Concepts,

models, and systems. arXiv preprint arXiv:1912.12740 (2019).
[6] Guy Blelloch, Daniel Ferizovic, and Yihan Sun. 2022. Joinable Parallel Balanced

Binary Trees. ACM Trans. Parallel Comput. 9, 2, Article 7 (apr 2022), 41 pages.
[7] Guy E. Blelloch, JeremyT. Fineman, YanGu, and Yihan Sun. 2020. Optimal parallel

algorithms in the binary-forking model. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 89–102.

[8] Robert D. Blumofe and Charles E. Leiserson. 1998. Space-Efficient Scheduling of

Multithreaded Computations. SIAM J. on Computing 27, 1 (1998).

[9] P. Boldi and S. Vigna. 2004. The webgraph framework I: compression techniques.

In Proceedings of the 13th International Conference on World Wide Web (New York,

NY, USA) (WWW ’04). Association for Computing Machinery, New York, NY,

USA, 595–602.

[10] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT:

A Recursive Model for Graph Mining.. In SDM, Michael W. Berry, Umeshwar

Dayal, Chandrika Kamath, and David B. Skillicorn (Eds.). SIAM, 442–446. http:

//dblp.uni-trier.de/db/conf/sdm/sdm2004.html#ChakrabartiZF04

[11] Qing Chen, Oded Lachish, Sven Helmer, and Michael H. Böhlen. 2022. Dynamic

spanning trees for connectivity queries on fully-dynamic undirected graphs.

Proc. VLDB Endow. 15, 11 (2022), 3263–3276.
[12] Richard Cole. 1986. Parallel merge sort. In 27th Annual Symposium on Foundations

of Computer Science (sfcs 1986). 511–516.
[13] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms (3rd edition). MIT Press.

[14] Aurelio W. T. de Noronha, André A. Moreira, André P. Vieira, Hans J. Herrmann,

José S. Andrade, and Humberto A. Carmona. 2018. Percolation on an isotropically

directed lattice. Phys. Rev. E 98 (Dec 2018), 062116. Issue 6. https://doi.org/10.

1103/PhysRevE.98.062116

[15] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient

Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 393–404.

[16] Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh

Sawlani, and Xiaorui Sun. 2020. Parallel batch-dynamic graphs: Algorithms and

lower bounds. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 1300–1319.

[17] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: a frame-

work for static and incremental parallel graph connectivity algorithms. Proceed-
ings of the VLDB Endowment (PVLDB) 14, 4 (2020), 653–667.

[18] David Eppstein, Zvi Galil, Giuseppe F Italiano, and Amnon Nissenzweig. 1997.

Sparsification–a technique for speeding up dynamic graph algorithms. J. ACM
44, 5 (1997), 669–696.

[19] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago Marco. 2015. Reser-

voir computing compensates slow response of chemosensor arrays exposed to

fast varying gas concentrations in continuous monitoring. Sensors and Actuators
B: Chemical (2015).

[20] Kasimir Gabert, Ali Pinar, and Ümit V Çatalyürek. 2021. Shared-memory scalable

k-core maintenance on dynamic graphs and hypergraphs. In 2021 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
998–1007.

[21] Junhao Gan and Yufei Tao. 2017. Dynamic Density Based Clustering. In Proceed-
ings of the 2017 ACM International Conference on Management of Data (SIGMOD
’17). 1493–1507.

[22] Yan Gu, Zachary Napier, and Yihan Sun. 2022. Analysis of Work-Stealing and

Parallel Cache Complexity. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS). SIAM, 46–60.

[23] KathrinHanauer,MonikaHenzinger, and Christian Schulz. 2022. Recent advances

in fully dynamic graph algorithms–a quick reference guide. ACM Journal of
Experimental Algorithmics 27 (2022), 1–45.

[24] Monika Rauch Henzinger and Valerie King. 1995. Randomized dynamic graph

algorithms with polylogarithmic time per operation. In ACM Symposium on
Theory of Computing (STOC). ACM.

[25] Monika R Henzinger and Valerie King. 2001. Maintaining minimum spanning

forests in dynamic graphs. SIAM J. on Computing 31, 2 (2001), 364–374.

[26] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic

deterministic fully-dynamic algorithms for connectivity, minimum spanning tree,

2-edge, and biconnectivity. Journal of the ACM (JACM) 48, 4 (2001), 723–760.
[27] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. 2017. Fully

Dynamic Connectivity in O(Log N(Log Log N)2) Amortized Expected Time. In

ACM-SIAM Symposium on Discrete Algorithms (SODA). 510–520.
[28] Raj Iyer, David Karger, Hariharan Rahul, and Mikkel Thorup. 2002. An Experi-

mental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms. ACM
J. Exp. Algorithmics 6 (Dec. 2002), 4–es. https://doi.org/10.1145/945394.945398

[29] Bruce M Kapron, Valerie King, and Ben Mountjoy. 2013. Dynamic graph connec-

tivity in polylogarithmic worst case time. In ACM-SIAM Symposium on Discrete
Algorithms (SODA).

[30] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup.

