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ABSTRACT
Distributed transactions on high-overhead TCP/IP-based
networks were conventionally considered to be prohibitively
expensive. In fact, the primary goal of existing partitioning
schemes is to minimize the number of cross-partition trans-
actions. However, with the new generation of fast RDMA-
enabled networks, this assumption is no longer valid.

In this paper, we first make the case that the new bottle-
neck which hinders truly scalable transaction processing in
modern RDMA-enabled databases is data contention, and
that optimizing for data contention leads to different par-
titioning layouts than optimizing for the number of dis-
tributed transactions. We then present Chiller, a new ap-
proach to data partitioning and transaction execution, which
aims to minimize data contention for both local and dis-
tributed transactions.

1. INTRODUCTION
The common wisdom is to avoid distributed transactions

at almost all costs as they represent the dominating bottle-
neck in distributed database systems. As a result, many par-
titioning schemes have been proposed with the goal of min-
imizing the number of cross-partition transactions (e.g., [2,
10]). Yet, a recent result [16] has shown that with the ad-
vances of high-bandwidth RDMA-enabled networks, neither
the message overhead nor the network bandwidth are limit-
ing factors anymore, significantly mitigating the scalability
issues of traditional systems. This raises the fundamental
question of how data should be partitioned across machines
given high-bandwidth low-latency networks. We argue that
the new optimization goal should be to minimize contention
rather than distributed transactions.

In this paper, we present Chiller, a new partitioning scheme
and execution model based on two-phase locking which aims
to minimize contention. Chiller is based on two comple-
mentary ideas: (1) a novel commit protocol based on re-
ordering transaction operations with the goal of minimizing
the lock duration for contended records through committing
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such records early, and (2) contention-aware partitioning so
that the most critical records can be updated without ad-
ditional coordination, which is different from existing par-
titioning algorithms that aim to minimize the number of
distributed transactions. For example, assume a simple sce-
nario with three servers in which each server can store up to
two records, and a workload consisting of three transactions
t1, t2, and t3 (Figure 1a). All transactions update r1. In ad-
dition, t1 updates r2, t2 updates r3 and r4, and t3 updates r4
and r5. The common wisdom would dictate partitioning the
data in a way that the number of cross-cutting transactions
is minimized; in our example, this would mean co-locating
all data for t1 on a single server as shown in Figure 1b, and
having distributed transactions for t2 and t3.

However, as shown in Figure 2a, if we re-order each trans-
action’s operations such that the updates to the most con-
tended items (r1 and r4) are done last, we argue that it
is better to place r1 and r4 on the same machine, as in
Figure 2b. At first this might seem counter-intuitive as it
increases the total number of distributed transactions. How-
ever, this partitioning scheme decreases the likelihood of
conflicts and therefore increases the total transaction through-
put. The idea is that re-ordering the transaction opera-
tions minimizes the lock duration for the “hot” items. More
importantly, after the re-ordering, the transaction commit
relies entirely on the success of acquiring the lock for the
most contended records. That is, if a distributed transac-
tion has already acquired the locks for all non-contended
records (referred to as the outer region), the commit out-
come will only depend on the contended records (referred to
as the inner region). This allows us to make all updates to
the records in the inner region without any further coordina-
tion. Note that this partitioning technique primarily targets
high-bandwidth low-latency networks, which mitigates the
two most common bottlenecks for distributed transactions:
message overhead and limited network bandwidth.

To provide such a contention-aware scheme, Chiller is
based on two complementary ideas that go hand-in-hand: a
contention-aware data partitioning algorithm and an operation-
reordering execution scheme. First, different from existing
partitioning algorithms that aim to minimize the number of
distributed transactions (such as Schism [2]), Chiller’s parti-
tioning algorithm explicitly takes record contention into ac-
count to co-locate hot records. Second, at runtime, Chiller
uses a novel execution scheme which goes beyond existing
work on re-ordering operations (e.g., QURO [15]). By taking
advantage of the co-location of hot records, Chiller’s execu-
tion scheme reorders operations such that it can release locks
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Figure 3: The lifetime of a distributed transaction. The
green dots denote when each server releases its locks. The
blue lines represent the contention span for each server.

on hot records early and thus reduce the overall contention
span on those records.

In summary, we make the following contributions:

(1) We propose a new contention-centric partitioning scheme.
(2) We present a new distributed transaction execution tech-

nique, which aims to update highly-contended records
without additional coordination.

