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Abstract
Distributed transactions on high-overhead TCP/IP-based net-
works were conventionally considered to be prohibitively
expensive and thus were avoided at all costs. To that end,
the primary goal of almost any existing partitioning scheme
is to minimize the number of cross-partition transactions.
However, with the new generation of fast RDMA-enabled
networks, this assumption is no longer valid. In fact, recent
work has shown that distributed databases can scale even
when the majority of transactions are cross-partition.

In this paper, we first make the case that the new bottle-
neck which hinders truly scalable transaction processing in
modern RDMA-enabled databases is data contention, and that
optimizing for data contention leads to different partition-
ing layouts than optimizing for the number of distributed
transactions. We then present Chiller, a new approach to
data partitioning and transaction execution, which aims to
minimize data contention for both local and distributed trans-
actions. Finally, we evaluate Chiller using various workloads,
and show that our partitioning and execution strategy out-
performs traditional partitioning techniques which try to
avoid distributed transactions, by up to a factor of 2.
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1 Introduction
The common wisdom is to avoid distributed transactions
at almost all costs as they represent the dominating bot-
tleneck in distributed database systems. As a result, many
partitioning schemes have been proposed with the goal of
minimizing the number of cross-partition transactions [8, 28,
29, 34, 37, 44]. Yet, a recent result [43] has shown that with
the advances of high-bandwidth RDMA-enabled networks,
neither the message overhead nor the network bandwidth
are limiting factors anymore, significantly mitigating the
scalability issues of traditional systems. This raises the fun-
damental question of how data should be partitioned across
machines given high-bandwidth low-latency networks. In
this paper, we argue that the new optimization goal should be
to minimize contention rather than distributed transactions.

In this paper, we present Chiller, a new partitioning scheme
and executionmodel based on 2-phase-locking which aims to
minimize contention. Chiller is based on two complementary
ideas: (1) a novel commit protocol based on re-ordering
transaction operations with the goal of minimizing the lock
duration for contended records through committing such
records early, and (2) contention-aware partitioning so
that the most critical records can be updated without addi-
tional coordination. For example, assume a simple scenario
with three servers in which each server can store up to two
records, and a workload consisting of three transactions 𝑡1,
𝑡2, and 𝑡3 (Figure 1a). All transactions update 𝑟1. In addition,
𝑡1 updates 𝑟2, 𝑡2 updates 𝑟3 and 𝑟4, and 𝑡3 updates 𝑟4 and 𝑟5.
The common wisdom would dictate partitioning the data
in a way that the number of cross-cutting transactions is
minimized; in our example, this would mean co-locating all
data for 𝑡1 on a single server as shown in Figure 1b, and
having distributed transactions for 𝑡2 and 𝑡3.

However, as shown in Figure 2a, if we re-order each trans-
action’s operations such that the updates to the most con-
tended items (𝑟1 and 𝑟4) are done last, we argue that it is better
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Figure 2: Chiller Execution and Partitioning.

to place 𝑟1 and 𝑟4 on the same machine, as in Figure 2b. At
first this might seem counter-intuitive as it increases the total
number of distributed transactions. However, this partition-
ing scheme decreases the likelihood of conflicts and therefore
increase the total transaction throughput. The idea is that
re-ordering the transaction operations minimizes the lock
duration for the “hot” items and subsequently the chance
of conflicting with concurrent transactions. More impor-
tantly, after the re-ordering, the success of a transaction re-
lies entirely on the success of acquiring the lock for the most
contended records. That is, if a distributed transaction has
already acquired the necessary locks for all non-contended
records (referred to as the outer region), the commit out-
come depends solely on the contended records (referred to
as the inner region). This allows us to make all updates to
the records in the inner region without any further coordina-
tion. Note that this partitioning technique primarily targets
high-bandwidth low-latency networks, which mitigates the
two most common bottlenecks for distributed transactions:
message overhead and limited network bandwidth.
To provide such a contention-aware scheme, Chiller is

based on two complementary ideas that go hand-in-hand: a
contention-aware data partitioning algorithm and an operation-
reordering execution scheme. First, different from existing
partitioning algorithms that aim to minimize the number of
distributed transactions (such as Schism [8]), Chiller’s par-
titioning algorithm explicitly takes record contention into
account to co-locate hot records. Second, at runtime, Chiller
uses a novel execution scheme which goes beyond existing
work on re-ordering operations (e.g., QURO [40]). By taking
advantage of the co-location of hot records, Chiller’s exe-
cution scheme reorders operations such that it can release
locks on hot records early and thus reduce the overall con-
tention span on those records. As we will show, these two
complementary ideas together provide significant perfor-
mance benefits over existing state-of-the-art approaches on
various workloads.

In summary, we make the following contributions:
(1) We propose a new contention-centric partitioning scheme.
(2) We present a new distributed transaction execution tech-

nique, which aims to update highly-contended records
without additional coordination.

(3) We show that Chiller outperforms existing techniques
by up to a factor of 2 on various workloads.

2 Overview
The throughput of distributed transactions is limited by three
factors: (1) message overhead, (2) network bandwidth, and
(3) increased contention [3]. The first two limitations are
significantly alleviated with the new generation of high-
speed RDMA-enabled networks. However, what remains is
the increased contention likelihood, as message delays are
still significantly longer than local memory accesses.
2.1 Transaction Processing with 2PL & 2PC
To understand the impact of contention in distributed trans-
actions, let us consider a traditional 2PL with 2PC. Here, we
use transaction 𝑡3 from Figure 1, and further assume that its
coordinator is on Server 1, as shown in Figure 3a. The green
circle on each partition’s timeline shows when it releases its
locks and commits. We refer to the time span between acqui-
sition and release of a record lock as the record’s contention
span (depicted by thick blue lines), during which all con-
current accesses to the record would be conflicting. In this
example, the contention span for all records is 2 messages
long with piggybacking optimization (when merging the last
step of execution with the prepare phase) and 4 without it.
While our example used 2PL, other concurrency control

(CC) methods suffer from this issue to various extents [16].
For example in OCC, transactions must pass a validation
phase before committing. If another transaction has modified
the data accessed by a validating transaction, it has to abort
and all its work will be wasted [9, 16].
2.2 Contention-Aware Transactions
We propose a new partition and execution scheme that aims
to minimize the contention span for contended records. The
partitioning layout shown in Figure 2b opens new possibili-
ties. As shown in Figure 3b, the coordinator requests locks for
all the non-contended records in 𝑡3, which is 𝑟5. If successful,
it will send a request to the partition hosting the hot records,
Server 3, to perform the remaining part of the transaction.
Server 3 will attempt to acquire the lock for its two records,
complete the read-set, and perform the transaction logic to
check if the transaction can commit. If so, it commits the
changes to its records.
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Figure 3: The lifetime of a distributed transaction. The green
dots denote when each server releases its locks. The blue
lines represent the contention span for each server.