2016. Faster Worst Case Deterministic Dynamic Connectivity. In European
Symposium on Algorithms (ESA).

[31] Kamran Khan, Saif Ur Rehman, Kamran Aziz, Simon Fong, and Sababady Saras-

vady. 2014. DBSCAN: Past, present and future. In International Conference on
the Applications of Digital Information and Web Technologies (ICADIWT). IEEE,
232–238.

[32] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In Proceedings of the 19th International
Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW ’10).
Association for Computing Machinery, New York, NY, USA, 591–600.

[33] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations (KDD ’05).
Association for Computing Machinery, New York, NY, USA, 177–187.

[34] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[35] Quanquan C Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun.

2022. Parallel batch-dynamic algorithms for k-core decomposition and related

graph problems. In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures. 191–204.

[36] Quinten De Man, Laxman Dhulipala, Adam Karczmarz, Jakub Łącki, Julian

Shun, and Zhongqi Wang. 2024. Towards Scalable and Practical Batch-Dynamic

Connectivity. arXiv:2411.11781 [cs.DS] https://arxiv.org/abs/2411.11781

[37] Kolby Nottingham Markelle Kelly, Rachel Longjohn. [n.d.]. The UCI Machine
Learning Repository. Technical Report. UCI. https://archive.ics.uci.edu

[38] Nicholas Monath, Manzil Zaheer, and Andrew McCallum. 2023. Online Level-

wise Hierarchical Clustering. In ACM Conference on Knowledge Discovery and
Data Mining (KDD). 1733–1745.

[39] Danupon Nanongkai and Thatchaphol Saranurak. 2017. Dynamic spanning

forest with worst-case update time: adaptive, Las Vegas, and O(n1/2 - 𝜀)-time. In

ACM Symposium on Theory of Computing (STOC). ACM.

[40] OpenStreetMap contributors. 2017. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org.

[41] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace: A

Hierarchical Graph Container for Skewed Dynamic Graphs. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for ComputingMachinery, New York, NY, USA, 1372–1385.

https://doi.org/10.1145/3448016.3457313

[42] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal

Networks. In Proceedings of the Tenth ACM International Conference onWeb Search
and Data Mining (Cambridge, United Kingdom) (WSDM ’17). Association for

Computing Machinery, New York, NY, USA, 601–610.

[43] Boyu Ruan, Junhao Gan, HaoWu, and AnthonyWirth. 2021. Dynamic Structural

Clustering on Graphs. In Proceedings of the 2021 International Conference on
Management of Data. 1491–1503.

[44] Mikkel Thorup. 1999. Decremental dynamic connectivity. J. Algorithms 33, 2
(1999), 229–243.

[45] Mikkel Thorup. 2000. Near-optimal fully-dynamic graph connectivity. In Pro-
ceedings of the ACM Symposium on Theory of Computing. 343–350.

[46] Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. 2019. Batch-Parallel Euler

Tour Trees. In Proceedings of the Twenty-First Workshop on Algorithm Engineering
and Experiments (ALENEX). 92–106.

[47] Christian Wulff-Nilsen. 2013. Faster deterministic fully-dynamic graph con-

nectivity. In Proceedings of the twenty-fourth Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, 1757–1769.

[48] Christian Wulff-Nilsen. 2017. Fully-dynamic minimum spanning forest with

improved worst-case update time. In ACM Symposium on Theory of Computing
(STOC). ACM.

[49] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network commu-

nities based on ground-truth. In Proceedings of the ACM SIGKDD Workshop on
Mining Data Semantics (Beijing, China) (MDS ’12). Association for Computing

Machinery, New York, NY, USA, Article 3, 8 pages.

[50] Hao Yin, Austin R. Benson, Jure Leskovec, andDavid F. Gleich. 2017. Local Higher-

Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD
’17). Association for Computing Machinery, New York, NY, USA, 555–564.

901

abseil.io
http://dblp.uni-trier.de/db/conf/sdm/sdm2004.html#ChakrabartiZF04
http://dblp.uni-trier.de/db/conf/sdm/sdm2004.html#ChakrabartiZF04
https://doi.org/10.1103/PhysRevE.98.062116
https://doi.org/10.1103/PhysRevE.98.062116
https://doi.org/10.1145/945394.945398
http://snap.stanford.edu/data
https://arxiv.org/abs/2411.11781
https://arxiv.org/abs/2411.11781
https://archive.ics.uci.edu
 https://www.openstreetmap.org
https://doi.org/10.1145/3448016.3457313

	Abstract
	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 Sequential CF Algorithm
	5 The Blocked Cluster Forest
	5.1 Updating the Blocked Cluster-Forest

	6 Parallelizing Individual Updates
	6.1 Batch-Dynamic Local Trees
	6.2 Searching for Edges in Parallel
	6.3 Pushing Down Edges in Parallel
	6.4 Parallelizing Deletion

	7 Parallel Batch-Dynamic Updates
	7.1 Batch Insertion
	7.2 Batch Deletion

	8 Empirical evaluation
	8.1 CF Algorithm Optimization
	8.2 Experimental Setup
	8.3 Performance Results

	9 Conclusion
	Acknowledgments
	References