(3) We show that Chiller outperforms existing techniques by
up to a factor of 2 on various workloads.

2. OVERVIEW
2.1 Transaction Processing with 2PL & 2PC

To understand the impact of contention in distributed
transactions, let us consider a traditional two-phase lock-
ing (2PL) protocol with two-phase commit (2PC). Here, we
use transaction t3 from Figure 1, and further assume that its
coordinator is on Server 1, as shown in Figure 3a. The green
circle on each partition’s timeline shows when it releases its
locks and commits. We refer to the time span between acqui-
sition and release of a record lock as the record’s contention
span (depicted by thick blue lines), during which all con-
current accesses to the record would be conflicting. In this
example, the contention span for all records is 2 messages
long with piggybacking optimization (when merging the last
step of execution with the prepare phase) and 4 without it.

2.2 Contention-Aware Transactions
We propose a new partition and execution scheme that

aims to minimize the contention span for contended records.
The partitioning layout shown in Figure 2b opens new pos-
sibilities. As shown in Figure 3b, the coordinator requests
locks for all the non-contended records in t3, which is r5.
If successful, it will send a request to the partition hosting
the hot records, Server 3, to perform the remaining part of
the transaction. Server 3 will attempt to acquire the lock
for its two records, complete the read-set, and perform the
transaction logic to check if the transaction can commit. If
so, it commits the changes to its records.

The reason that Server 3 can unilaterally commit or abort
before the other involved partitions receive the commit de-

cision is that Server 3 contains all necessary data to perform
the transaction logic. Therefore, the part of the transaction
which deals with the hottest records is treated as if it were
an independent local transaction. This effectively makes the
contention span of r1 and r4 much shorter (just local mem-
ory access, as opposed to at least one network roundtrip).

2.3 Discussion
There are multiple details hidden in the execution scheme

presented above. First, after sending the request to Server
3, neither the coordinator nor the other partitions is allowed
to abort the transaction; this decision is only up to Server
3. This requirement is very similar to that of H-Store [6],
VoltDB [12], and Calvin [13].

Second, for a given transaction, the number of partitions
for the inner region has to be at most one. Otherwise, mul-
tiple partitions cannot commit independently without coor-
dination. This is why executing transactions in this manner
requires a new partitioning scheme to ensure that contended
records that are likely to be accessed together are co-located.

Finally, our execution model needs to have access to the
transaction logic in its entirety to be able to re-order its
operations. Our prototype achieves this by running trans-
actions through invoking stored procedures, though it can
be realized by other means such as implementing it as a
query compiler (similar to Quro [15]). The main alterna-
tive model, namely interactive transactions, in which there
may be multiple back-and-forth rounds of network commu-
nication between a client application and the database is
extremely unsuitable for applications that deal with con-
tended data, because all locks and latches have to be held
for the entire scope of the client interaction [14].

3. TWO-REGION EXECUTION
The goal of the two-region execution is to minimize the

duration of locks on contended records. To achieve this,
the execution engine re-orders operations into cold (outer
region) and hot operations (inner region); the outer region
is executed as normal. If successful, the records in the inner
region are accessed. The inner region commits upon com-
pletion without coordinating with the other participants.

To explain the concepts, we will use an imaginary flight-
booking transaction shown in Figure 4a. Here, there are four
tables: flight, customer, tax, and seats. In this example,
if the customer has enough balance and the flight has an
available seat (line 12), a seat is booked and the ticket fee
plus state-tax is deducted from their account (lines 14–16).
Otherwise, the transaction aborts (line 19).

3.1 Constructing a Dependency Graph
We now describe how we extract the constraints in re-

ordering operations from the transaction logic and model it
as a dependency graph.
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// input: flight_id, cust_id
// desc: reserve a seat in the flight

and deduct the ticket fee from
customer’s balance.