The reason that Server 3 can unilaterally commit or abort
before the other involved partitions receive the commit deci-
sion is that Server 3 contains all necessary data to perform
the transaction logic. Therefore, the part of the transaction
which deals with the hottest records is treated as if it were
an independent local transaction. This effectively makes the
contention span of 𝑟1 and 𝑟4 much shorter (just local memory
access, as opposed to at least one network roundtrip).
2.3 Discussion
There are multiple details and simplifications hidden in the
execution scheme presented above.

First, after sending the request to Server 3, neither the co-
ordinator nor the rest of the partitions is allowed to abort the
transaction and this decision is only up to Server 3. For this
reason, our system currently does not support triggers, which
may cause the transaction to abort at any arbitrary point.
In that matter, its requirement is very similar to that of H-
Store [21], VoltDB [33], Calvin [35] and MongoDB [2]. Also,
the required determinism to disallow transactions to abort
after a certain point in their life cycles is realized through
the combination of Chiller’s novel execution, replication and
recovery protocols, which will be discussed in Section 5.
Second, for a given transaction, the number of partitions

for the inner region has to be at most one. Otherwise, multi-
ple partitions cannot commit independently without coordi-
nation. This is why executing transactions in this manner
requires a new partitioning scheme to ensure that contended
records that are likely to be accessed together are co-located.
Finally, our execution model needs to have access to the

transaction logic in its entirety to be able to re-order its oper-
ations. Our prototype achieves this by running transactions
through invoking stored procedures, though it can be re-
alized by other means such as implementing it as a query
compiler (similar to Quro [40]). Due to the low overhead of
our re-ordering algorithm, ad-hoc transactions can also be
supported, as long as all operations of a transaction are issued
in one shot. The main alternative model, namely interactive
transactions, in which there may be multiple back-and-forth
rounds of network communication between a client applica-
tion and the database is extremely unsuitable for applications

that deal with contended data yet demand high throughput,
because the database cannot reason about the boundaries
of transactions upfront, and therefore all locks and latches
have to be held for the entire scope of the client interaction
which may last multiple roundtrips [36].
3 Two-region Execution
3.1 General Overview
The goal of the two-region execution scheme is to minimize
the duration of locks on contended records by postponing
their lock acquisition until right before the end of the expand-
ing phase of 2PL, and performing their lock release right after
they are read/modified, without involving them in the 2PC
protocol. More specifically, the execution engine re-orders
operations into cold operations (outer region) and hot oper-
ations (inner region); the outer region is executed as normal.
If successful, the records in the inner region are accessed.
The important point is that the inner region commits upon
completion without coordinating with the other participants.
Because of the way that the inner region is not involved in
2PC, fault tolerance requires a complete re-visit, otherwise
many failure scenarios may sacrifice the system’s correctness
or liveness. Until we discuss our fault tolerance algorithm in
Section 5, we present the execution and partitioning schemes
under a no-failure assumption.
To help explain the concepts, we will use an imaginary

flight-booking transaction shown in Figure 4a. Here, there
are four tables: flight, customer, tax and seats. In this example,
if the customer has enough balance and the flight has an
available seat (line 12), a seat is booked (lines 14 and 16) and
the ticket fee plus state-tax is deducted from their account
(line 15). Otherwise, the transaction aborts (line 19).

The remainder of this section is structured as follows.
Section 3.2 describes how we extract the constraints in re-
ordering operations from the transaction logic and model it
as a dependency graph. Using this graph, a five-step proto-
col, described in Section 3.3, is used to execute a two-stage
transaction. Finally, in Section 3.4, we present optimizations,
and look at challenges for the protocol to be correct and fault
tolerant. Our solution to these challenges is then presented
throughout the subsequent sections.
3.2 Constructing a Dependency Graph
There may be constraints on data values that must hold true
(e.g., availability of a flight seat). Furthermore, operations in
a transaction may have dependencies among each other. The
goal is to reflect such constraints in the dependency graph.
Here, we distinguish between two types of dependencies. A
primary key dependency (pk-dep) is when accessing a record
𝑟2 can happen only after accessing record 𝑟1, as the primary
key of 𝑟2 is only known after 𝑟1 is read (e.g., the read op-
eration for the tax record in line 8 must happen after the
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// input: flight_id, cust_id
// desc: reserve a seat in the flight

and deduct the ticket fee from
customer’s balance.

Begin transaction
f = read(“flight”, key:flight_id)
c = read(“customer”, key:cust_id)
t = read(“tax”, key:c.state)

cost = calculate_cost(f.price, t)

if (c.balance >= cost AND f.seats > 0){
seat_id = f.seats
update(f, f.seats ß f.seats - 1)
update(c, c.balance ß c.balance - cost)
insert(“seats”, key:[flight_id, seat_id],

value: [cust_id, c.name])
}
else abort

End transaction
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// input: cust_id
Begin Outer Region – Phase 1
c = read_with_wl(“customer”, key:cust_id)
t = read_with_rl(“tax”, key:c.state)

End Outer Region – Phase 1

// input: customer c, cost
Begin Outer Region – Phase 2
update(c, c.balance ß c.balance - cost) 

End Outer Region – Phase 2

// input: flight_id, tax t, customer c
Begin Inner Region
f = read(“flight”, key:flight_id)
cost = calculate_cost(f.price, t)
if (c.balance >= cost AND f.seats > 0)
seat_id = f.seats
update(f, f.seats ß f.seats - 1)
insert(“seats”, key:[flight_id, seat_id])

else abort
End Inner Region

(b) Static analysis: Construct dependency graph

(a) Original transaction (c) Step 1&2: Select the inner host, if exists

(d) Step 3: Read records in the outer region

(f) Step 5: Commit the outer region

(e) Step 4: Execute and ‘‘commit’’ the inner region
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Figure 4: Two-region execution of a ticket purchasing transaction. In the dependency graph, primary key and value depen-
dencies are shown in solid and dashed lines, respectively (blue for conditional constraints, e.g., an “if” statement). Assuming
the flight record is contended (red circles), the red box in (c) shows the operations in the inner region (Step 4). The rest of the
operations will be performed in the outer region (Steps 3 and 5).

read operation for the customer record in line 7). In a value
dependency (v-dep), the new values for the update columns
of a record 𝑟2 are known only after accessing 𝑟1 (e.g. the up-
date operation in line 15). We are only concerned about the
pk-deps, and not the v-deps, since v-deps do not restrict the
order of lock acquisition, while pk-deps do put restrictions
on which re-orderings are possible.
Each operation of the transaction corresponds to a node

in the dependency graph. There is an edge from node 𝑛1 to
𝑛2 if the corresponding operation of 𝑛2 depends on that of 𝑛1.
The dependency graph for our running example is shown in
Figure 4b. For example, the insert operation in line 16 (𝑠ins
in the graph) has a pk-dep on the read operation in line 6
(𝑓read), and has a v-dep on the read operation in line 7 (𝑐read).
This means that getting the lock for the insert query can
only happen after the flight record is read (pk-dep), but it
can happen before the customer is read (v-dep). Please refer
to the figure’s caption for the explanation of the color codes.
3.3 Run-Time Decision
Given the dependency graph, we describe step-by-step how
the protocol executes a two-region transaction.