Begin transaction
f = read(“flight”, key:flight_id)
c = read(“customer”, key:cust_id)
t = read(“tax”, key:c.state)

cost = calculate_cost(f.price, t)

if (c.balance >= cost AND f.seats > 0){
seat_id = f.seats
update(f, f.seats ß f.seats - 1)
update(c, c.balance ß c.balance - cost)
insert(“seats”, key:[flight_id, seat_id],

value: [cust_id, c.name])
}
else abort

End transaction

cread

tread cupd

fread

fupd sins

cread

tread cupd

fread

fupd sins

// input: cust_id
Begin Outer Region – Phase 1
c = read_with_wl(“customer”, key:cust_id)
t = read_with_rl(“tax”, key:c.state)

End Outer Region – Phase 1

// input: customer c, cost
Begin Outer Region – Phase 2
update(c, c.balance ß c.balance - cost) 

End Outer Region – Phase 2

// input: flight_id, tax t, customer c
Begin Inner Region
f = read(“flight”, key:flight_id)
cost = calculate_cost(f.price, t)
if (c.balance >= cost AND f.seats > 0)
seat_id = f.seats
update(f, f.seats ß f.seats - 1)
insert(“seats”, key:[flight_id, seat_id])

else abort
End Inner Region

(b) Static analysis: Construct dependency graph

(a) Original transaction (c) Step 1&2: Select the inner host, if exists

(d) Step 3: Read records in the outer region

(f) Step 5: Commit the outer region

(e) Step 4: Execute and ‘‘commit’’ the inner region

1
2
3
4
5
6
7
8
9
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15
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20

Figure 4: Two-region execution of a ticket purchasing transaction. In the dependency graph, primary key and value depen-
dencies are shown in solid and dashed lines, respectively (blue for conditional constraints, e.g., an “if” statement). Assuming
that the flight record is contended (red circles), the red box in (c) shows the operations in the inner region (Step 4). The rest
of the operations will be performed in the outer region (Steps 3 and 5).

There may be constraints on data values that must hold
true (e.g., seat availability). Furthermore, operations in a
transaction may have dependencies among each other. The
goal is to reflect such constraints in the dependency graph.
Here, we distinguish between two types of dependencies. A
primary key dependency (pk-dep) is when accessing a record
r2 can happen only after accessing record r1, as the primary
key of r2 is only known after r1 is read (e.g., the read oper-
ation for the tax record in line 8 must happen after the read
operation for the customer record on line 7). In a value de-
pendency (v-dep), the new values for a record r2 are known
only after accessing r1 (e.g., the update operation on line
15). pk-deps determine the constraints in re-ordering oper-
ations, while v-deps do not.

Each operation corresponds to a node in the dependency
graph. There is an edge from node n1 to n2 if the cor-
responding operation of n2 depends on that of n1. The
dependency graph for our running example is shown in Fig-
ure 4b. For example, the insert operation on line 16 (sins
in the graph) has a pk-dep on the read operation on line
6 (fread), and has a v-dep on the read operation on line 7
(cread). This means that obtaining the lock for the insert
query can only happen after the flight record is read (pk-
dep), but can happen before the customer is read (v-dep).

3.2 Run-Time Decision
Given the dependency graph, we describe step by step

how the protocol executes a two-region transaction.
1) Decide on the execution model: First, the algorithm

finds the candidate operations for the inner region. An op-
eration can be a candidate if the records accessed by it are
marked as contended in the lookup table, and it does not
have any pk-dep to other partitions, since if it does, it would
make early commit of the inner region impossible. In Fig-
ure 4b, if the insert operation sins belongs to a different
partition than fread, the latter cannot be considered for the
inner region because there is a pk-dep between them.

Finding the hosting partition of an operation which ac-
cesses records by their primary keys is quite straightforward.
However, finding this information for operations which ac-
cess records by non-primary-key attributes may require sec-
ondary indexes. In case no such information is available,

such operations will not be considered for the inner region.
2) Select the host for inner region: If all candidate opera-

tions for the inner region belong to the same host, then it is
chosen as the inner host, and otherwise, a single host has to
be chosen. Currently, we choose the host with the highest
number of candidate operations as the inner host.

3) Read records in outer region: The transaction attempts
to lock and read the records in its outer region. In our
example, an exclusive lock for the customer record and a
shared lock for the tax record are acquired. If either of
these lock requests fails, the transaction aborts.

4) Execute and commit inner region: Once all locks are
acquired for the outer region, the coordinator delegates pro-
cessing the inner region to the inner host by sending a mes-
sage with all information needed to execute its part. Having
the values for all of the records in the read-set allows the in-
ner host to check if all of the constraints in the transaction
are met (e.g., that there are free seats in the flight). This
guarantees that if an operation in the outer region results in
an abort, it will be detected by the inner host and the entire
transaction will abort.

Once all locks are acquired and the transaction logic is
checked to ensure that it can commit, the inner host up-
dates the records, replicates its changes to its replicas (Sec-
tion 5.1), and commits. In case any of the lock requests
or transaction constraints fails, the inner host aborts the
transaction and directly informs the coordinator about its
decision. In our example, the update to the flight record
is applied, a new record gets inserted into the seats table,
the partial transaction commits, and the value for the cost

variable is returned, as it will be needed to update the cus-
tomer’s balance.

5) Commit outer region: If the inner region succeeds, the
transaction is already considered committed and the coor-
dinator must commit all changes in the outer region. In our
example, the customer’s balance is updated, and the locks
are released from the tax and customer records.

3.3 The Need for a New Partitioning
The two-region execution will not be useful if the trans-

action’s hot records reside in different partitions. No mat-
ter which partition becomes the inner host, the contended
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records on the other partitions will observe long contention
spans. Therefore, frequently co-accessed hot records must
be co-located per transaction. To this end, we present a
novel partitioning technique in Section 4.

4. CONTENTION-AWARE PARTITIONING
To fully unfold the potential of our execution model, Chiller

must find contention-minimizing horizontal partitioning of
data. We will use the transactions in Figure 5 to explain
the partitioning idea. The shade of red corresponds to the
record hotness (darker is hotter), and the goal is to find
two balanced partitions. Existing partitioning tools (e.g.
Schism [2]) minimize distributed transactions (Figure 5b).
However, such a split would increase the contention span
for the records in transaction t2, because t2 would have to
hold locks on either 3 or 4, and 6 as part of an outer region.

4.1 Overview of Partitioning
To measure the hotness of records, servers randomly sam-

ple the transactions’ read- and write-sets during execution.
These samples are aggregated over a pre-defined time inter-
val by the partitioning manager server (PM). PM uses this
information to estimate the contention of individual records
(Section 4.2). It then creates the graph representation of
the workload, which accommodates the requirements for the
two-region execution model (Section 4.3). Based on this
representation, it uses a graph partitioning tool to partition
the records with the objective of minimizing the overall con-
tention of the workload (Section 4.4). Finally, it updates the
servers’ lookup tables with new partition assignments.

We assume henceforth that the unit of locking is records.
However, the same concepts apply to more coarse-grained
lock units, such as pages or hash buckets.

4.2 Contention Likelihood
Using the aggregated samples, PM calculates the conflict

likelihood for each record. Due to space constraints, we omit
the details and only show the final equation that we derived
for calculating record contention. We refer the curious read-
ers to our extended published paper [17]. In the following
equation, we use Pc(ρ) to refer to the contention likelihood
of record ρ.

Pc(Xw, Xr) = 1− e−λw − λwe−λwe−λr

λw and λr are time-normalized access frequency for read-
ing and writing to the record, respectively. When λw is zero,
meaning no writes have been made to the record, the con-
tention will be zero, since shared locks are compatible so no
conflict is expected. With a non-zero λw, higher values of
λr will increase the contention likelihood due to the conflict
of read and write locks.

4.3 Graph Representation
Chiller models workloads quite differently from existing

partitioning algorithms, since record contention must be cap-
tured in the graph as minimizing the overall contention is
the main objective.

As shown in Figure 5c, we model each transaction as a
star; at the center is a dummy vertex (referred to as a t-
vertex, denoted by a square) with edges to all of the records
that are accessed by that transaction. Thus, the number of
vertices in the graph is |T |+ |R|, where |T | is the number of
transactions and |R| is the number of records.

All edges connecting a given record-vertex (r-vertex) to all
of its t-vertex neighbors have the same weight. This weight
is proportional to the record’s contention likelihood. The
weight of the edge between an r-vertex and a connected t-
vertex reflects how bad it would be if the record were not
accessed in the inner region of that transaction.

Applying the contention likelihood formula to our running
example and normalizing the weights produces the graph
with the edge weights in Figure 5c. Next, we describe how
our partitioning algorithm takes this graph as input and
generates a partitioning with low contention.

4.4 Partitioning Algorithm
More formally, our goal is to find a partitioning, which

minimizes the contention:

min
S

∑

ρ∈R
P (S)
c (ρ)

s.t. ∀p ∈ S : L(p) 6 (1 + ε) · µ
Here, S is a partitioning of the set of records R into k

partitions, P
(S)
c (ρ) is the contention likelihood of record ρ

under partitioning S, L(p) is the load on partition p, µ =∑
p∈P L(p)

|P | is the average load on each partition, and ε is a

small constant that controls the degree of imbalance.
Chiller makes use of METIS [7], a graph partitioning tool

which aims to find a high-quality partitioning of the input
graph with a small cut, while at the same time respecting the
constraint of approximately balanced load across partitions.