1) Decide on the execution model: First, it must find
the list of candidate operations for the inner region. An
operation can be a candidate if the record(s) accessed by it
is marked as contended in the lookup table, and it does not
have any pk-dep on operations on other partitions, since
if it does, it would make early commit of the inner region
impossible. In Figure 4b, if the insert operation 𝑠ins belongs to
a different partition than 𝑓read, the latter cannot be considered
for the inner region because there is a pk-dep between them.
Finding the hosting partition of an operation which ac-

cesses records by their primary keys is quite straightforward.

However, finding this information for operations which ac-
cess records by non-primary-key attributes may require sec-
ondary indexes. In case no such information is available,
such operations will not be considered for the inner region.

2) Select the host for inner region: If all candidate op-
erations for the inner region belong to the same host, then it
is chosen as the inner host, otherwise, one has to be picked.
Currently, we choose the host with the highest number of
candidate operations as the inner host.

3) Read records in outer region: The transaction at-
tempts to lock and read the records in its outer region. In
our example, an exclusive lock for the customer record and a
shared lock for the tax record are acquired. If either of these
lock requests fails, the transaction aborts.

4) Execute and commit inner region: Once all locks
have been acquired for the records in the outer region, the
coordinator delegates processing the inner region to the
inner host by sending a message with all information needed
to execute its part (e.g., transaction ID, input parameters,
etc.). Having the values for all of the records in the read-set
allows the inner host to check if all of the constraints in the
transaction are met (e.g., there are free seats in the flight).
This guarantees that if operation in the outer region should
result in an abort, it will be detected by the inner host and
the entire transaction will abort.
Once all locks are successfully acquired and the transac-

tion logic is checked to ensure the transaction can commit,
the inner host updates the records, replicates its changes
to its replicas (Section 5.1) and commits. In case any of the
lock requests or transaction constraints fails, the inner host
aborts the transaction and directly informs the coordinator
about its decision. In our example, the update to the flight
record is applied, a new record gets inserted into the seats
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table, the partial transaction commits, and the value for the
cost variable is returned, as it will be needed to update the
customer’s balance by another partition.

5) Commit outer region: If the inner region succeeds,
the transaction is already considered committed and the
coordinator must commit all changes in the outer region. In
our example, the customer’s balance gets updated, and the
locks are released from the tax and customer records.
3.4 Challenges
First, it will not be useful if the hot records of a transaction
are scattered across different partitions. Nomatter which par-
tition becomes the inner host, the other contended records
will observe long contention spans. Therefore, frequently
co-accessed hot records must be co-located. To this end, we
present a novel partitioning technique in Section 4. Second,
the inner host removes its locks earlier than the other partici-
pants (steps 4 and 5). For this reason, fault tolerance requires
a revisit, which will be presented in Section 5.
4 Contention-aware Partitioning
To fully unfold the potential of the two-region execution
model, the objective of our proposed partitioning algorithm
is to find a horizontal partitioning of the data which mini-
mizes the contention. To better explain the idea, we will use
4 transactions shown in Figure 5. The shade of red corre-
sponds to the record hotness (darker is hotter), and the goal
is to find two balanced partitions (for now, we define “bal-
anced” as a partitioning that splits the set of records in half).
Existing partitioning schemes, such as Schism [8] minimize
distributed transactions, as shown in Figure 5b. However,
such a split would increase the contention span for records
3 or 4, and 6 in transaction 𝑡2, because 𝑡2 will have to hold
locks on either 3 or 4, and 6 as part of an outer region.

Not only the main objective of our proposed partitioning
is different than the one in existing techniques, but also
their commonly used graph representation of the workload
(with records as vertices and co-accesses as edges) does not
capture the essential requirements of our problem, that is, the
distinction of inner and outer region and differences in their
execution. This necessitates a new workload representation.
4.1 Overview of Partitioning
To measure the hotness of records, servers randomly sam-
ple the transactions’ read- and write-sets during execution.
These samples are aggregated over a pre-defined time in-
terval by the partitioning manager server (PM). PM uses
this information to estimate the contention of individual
records (Section 4.2). It then creates the graph representation
of the workload which accommodates the requirements for
the two-region execution model (Section 4.3). Based on this
representation, it then uses a graph partitioning tool to parti-
tion the records with the objective of minimizing the overall

contention of the workload (Section 4.4). Finally, it updates
servers’ lookup tables with new partition assignments.
We assume henceforth that the unit of locking and parti-

tioning is records. However, the same concepts apply to more
coarse grained lock units, such as pages or hash buckets.
4.2 Contention Likelihood
Using the aggregated samples, PM calculates the conflict
likelihood for each record. More specifically, we define the
probability of a conflicting access for a given record as:

𝑃𝑐 (𝑋𝑤, 𝑋𝑟 ) =

(𝑖)︷                     ︸︸                     ︷
𝑃 (𝑋𝑤 > 1)𝑃 (𝑋𝑟 = 0) +

(𝑖𝑖)︷                     ︸︸                     ︷
𝑃 (𝑋𝑤 > 0)𝑃 (𝑋𝑟 > 0)

Here, 𝑋𝑤 and 𝑋𝑟 are random variables corresponding to
the number of times a given record is read or modified within
the lock window, respectively. The equation consists of two
terms to account for the two possible conflict scenarios: (i)
write-write conflicts, and (ii) read-write conflicts. Since (i)
and (ii) are disjoint, we can simply add them together.

Similar to previous work [23, 41], we model 𝑋𝑤 (𝑋𝑟 ) using
a Poisson process with a mean arrival time of 𝜆𝑤 (𝜆𝑟 ), which
is the time-normalized access frequency. This allows us to
rewrite the above equation as follows:

𝑃𝑐 (𝑋𝑤, 𝑋𝑟 ) =

(𝑖)︷                                              ︸︸                                              ︷(
1 − (𝜆𝑤

0𝑒−𝜆𝑤

0!
+ 𝜆𝑤

1𝑒−𝜆𝑤

1!
)
) (𝜆𝑟 0𝑒−𝜆𝑟

0!