The interpretation of the partitioning is as follows: A cut
edge e connecting a r-vertex v in one partition to a t-vertex
t in another partition implies that t will access v in its outer
region, thus observing a conflicting access with a probability
proportional to e’s weight. To put it differently, the partition
to which t is assigned determines t’s inner host, and all r-
vertices assigned to the same partition can be executed in
its inner region. Therefore, a split that minimize the total
weight of all cut edges also minimizes the contention.

In our example, the sum of the weights of all cut edges
(green lines) is 1.3. Transaction t1 will access record 3 in its
inner region as its t-vertex is in the same partition as record
3, while it will access records 1 and 2 in its outer region.
Even though the number of multi-partition transactions is
increased compared to Figure 5b, this split results in a much
lower contention (1.3 for Chiller as opposed to 3.7 for the
partitioning Figure 5b).

The load L for a partition can be defined in different
ways, such as the number of executed transactions, host-
ing records, or record accesses. The vertex weights depend
on the chosen load metric. For the metric of number of
executed transactions, t-vertices have a weight of 1 while
r-vertices will have a weight of 0.

4.5 Discussion
4.5.1 Scalability of Partitioning.

Chiller has a unique advantage over existing partitioning
techniques when it comes to large data sets: it produces
graphs with typically significantly fewer edges. Schism, for
instance, introduces a total of n(n− 1)/2 edges for a trans-
action with n records [2]. However, Chiller’s star represen-
tation introduces only n edges per transaction, resulting in
a much smaller graph. This results in a huge partitioning
time improvement.

Furthermore, our approach provides a unique opportunity
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Figure 5: An example workload and how partitioning techniques with different objectives will partition it into two parts.

to reduce the size of the lookup table. As we are mainly
interested in reducing contention, only records whose con-
tention is above a given threshold can be put in the lookup
table. Hence, the lookup table needs to store the informa-
tion for only those hot records. The other records can be
partitioned using hash or range functions, which takes no
lookup table space. Please refer to our published work to
see the benefits of using this technique in action [17].

4.5.2 Re-Partitioning
While the process described in Section 4.1 can be done pe-

riodically for the purpose of re-partitioning, our current pro-
totype is based on an offline implementation of the Chiller
partitioner. We envision that the offline re-partitioning scheme
would be sufficient for many workloads. For other workloads
with more frequently changing hot spots, however, it is pos-
sible that constantly relocating records in an incremental
fashion is more effective.

4.5.3 Minimizing Distributed Transactions.
In order to co-optimize for contention and distributed

transactions, one only needs to assign a minimum positive
weight to all edges in the graph. The bigger the minimum
weight, the stronger the objective to co-locate records from
the same transaction. While co-optimization is still rele-
vant even in fast RDMA-enabled networks due to higher la-
tency of remote access, we argue that minimizing distributed
transactions is just a secondary optimization, as the optimal
partitioning objective should shift in the direction of mini-
mizing contention.

5. FAULT TOLERANCE
The two-region execution model modifies 2PC for transac-

tions accessing contended records. A transaction is consid-
ered committed once its processing is finished by the inner
host, after which, it must be able to commit on the other
participants even under failures. Chiller employs write-ahead
logging to non-volatile memory. However, similar to 2PC,
while logging enables crash recovery, it does not provide high
availability. The failure of the inner host may sacrifice avail-
ability, since the coordinator would not know if the inner
region has already committed or not. To achieve high avail-
ability, Chiller relies on a new replication method based on

synchronous log-shipping, described below.

5.1 Replication Protocol
Since in Chiller, the transaction commit point (i.e., when

the inner region commits) happens before the outer region
participants commit their changes, the inner region replica-
tion cannot be postponed until the end of the transaction,
as otherwise its changes may be lost if the inner host fails.

To solve this problem, Chiller employs two different al-
gorithms for the replication of the inner and outer regions.
The changes in the outer region are replicated as normal—
once the coordinator finishes performing the operations in
the transaction, it replicates the changes to the replicas of
the outer region before making the changes visible. The
inner region replication, however, must be done before the
transaction commit point, so that the commit decision will
survive failures. Below, we describe the inner region repli-
cation in terms of the different roles of the participants:
Inner host: As shown in Figure 6, when the inner host fin-
ishes executing its part, it sends an RPC message to its repli-
cas containing the new values of its records, the transaction
read-set, and the sequence ID of the replication message. It
then waits for the acks from its NIC hardware, which guar-
antee that the messages have been successfully sent to the
replicas. Finally, it safely commits its changes.
Inner host replicas: Each replica applies the updates in the
message in the sequence ID order. This guarantees that the
data in the replicas synchronously reflect the changes in the
primary inner host partition. When updates are applied,
each replica notifies the original coordinator of the transac-
tion, as opposed to responding back to the inner host.
Coordinator: The coordinator is allowed to resume the trans-
action only after it has received the notifications from of all
the replicas of the inner host.

5.2 Failure Recovery
The recovery procedure is as follows: First, each partition

p probes its local log, and compiles a list of pending trans-
actions on p. For each transaction, its coordinator, inner
host, and the list of outer region participants are retrieved,
and are then aggregated at a designated node to create a
global list of pending transactions. Below, we discuss pos-
sible failure scenarios for a pending two-region transaction
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Figure 6: Replication algorithm for the inner region.

along with how the fault tolerance is achieved.
Failure of inner host: If none of the surviving replicas of a
failed inner host have received the replication message, the
transaction can be safely aborted, because it indicates that
the inner host has not committed either. However, if at least
one of its replicas has received such a message, that transac-
tion can commit, even though that the transaction’s updates
might have not yet been replicated on all of the replicas. In
this case, the coordinator finishes the transaction on the re-
maining inner host replicas and commits.
Failure of coordinator: If a node is found to be the inner host
(or one of its replicas, in case the inner host has also failed),
it will be elected as the new coordinator, since it already
has the values for the transaction read-set. Otherwise, the
transaction can be safely aborted because its changes have
not yet received/committed by its inner host.
Failure of an outer region participant: If the failure of par-
ticipant i happens before the coordinator initiates the inner
region, then the transaction is safely aborted. Otherwise,
one of i’s replicas which has been elected as the new pri-
mary will be used to take over i’s role in the transaction.

For a sketch of a proof of correctness, we refer the reader
to our published work [17].

6. EVALUATION
We evaluated our system to answer two main questions:

(1) How does Chiller and its two-region execution model per-
form under various levels of contention compared to ex-
isting techniques?

(2) Is the contention-aware data partitioning effective in pro-
ducing results that can efficiently benefit from the two-
region execution model?

6.1 Setup
The test bed we used for our experiments consists of 7 ma-

chines connected to a single InfiniBand EDR 4X switch us-
ing a Mellanox ConnectX-4 card. Each machine has 256GB
RAM and two Intel Xeon E5-2660 v2 processors with 2 sock-
ets and 10 cores per socket. In all experiments, we use only
one socket per machine to which the NIC is directly at-
tached. The machines run Ubuntu 14.04 Server Edition as
their OS and Mellanox OFED 3.4-1 driver for the network.

6.2 Baselines
We compare the two-region execution scheme against the

following commonly used concurrency control (CC) models:
Two-Phase Locking (2PL): we implemented two widely

used variants of distributed 2PL with deadlock prevention.
In NO_WAIT, the system aborts a transaction once it suspects
that there is a possibility of deadlock. Therefore, waiting for
locks is not allowed. In WAIT_DIE, transactions are assigned
unique timestamps before execution. An older transaction
is allowed to wait for a lock that is owned by a younger
transaction, and otherwise it aborts. Timestamp ordering

ensures that no deadlock is possible.
Optimistic (OCC): In OCC, each participant verifies that

its read-set has not been modified by some other transac-
tion. The coordinator commits a transaction only if all the
participants pass the validation phase. We based our im-
plementation on the MaaT protocol [8], which is an efficient
and scalable algorithm for OCC in distributed settings.

In addition, we evaluate two common partitioning schemes:
Hash-partitioning is the method of assigning records to parti-
tions based on the hash value of their primary key(s). Schism
is the most notable automatic partitioning technique. It
first uses METIS to find a small cut of the workload graph,
then compares this record-level partitioning to both a deci-
sion tree-learned range partitioning and a simple hash par-
titioning, and picks the one which results in the minimum
number of distributed transactions, or if equal, requires a
smaller lookup table. We include the results for different CC
schemes for Schism partitioning, and report only NO_WAIT for
hash partitioning as a simple baseline.