)

+

(𝑖𝑖)︷                                ︸︸                                ︷(
1 − 𝜆𝑤

0𝑒−𝜆𝑤

0!

) (
1 − 𝜆𝑟

0𝑒−𝜆𝑟

0!

)
= 1 − 𝑒−𝜆𝑤 − 𝜆𝑤𝑒

−𝜆𝑤𝑒−𝜆𝑟

The contention likelihood is defined per lock unit. We use
𝑃𝑐 (𝜌) to refer to the contention likelihood of record 𝜌 . In the
equation above, when 𝜆𝑤 is zero, meaning no write has been
made to the record, 𝑃𝑐 (𝜌) will be zero, since shared locks are
compatible so no conflict is expected. With a non-zero 𝜆𝑤 ,
higher values of 𝜆𝑟 will increase the contention likelihood
due to the conflict of read and write locks.
4.3 Graph Representation
The are three key properties that a graph representation of
the workload should have to properly fit in the context of
our execution model. First, record contentions must be cap-
tured in the graph as this is the main objective. Second, the
relationship between records must also be modeled, due to
the requirement that there can be only one inner region for a
transaction, and hence the frequently co-accessed contended
records should be co-located. Third, the final partitioning
should also make it possible to determine the inner region
for each transaction. Therefore, Chiller models the workload
quite differently than existing partitioning algorithms.
As shown in Figure 5c, we model each transaction as a

star; at the center is a dummy vertex (referred to as t-vertex,
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(c) Contention-centric partitioning.
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Figure 5: An example workload and how partitioning techniques with different objectives will partition it into two parts.

denoted by squares) with edges to all the records that are
accessed by that transaction. Thus, the number of vertices in
the graph is |𝑇 | + |𝑅 |, where |𝑇 | is the number of transactions
and |𝑅 | is the number of records. The number of edges will be
the sum of the number of records involved per transaction.

All edges connecting a given record-vertex (r-vertex) to all
of its t-vertex neighbors have the same weight. This weight
is proportional to the record’s contention likelihood. The
weight of the edge between an r-vertex and a connected
t-vertex reflects how bad it would be if the record is not
accessed in the inner region of that transaction.

Note that while our graph representation does not directly
incorporate dependencies among operations (e.g., pk-dep),
it should not take long for a running system until the parti-
tioning algorithm would automatically build edges between
records frequently accessed as part of these operations.

Applying the contention likelihood formula to our running
example and normalizing the weights will produce the graph
with the edge weights in Figure 5c. Note that there is no edge
between any two records. Co-accessing records is implied
by a common t-vertex connecting them. Next, we describe
how our partitioning algorithm takes this graph as input and
generates a partitioning with low contention.
4.4 Partitioning Algorithm
As we are able to model contention among records using a
weighted graph, we can apply standard graph partitioning
algorithms. More formally, our goal is to find a partitioning,
which minimizes the contention:

min
𝑆

∑
𝜌∈𝑅

𝑃
(𝑆)
𝑐 (𝜌)

𝑠 .𝑡 . ∀𝑝 ∈ 𝑆 : 𝐿(𝑝) ⩽ (1 + 𝜖) · 𝜇
Here, 𝑆 is a partitioning of the set of records 𝑅 into 𝑘

partitions, 𝑃 (𝑆)
𝑐 (𝜌) is the contention likelihood of record 𝜌

under partitioning 𝑆 , 𝐿(𝑝) is the load on partition 𝑝 , 𝜇 is the
average load on each partition, and 𝜖 is a small constant that
controls the degree of imbalance. Therefore, 𝜇 =

∑
𝑝∈𝑃 𝐿 (𝑝)
|𝑃 | .

The definition of load will be discussed shortly.
Chiller makes use of METIS [22], a graph partitioning tool

which aims to find a high-quality partitioning of the input
graph with a small cut, while at the same time respecting the
constraint of approximately balanced load across partitions.

The interpretation of the partitioning is as follows: A cut
edge 𝑒 connecting a r-vertex 𝑣 in one partition to a t-vertex
𝑡 in another partition implies that 𝑡 will access 𝑣 in its outer
region, and thus observing a conflicting access with a prob-
ability proportional to 𝑒’s weight. To put it differently, the
partition to which 𝑡 is assigned determines the inner host of
𝑡 ; all r-vertices assigned to the same partition can be executed
in the inner region of 𝑡 . As a result, a split that minimize the
total weight of all cut edges also minimizes the contention.
In our example, the sum of the weights of all cut edges

(which are portrayed as green lines) is 1.3. Transaction 𝑡1 will
access record 3 in its inner region as its t-vertex is in the same
partition as record 3, while it will access records 1 and 2 in
its outer region. Even though the number of multi-partition
transactions is increased compared to the partitioning in
Figure 5b, this split results in a much lower contention.

The load 𝐿 for a partition can be defined in different ways,
such as the number of executed transactions, hosting records,
or record accesses. The vertexweights depends on the chosen
load metric. For the metric of number of executed transac-
tions, t-vertices have a weight of 1 while r-vertices will have
a weight of 0. The weighting is reversed for the second met-
ric. METIS generates a partitioning such that the sum of
vertex weights in each partition is approximately balanced.
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4.5 Discussion
4.5.1 Scalability of Partitioning.There are two issues every
partitioning scheme has to address: (1) the graph size and
the cost of partitioning it, and (2) the size of the lookup table.
It is time- and computation-intensive to partition very

large graphs. However, Chiller has a unique advantage over
existing partitioning techniques: it produces graphs with
significantly fewer edges for most workloads. Schism, for
instance, introduces a total of 𝑛(𝑛 − 1)/2 edges for a trans-
action with 𝑛 records [8]. However, Chiller’s star represen-
tation introduces only 𝑛 edges per transaction, resulting in
a much smaller graph. For example, we found that on av-
erage, constructing the workload graph and applying the
METIS partitioning tool take up to 5 times longer on Schism
compared to Chiller in our experiments.
Furthermore, our approach provides a unique opportu-

nity to reduce the size of the lookup table. As we are mainly
interested in reducing contention, we can primarily focus
on the records with a contention likelihood above a given
threshold. Hence, the lookup table only needs to store where
these hot records are located. The other records can be par-
titioned using an orthogonal scheme (e.g., hash or range),
which takes no lookup-table space. We study this technique
in more depth using an experiment (Section 7.5.3).
4.5.2 Re-Partitioning and Data Migration.While the process
described in Section 4.1 can be done periodically for the
purpose of re-partitioning, our current prototype is based
on an offline implementation of the Chiller partitioner. In
our experiments, running this algorithm on 100 thousand
sampled transactions for a workload with as many as 30
millions records took less than ten minutes on one machine
(Section 7.1). This time includes calculating the contention
likelihoods, building the workload graph, and partitioning it
using METIS. In addition, we found that the pruning tech-
niques proposed above are quite effective in reducing the par-
titioning time without significantly impacting the through-
put. Therefore, we envision that the offline re-partitioning
scheme would be sufficient for many workloads, and re-
partitioning can be as simple as running the algorithm on
one or multiple partitioning managers. For other workloads
with more frequently changing hot spots, however, it is pos-
sible that constantly relocating records in an incremental
way is more effective. Extending this work to support online
re-partitioning is an interesting direction of future work.
Another related topic is when data re-partitioning hap-

pens, how the system relocates records while still maintain-
ing ACID guarantees. Our current prototype produces a
record relocation list, which can be used to move records
transactionally (each tuple migration is performed as one
individual transaction). As data migration is a general re-
quirement by every production OLTP partitioning tool, there

are many automatic tools which perform this task more effi-
ciently [12, 13, 39]. We are planning to extend our prototype
to use Squall [12], which is a live data migration tool.
4.5.3 Minimizing Distributed Transactions. It is also possible
to co-optimize for contention and distributed transactions
using the same workload representation. One only needs to
assign a minimum positive weight to all edges in the graph.
The bigger the minimum weight, the stronger the objec-
tive to co-locate records from the same transaction. Such
co-optimization is still relevant even in fast RDMA-enabled
networks since a remote access through RDMA is about 10×
slower than a local access. However, as we argue in this paper,
the optimal partitioning objective should shift in the direc-
tion of minimizing contention, and therefore minimizing
distributed transactions is just a secondary optimization.
5 Fault Tolerance
The two-region execution model presented in Section 3 mod-
ifies the typical 2PC for transactions accessing contended
records. A transaction is considered committed once its pro-
cessing is finished by the inner host, after which, it must
be able to commit on the other participants even despite
failures. A participant in the outer region cannot unilaterally
abort a transaction once it has granted its locks in the outer
region and informed the coordinator, since the transaction
may have already been committed by the inner host.

Chiller employs write-ahead logging to non-volatile mem-
ory. However, similar to 2PC, while logging enables crash
recovery, it does not provide high availability. The failure of
the inner host before sending its decision to the coordinator
may sacrifice the availability, since the coordinator would
not know if the inner region is already committed or not, in
which case it has to wait for the inner host to recover.

To achieve high availability, Chiller relies on a new replica-
tion method based on synchronous log-shipping, explained
in Section 5.1. Then, we discuss how this replication protocol
achieves high availability while still maintaining consistency.
5.1 Replication Protocol
In conventional synchronous log-shipping replication, the
logs are replicated before the transaction commits. Since in
Chiller, the transaction commit point (i.e., when the inner
region commits) happens before the outer region participants
commit their changes (see Figure 3b), the inner region repli-
cation cannot be postponed to the end of the transaction,
otherwise its changes may be lost if the inner host fails.

To solve this problem, Chiller employs two different algo-
rithms for the replication of the inner and outer regions. The
changes in the outer region are replicated as normal—once
the coordinator finishes performing the operations in the
transaction, it replicates the changes to the replicas of the
outer region before making the changes visible. The inner
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Figure 6: Replication algorithm for the inner region.
region replication, however, must be done before the transac-
tion commit point, so that the commit decision will survive
failures. Below, we describe the inner region replication in
terms of the different roles of the participants:
Inner host: As shown in Figure 6, when the inner host
finishes executing its part, it sends an RPC message to its
replicas containing the new values of its records, the transac-
tion read-set, and the sequence ID of the replication message.
It then waits for the acks from its NIC hardware, which guar-
antee that the messages have been successfully sent to the
replicas. Finally, it safely commits its changes. In case the
inner host decides to abort, the replication phase will not be
needed and it can directly reply to the coordinator.
Inner host replicas: Each replica applies the updates in the
message in the sequence ID order. This guarantees that the
data in the replicas synchronously reflect the changes in the
primary inner host partition. When all updates of the repli-
cation message are applied, each replica notifies the original
coordinator of the transaction, as opposed to responding back
to the inner host. This saves one network message delay.
Coordinator: The coordinator is allowed to resume the
transaction only after it has received the notifications from
all the replicas of the inner host.

In the following, we describe our failure recovery protocol.
5.2 Failure Recovery
For failure detection andmembership reconfiguration, Chiller
relies on a cluster manager such as Zookeeper [17]. When a
machine is suspected of failure, all of the other nodes close
their communication channels to the suspected node to pre-
vent it from interfering in the middle of the recovery process.

The recovery procedure is as follows: First, each parti-
tion 𝑝 probes its local log, and compiles a list of pending
transactions on 𝑝 . For each transaction, its coordinator, in-
ner host, the list of outer region participants are retrieved,
and then aggregated at a designated node to make a global
list of pending transactions. Below, possible failure scenarios
for a pending two-region transaction along with how the
fault tolerance is achieved are discussed.
Failure of inner host: If none of the surviving replicas of
a failed inner host has received the replication message, the
transaction can be safely aborted, because it indicates that
the inner host has not committed either. However, if at least
one of its replicas has received such a message, that trans-
action can commit, even though that it might have not yet

replicated on all the replicas. In this case, the coordinator
finishes the transaction on the remaining inner host replicas
and the outer region participants, and commits.
Failure of coordinator: If a node is found to be the inner
host (or one of its replicas, in case the inner host is failed
too), it will be elected as the new coordinator, since it already
has the values for the transaction read-set. Otherwise, the
transaction can be safely aborted because its changes are not
yet received/committed by its inner host.
Failure of an outer region participant: If the failure of
participant 𝑖 happens before the coordinator initiates the in-
ner region, then the transaction is safely aborted. Otherwise,
one of 𝑖’s replicas which has been elected as the new primary
will be used to take over 𝑖’s role in the transaction.

Proof of Correctness —We now provide some intuition
on the protocol correctness in terms of safety and liveness.

It is easy to see why the two-region execution model with
the described replication protocol maintains safety, since
transactions are serialized at the point when their inner
host commits. Also, similar to 2PC, if even one participant
commits (aborts), no other participant is allowed to abort
(commit). This is due to the “no turning back” concept of the
commit protocol of the inner region, guaranteeing that all
participants will agree on the same decision.
To support liveness, the system first needs to detect fail-

ures and repair/replace faulty nodes. For this purpose, Chiller
relies on the existence of a fault tolerant coordinator, such
as Zookeeper [17] or Chubby [4]. So long as at most 𝑓 out
of 𝑓 + 1 replicas fail, the protocol guarantees liveness by
satisfying these two properties:
(1) A transaction will eventually commit at all its partici-
pants and their replicas once it has been committed by the
inner host: The inner host commits only when its changes
are replicated on its replicas. Therefore, there will be at least
one replica containing the commit decision which causes the
transaction to commit during the recovery process.
(2) A transaction which is not yet committed at its inner host
will eventually either abort or commit: If the inner host does
not fail, it will eventually process the inner region. However,
if it encounters a failure, the transaction will be discovered
during the failure recovery, and handled by a new inner host.