6.3 Workloads
We extensively evaluated Chiller using different workloads.

In this paper, we show the results for a subset of our exper-
iments on TPC-C and InstaCart. We refer the reader to
our published paper [17] for a more comprehensive experi-
mental evaluation, including more experiments on these two
workloads and also various YCSB experiments.

TPC-C: It is the de facto standard for evaluating OLTP
systems. Despite being highly partitionable, it contains two
severe contention points: the warehouse table, and the dis-
trict table. We used one warehouse per server (i.e., 7 ware-
houses in total) which translates to a high contention work-
load. As common in all TPC-C evaluations, all tables are
partitioned by warehouse ID, except for the Items table
which is read-only and is therefore replicated on all servers.
Both Chiller and Schism produce this partitioning given the
workload trace. Therefore in the following experiments, we
mainly focus on the two-region execution feature of Chiller,
and evaluate it against the other CC schemes.

InstaCart: To assess the effectiveness of our approach
to deal with difficult to partition workloads, we used a real-
world data set released by Instacart [4], which is an online
grocery delivery service. The dataset contains over 3 million
grocery orders for around 50K items from more than 200K
customers. On average, each order contains 10 grocery prod-
ucts purchased in one transaction. To model a transactional
workload based on the Instacart data, we used the TPC-C’s
NewOrder where each transaction reads the stock values of a
number of items, subtracts each one by 1, and inserts a new
record in the order table. However, instead of randomly se-
lecting items according to the TPC-C specification, we used
the actual Instacart data set. Unlike TPC-C, this data set
is actually difficult to partition due to the nature of grocery
shopping, where items from different categories (e.g., dairy,
produce, and meat) may be purchased together. There is
also a significant skew in the number of purchases of differ-
ent products (e.g. 15% of transactions contain banana).

6.4 TPC-C Results
We first measure the performance of Chiller, NO_WAIT,

WAIT_DIE, and OCC with increasing number of worker threads
per server. For this experiment, we use TPC-C workload.
Although increasing the number threads provides more CPU
power to process transactions, it also increases the con-
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Figure 7: Comparison of different concurrency control methods and Chiller for TPC-C.

tention. Studying this factor is therefore of great importance
since many modern in-memory databases are designed for
systems with multi-core CPUs.

As Figure 7a shows, with only one worker thread per ma-
chine, NO_WAIT and WAIT_DIE perform similarly, and have
10% higher throughput than Chiller. This is accounted for
by the two-region execution overhead. However, increasing
the number of worker threads also raises the chance of con-
flicts, negatively impacting the scalability of 2PL and OCC.
Chiller, on the other hand, minimizes the lock duration for
the two contention points in TPC-C (warehouse and district
records) and thus, scales much better. With 10 threads,
the throughput of Chiller is 2× and 3× higher than that of
NO_WAIT and WAIT_DIE, respectively.

Figure 7b shows the corresponding abort rates (averaged
over all threads). With more than 4 threads, OCC’s abort
rate is even higher than NO_WAIT, which is attributed to the
fact that many transactions are executed to the validation
phase and are then forced to abort. Compared to the other
techniques, the abort rate of Chiller increases much more
slowly as the level of concurrency per server increases. This
experiment shows the inherent scalability issue with tradi-
tional CC schemes when deployed on multi-core systems,
and how Chiller manages to significantly alleviate it.

6.5 InstaCart Results
We analyzed the benefits of combining the Chiller’s parti-

tioning scheme with the two-region execution model by us-
ing a real-world Instacart workload (as introduced in Section
6.3), which is much harder to partition than TPC-C.

In order to understand the effectiveness of the two-region
execution, we compare full Chiller (Chiller) to Chiller parti-
tioning without the two-region execution model (ChP) and
Chiller partitioning using Quro* (ChP+Quro*). In contrast
to ChP which does not re-order operations, ChP+Quro* re-
orders operations using Quro [15], which is a recent contention-
reduction technique for centralized database systems. More-
over, we compare full Chiller to two other non-Chiller base-
lines (Hash-partitioning and Schism-partitioning). For both
ChP and ChP+Quro* as well as the non-Chiller baselines
(Hash and Schism), we only show the results for a WAIT_DIE

scheme as it yielded the best throughput compared to NO_WAIT

and OCC for this experiment.
As Figure 8 shows, compared to the Hash-partitioning

baseline (black line), both ChP and ChP+Quro* (green and
red lines) have significantly higher throughput. We found
that this is not because the Chiller partitioning reduces the
number of distributed transactions, but rather because con-
tended records which are accessed together are co-located,
reducing the cost of aborts. More specifically, if a transac-
tion on contented records needs to be aborted, it only takes

                          
              
 
 

                                   
         
 
 

                  
 
 
 

       
             

 
 
 

                            
 

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5  6  7

T
h
ro

u
g
h
p
u
t 
(K

 t
xn

s/
se

c)

# of Partitions

Hash
Metis
ChP

ChP + Quro*
Chiller

Figure 8: Instacart with different execution models.

one round-trip, leading to an overall higher throughput since
the failed transaction can be restarted faster.