6 Implementation
We now briefly present the implementation of the system
we used to evaluate Chiller.

In our system, tables are built on top of a distributed hash
table, and are split horizontally into multiple partitions, with
each execution server hosting one partition in its main mem-
ory. The unit of locking is a hash bucket, and each hash
bucket encapsulates its lock metadata in its header, eliminat-
ing the need for a centralized lock manager per partition. Our
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current implementation performs locking on bucket granu-
larity and does not prevent the phantom problem. However,
the core idea of Chiller also works with range locks.

An execution server utilizes all its processing cores through
multi-threading, where each execution thread has access to
the hosted partition on that machine. To minimize inter-
thread communication, each transaction is handled from be-
ginning to end by one execution thread. To extract maximum
concurrency, eachworker thread employsmultiple co-routine
workers, such that when one transaction is waiting for a net-
work operation, it yields to the next co-routine worker which
processes a new transaction. The communication needed for
distributed transactions is done either through direct remote
memory operations (RDMA Read, Write, and atomic opera-
tions), or via RPC messages implemented using RDMA Send
and Receive. The access type for each table is specified by
the user when creating that table.

Bucket to partition mappings are stored in a lookup table,
which is replicated on all servers so that execution threads
would know where each record is. It can be either defined by
the user in the form of hash or range functions on some table
attributes, or produced individually for all or some buckets
using the partitioning algorithm. In addition to storing the
partition assignments, the lookup table also contains the list
of buckets with a contention above a given threshold, which
is used to determine the inner region for each transaction.

As discussed in Section 5, to guarantee high availability in
the presence of failures, we use log-shipping with 2-safety,
where each record is replicated on two other servers. The
backup replicas get updated synchronously before the trans-
action commits on the primary replica. In addition, like other
recent high-performance OLTP systems [11, 20, 43], crash
recovery is guaranteed by relying on the persistence of exe-
cution servers’ logs on some form of non-volatile memory
(NVM), such as battery-backed DRAM.
7 Evaluation
We evaluated our system to answer two main questions:
(1) How does Chiller and its two-region execution model

perform under various levels of contention compared to
existing techniques?

(2) Is the contention-aware data partitioning effective in
producing results that can efficiently benefit from the
two-region execution model?

7.1 Setup
The test bed we used for our experiments consists of 7 ma-
chines connected to a single InfiniBand EDR 4X switch using
a Mellanox ConnectX-4 card. Each machine has 256GB RAM
and two Intel Xeon E5-2660 v2 processors with 2 sockets
and 10 cores per socket. In all experiments, we use only one
socket per machine where the the NIC is directly attached
and disable hyper-threading to minimize the variability in

measurements caused by same-core threads interference,
which is a typical setup also used in other papers [32, 42, 45].
The machines run Ubuntu 14.04 Server Edition as their OS
and Mellanox OFED 3.4-1 driver for the network.
7.2 Baselines
To assess the ability of the two-region execution model in
handling contention, we evaluate how it holds up against
alternative commonly used concurrency control (CC)models,
more specifically these protocols:

Two-Phase Locking (2PL):we implemented two widely
used variants of distributed 2PL with deadlock prevention. In
NO_WAIT, the system aborts a transaction once it suspects of a
deadlock, i.e., when a record lock request is denied. Therefore,
waiting for locks is not allowed. In WAIT_DIE, transactions
are assigned unique timestamps before execution. An older
transaction is allowed to wait for a lock which is owned
by a younger transaction, otherwise it aborts. Timestamp
ordering ensures no deadlock is possible. While one could
also implement 2PL with deadlock detection, it demands
significant network synchronization between servers to de-
tect lock-request cycles, and is therefore very costly in a
distributed setting [1, 16]. Therefore, we did not include it
in our evaluation.
We based the implementation of Chiller’s locking mech-

anism on NO_WAIT due to its lower overhead (no need to
manage lock queues), although WAIT_DIE could also be used.

Optimistic (OCC): We based our implementation on the
MaaT protocol [26], which is an efficient and scalable algo-
rithm for OCC in distributed settings [16]. Each transaction
is assigned a range for its commit timestamp, initially set
to

[
0 ∞

)
. Also, the DBMS stores for each record the list of

pending reader IDs and writer IDs, and the ID of the last com-
mitted transaction which accessed the record. Each time a
transaction reads/modifies a record, it modifies its timestamp
range to be in compliance with the read/write timestamp
of that record, and adds its unique timestamp to the list of
the record’s read/write IDs. At the end, each participant of
the transaction attempts to validate its part by changing the
timestamp ranges of the validating transaction and the other
conflicting transactions, and votes to commit if the final
range of the transaction is valid. The coordinator commits a
transaction only if all the participants vote to commit.

In addition, we evaluate two common partitioning schemes:
Hash-partitioning is the method of assigning records to
partitions based on the hash value of their primary key(s).
Schism is the most notable automatic partitioning technique
for OLTP workloads. It first uses Metis to find a small cut of
the workload graph, then compares this record-level parti-
tioning to both a decision tree-learned range partitioning and
a simple hash partitioning and picks the one which results
in the minimum number of distributed transactions, or if
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Figure 7: Comparison of different concurrency control methods and Chiller for the standard and modified TPC-C.

equal, requires a smaller lookup table. We include the results
for different CC schemes for Schism partitioning, and report
only NO_WAIT for hash partitioning as a simple baseline.
7.3 Workloads
For our experiments, we use the following workloads and
measure throughput as number of committed transactions
per second (i.e., excluding aborted transactions).

TPC-C: This is the de facto standard for evaluating OLTP
systems. It consists of 9 tables and 5 types of transactions.
The majority of transactions access records belonging to a
single warehouse. Therefore, the obvious partitioning lay-
out is by warehouse. Despite being highly partitionable, it
contains two severe contention points. First, each new-order
transaction does an increment on one out of 10 records in
the district table of a warehouse. Second, every payment
transaction updates the total balance of a warehouse and
one of its 10 districts, creating an even more severe con-
tention point. These two transactions comprise more than
87% of the workload. We used one warehouse per server (i.e.,
7 warehouses in total) which translates to a high contention
workload. This allows us to focus on the differences in the
execution models of Chiller and traditional schemes.

YCSB: It consists of a single table with 1KB records [6].
We generated 5 million records (∼ 5 GB) per server. To gen-
erate read and write-sets of transactions with a desired level
of locality, we used a mapping function from records to parti-
tions. Since the benchmark does not specify transactions, we
group multiple read/write-operations into one transaction as
discussed next. To explore different aspects of the problem
in more depth, we used the following two workloads:
YCSB Local: This workload represents a perfectly partition-
able dataset. Each transaction reads and modifies 16 records
stored on a single partition using a Zipfian distribution with
varying skew factor 𝜃 .
YCSB Distributed: Many real OLTP workloads are not as par-
titionable as YCSB Local on the transaction level, but still
exhibit some locality on the record level. For example, a pur-
chase that contains one Harry Potter book is likely to contain
a few other volumes of the Harry Potter franchise, while still
including any other non-related item. To model such cases,

we generated a workload where each transaction reads 4
records across different partitions of the entire database uni-
formly, and reads and modifies 2 other records from a single
partition using a Zipfian distribution.

InstaCart: To assess the effectiveness of our approach
to deal with difficult to partition workloads, we used a real-
world data set released by Instacart [18], which is an online
grocery delivery service. The dataset contains over 3 million
grocery orders for around 50K items from more than 200K of
their customers. On average, each order contains 10 grocery
products purchased in one transaction by a customer. To
model a transactional workload based on the Instacart data,
we used the TPC-C’s NewOrderwhere each transaction reads
the stock values of a number of items, subtracts each one
by 1, and inserts a new record in the order table. However,
instead of randomly selecting items according to the TPC-C
specification, we used the actual Instacart data set. Unlike the
original TPC-C, this data set is actually difficult to partition
due to the nature of grocery shopping, where items from
different categories (e.g., dairy, produce, and meat) may be
purchased together. More importantly, there is a significant
skew in the number of purchases of different products. For
example, 15% of transactions contain banana.
7.4 TPC-C Results
As common in all TPC-C evaluations, all tables are parti-
tioned by warehouse ID, except for the Items table which is
read-only and therefore replicated on all servers. Both Chiller
and Schism produce this partitioning given the workload
trace, therefore in the following experiments, we mainly
focus on the two-region execution feature of Chiller, and
evaluate it against the other CC schemes.
7.4.1 Impact of Concurrency Level.We first measure the per-
formance of Chiller, NO_WAIT, WAIT_DIE, and OCC with in-
creasing number of worker threads per server. Although such
increase provides more CPU power to process transactions,
it also increases the contention. Studying this factor is there-
fore of great importance since many modern in-memory
databases are designed for systems with multi-core CPUs.

As Figure 7a shows, with only one worker thread running
in each machine (i.e., no concurrent data access), NO_WAIT
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and WAIT_DIE perform similarly, and has 10% higher through-
put than Chiller. This is accounted by the two-region exe-
cution overhead. However, as we increase the number of
worker threads, the likelihood that transactions conflict with
each other increases, negatively impacting the scalability of
2PL and OCC. Chiller, on the other hand, minimizes the lock
duration for the two contention points in TPC-C (warehouse
and district records) and thus, scales much better. With 10
threads, the throughput of Chiller is 2× and 3× higher than
that of NO_WAIT and WAIT_DIE, respectively.

Figure 7b shows the corresponding abort rates (averaged
over all threads).Withmore than 4 threads, OCC’s abort rate is
even higher than NO_WAIT, which is attributed to the fact that
many transactions are executed to the validation phase and
then are forced to abort. Compared to the other techniques,
the abort rate of Chiller increases much more slowly as the
level of concurrency per server increases.

This experiment shows the inherent scalability issue with
traditional CC schemes when deployed on multi-core sys-
tems, and how Chiller manages to significantly alleviate it.
7.4.2 Impact of Distributed Transactions.For this experiment,
we restricted the transactions to NewOrder and Payment,
each making up 50% of the mix (In the standard TPC-C
workload, these two transactions are the only ones which can
be multi-partition). For Payment, we varied the probability
that the paying customer is located at a remote warehouse,
and for NewOrder we varied the probability that at least one
of the purchased items is located in a remote partition.

Figure 7c shows the total throughput with a varying frac-
tion of distributed transactions. As the percentage of dis-
tributed transactions increases, the already existing conflicts
become more pronounced due to the prolonged duration of
transactions, since a higher ratio of transactions must wait
for network roundtrips to access records on remote partitions.
This observation clearly shows why having good partition-
ing layout is a necessity for good performance in traditional
CC protocols, and why existing partitioning techniques aim
to minimize the percentage of distributed transactions.
Also, compared to the traditional concurrency protocols,

Chiller degrades the least when the fraction of distributed
transactions increases. More specifically, the performance of
Chiller drops only by 26%, while NO_WAIT and WAIT_DIE both
observe close to 50% drop in throughput, and the throughput
of OCC has the largest decrease, which is about 73%. This is
because the execution threads for a partition always have use-
ful work to do; when a transaction is waiting for remote data,
the next transaction can be processed. Since in Chiller, con-
flicts are handled sequentially in the inner region, concurrent
transactions have a much smaller likelihood of conflicting
with each other. Therefore, an increase in the percentage
of distributed transactions only means higher latency per

transaction, and not much increased contention, therefore
has much less impact on the throughput. This highlights our
claim that minimizing the number of multi-partition transac-
tions should not be the primary goal in the next generation
of OLTP systems that leverage fast networks, but rather that
optimizing for contention should be.
7.5 YCSB Results
7.5.1 Single-Partition Transactions.We begin by examining
the impact of contention on single-partition transactions. We
use the YCSB local workload and vary the skew level 𝜃 from
0.5 (low skew) to 0.99 (high skew, the default in the original
YCSB). The aggregated throughput and the average abort
rate are shown in Figures 8a and 8b. For this workload, both
Chiller and Schism can produce the same split as the ground
truth mapping function we used to generate transactions. As
explained before, under traditional CC schemes, distributed
transactions significantly intensify any contention in the
workload, which explains the steep increase in the abort rate
of the hash partitioning baseline in Figure 8b.
As the contention increases, all traditional CC schemes

face high abort rate, reaching more than 50% with 𝜃 = 0.85.
Chiller, on the other hand, is able to minimize the contention
and hence reduce the abort rate. When the skew is high
(𝜃 = 0.99), the throughput of Chiller is more than 85% higher
than the second best baseline, NO_WAIT, while its abort rate is
about half of WAIT_DIE. The initial increase in the through-
put of Chiller and Schism-based schemes can be attributed
to cache effects: with higher contention, there is a smaller
working set of data for most transactions, making CPU/NIC
caching more effective. However, as the contention further
increases, the higher abort rate outweighs the caching effect.
This experiment shows that even for a workload with