Furthermore, we see that ChP+Quro*, which re-orders
operations to access the low contended records first, ini-
tially increases the throughput by 20% compared to ChP
but then its advantage decreases as the number of partitions
increases. The reason for this is that the longer latency of
multi-partition transactions offsets most of the benefits of
operation re-ordering if the commit order of operations re-
mains unchanged. In fact, with 5 partitions, Schism (yellow
line) starts to outperform ChP+Quro*, even though Schism
does not leverage operation re-ordering.

In contrast to these baselines, Chiller (blue line) not only
re-orders operations but also splits them into an inner and
outer region, thus outperforms all the other techniques. For
the largest cluster size, the throughput of Chiller is approxi-
mately 1 million txns/sec higher than the second best base-
line. This experiment clearly shows that the contention-
centric partitioning must go hand-in-hand with the two-
region execution to be most effective.

7. RELATED WORK
Data Partitioning: A large body of work exists for parti-

tioning OLTP workloads with the ultimate goal of minimiz-
ing cross-partition transactions. Most notably, Schism [2] is
an automatic partitioning tool that uses the workload trace
to model the relationship between the database records as
a graph, and then applies METIS [7] to find a small cut
while approximately balancing the number of records among
partitions. Clay [10] builds the same workload graph as
Schism, but instead takes an incremental approach to parti-
tioning by building on the previously produced layout. All
of these methods share their main objective of minimizing
inter-partition transactions. In the age of new networks and
much “cheaper” distributed transactions, such an objective
is no longer optimal.

Transaction Decomposition: There has also been work on
the theory of transaction chopping [11, 18], in which a trans-
action gets split into smaller pieces, with each piece being
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an independent transaction. In contrast to transaction chop-
ping, our two-region execution not only splits a transaction
into cold and hot operations, but re-orders operations based
on which region they belong to. Also, we do not treat the
outer region as an independent transaction and will hold the
locks on its records until the end of the transaction. This
allows us to abort a transaction later in the inner region.

Determinism and Contention-Reducing Execution: Another
line of work aims to reduce contention through enforcing de-
terminism to the concurrency control (CC) unit. Most no-
tably, Calvin [13] uses a global agreement scheme to deter-
ministically sequence the lock requests. Deterministic exe-
cution requires a priori knowledge of read-set and write-set.

Most related to Chiller is Quro [15], which also re-orders
operations inside transactions in a centralized DBMS with
2PL to reduce the lock duration of contended data. How-
ever, unlike Chiller, the granularity of contention for Quro is
tables, and not records. Furthermore, almost all these works
deal with single-node DBMSs and do not have the notion of
distributed transactions, 2PC, or asynchronous replication
on remote machines, and hence finding a good partitioning
scheme is not within their scope.

Transactions over Fast Networks: This paper continues the
growing focus on distributed transaction processing on new
RDMA-enabled networks [1]. The increasing adoption of
these networks by key-value stores [9] and DBMSs [3, 16,
5] is due to their much lower overhead for message process-
ing using RDMA features, low latency, and high bandwidth.
The common promise of these systems is better scalabil-
ity by imposing far less overhead for cross-partition trans-
actions. Therefore, Chiller’s two-region execution and its
contention-centric partition are specifically suitable for this
class of distributed data stores.

8. CONCLUSIONS
This paper presents Chiller, a distributed transaction pro-

cessing and data partitioning scheme that aims to minimize
contention. Chiller is designed for fast RDMA-enabled net-
works, where the cost of distributed transactions is already
low, and the system’s scalability depends on the absence
of contention in the workload. Chiller partitions the data
such that the hot records that are likely to be accessed to-
gether are placed in the same partition. Using a novel two-
region processing approach, it then executes the contended
part of a transaction separately from the un-contended part.
Chiller can significantly outperform existing approaches un-
der workloads with varying degrees of contention.
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