only single-partition transactions which is considered the
sweet spot of the traditional partitioning and CC techniques,
high contention can result in a major performance degrada-
tion, and Chiller’s two-region execution model manages to
alleviate the problem to a great extent.
7.5.2 Scalability of Distributed Transactions.We next com-
pare the scalability of different schemes in the presence of
distributed transactions. For this purpose, we used YCSB dis-
tributed workload, in which each transaction reads 4 records
from the entire database, and modifies 2 skewed records from
the same partition. Schism gives up fine-grained record-level
partitioning and chooses simple hash partitioning, because
in this workload, co-locating the hot records is not advanta-
geous to simple hashing in terms of minimizing distributed
transactions. Therefore, we also show the results for the orig-
inal partitioning produced by Metis, which aims to minimize
the number of cross-partition record accesses.
Figure 9 shows the throughput of the different protocols

as the number of partitions (and servers) increases. To avoid
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Figure 8: YCSB local (all single-partition transactions).
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Figure 9: YCSB distributed with increasing cluster sizes.

cluttering the graph, we only show the performance of the
best CC scheme for Schism, which is NO_WAIT. To maintain a
consistent replication factor of two, for the cluster size of one
and two, we dedicate two and one extra backup machines,
respectively, which do not process new transactions, and
only process replication logs.
At first, all schemes drop in throughput despite the in-

crease in the number of machines from one to two, which is
due to the introduced distributed transactions. Surprisingly,
as the number of partitions increases, all the CC schemes
which use Metis partitioning outperforms the one which
uses Schism, even though that almost all transactions are
distributed in both cases. This is because in Metis, the con-
tended records are co-located, and this drastically reduces
the negative impact of aborting transactions in our system.
More specifically, a transaction which fails to get one of
the two contended locks would release the other one im-
mediately, whereas in the partitioning produced by Schism,
these two records are likely to be placed in different parti-
tions, and releasing the locks for an aborted transaction may
take one network roundtrip, further intensifying the con-
tention problem. WAIT_DIE performs better than NO_WAIT
since its waiting mechanism is able to overcome the lock
thrashing issue in NO_WAIT, though we note that we also ob-
served this phenomenon for WAIT_DIE for workloads where
transactions access a higher number of hot records (e.g. see
Figure 8b). Compared to all the other schemes, Chiller scales
much better since not only its partitioning co-locates the
contended records together, but also its two-region execu-
tion model is able to access those records in inner regions
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Figure 10: Varying the database coverage of the lookup table.

of transactions and therefore significantly reduces the con-
tention. In fact, our measurements showed that the abort
rate of Chiller with 7 machines is only 11%, whereas it is 81%
and 86% for NO_WAIT and OCC, respectively. WAIT_DIE again
resulted in much lower abort rate of 49%, resulting in better
scalability compared to the other baselines. On 7 machines,
the performance of Chiller is 4× and 40× of NO_WAIT on
Metis and Schism partitions, respectively, while close to 2×
of the second best baseline, WAIT_DIE.
7.5.3 Lookup Table Size. In this experiment, we investigate
the performance of our proposed scheme in situations where
a full-coverage lookup table cannot be either obtained or
stored, as discussed in Section 4.5.1. This can mainly happen
when the number of database records is too large to store a
complete lookup table on each machine.

We used YCSB local, and fixed the skew parameter 𝜃 to 0.8
to represent a moderately skewed workload. Since all trans-
actions in this workload are single-partition with respect to
the ground truth mapping, both Schism and Chiller are able
to find the optimal partitioning which makes all transactions
single-partition, but this requires to cover the entire database
in their resulting lookup tables. To measure the impact of
lookup table coverage, we vary the percentage of the records
which are partitioned according to the optimization goal of
each partitioning algorithm. We used hash partitioning for
the remaining records which, as a result, do not take up any
lookup table entry, but result in a significant increase in the
number of multi-partition transactions.
The results are shown in Figure 10. When all records are

hash partitioned (the lookup table is empty), Chiller and all
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the other schemes achieve similar throughput. As the lookup
table increases in size, Chiller starts to diverge from the other
schemes. With a coverage of only 20%, Chiller achieves close
to half of its peak throughput, whereas NO_WAIT and OCC
achieve less than 0.1 of their peak throughput. In contrast,
NO_WAIT relies on a 80% coverage to achieve half of its max
throughput. The wide gap between Chiller and the other pro-
tocols is due to the way that Chiller handles contention. Plac-
ing the contended records (which are often a small fraction of
the entire database) in the right partitions and handling them
in inner regions are enough to removemost of the contention
in the workload. The rest of the records can be randomly
assigned to partitions without increasing contention.
This experiment supports our claim in Section 4.5 that,

compared to partitioning schemes aiming to minimize dis-
tributed transactions, Chiller requires a much smaller lookup
table to achieve a similar throughput. In addition, while for
this particular workload there exists a database split where
each transaction accesses one partition, for many real work-
loads such partitioning does not exist. Therefore, this experi-
ment shows how Chiller compares against the other schemes
for workloads with different degrees of partitionability.
7.6 Instacart Results
In our final experiment, we analyze the benefits of combin-
ing the Chiller’s partitioning scheme with the two-region
execution model. We use a real-world Instacart workload (as
introduced in Section 7.3), which is harder to partition than
TPC-C and YCSB. Furthermore, we use the same replication
factor of 2 as for the previous experiments.
In order to understand whether or not the two-region

execution model of Chiller is beneficial for the overall per-
formance, we compare full Chiller (Chiller) to Chiller parti-
tioning without the two-region execution model (ChP) and
Chiller partitioning using Quro* (ChP+Quro*). In contrast
to ChP which does not re-order operations, ChP+Quro* re-
orders operations usingQuro [40], which is a recent contention-
reduction technique for centralized database systems. More-
over, we compare full Chiller to two other non-Chiller base-
lines (Hash-partitioning and Schism-partitioning). For both
ChP and ChP+Quro* as well as the non-Chiller baselines
(Hash and Schism), we only show the results for a WAIT_DIE
scheme as it yielded the best throughput compared to NO_WAIT
and OCC for this experiment.

Figure 11 shows the results of this experiment for increas-
ing cluster sizes. Compared to the Hash-partitioning baseline
(black line), both ChP and ChP+Quro* (green and red lines)
have significantly higher throughput. We found that this is
not because the Chiller partitioning technique reduces the
number of distributed transactions, but rather because con-
tended records which are accessed together are co-located,
which in turn reduces the cost of aborting transactions. More
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Figure 11: Instacart with different execution models.

specifically, if a transaction on contented records needs to
be aborted, it only takes one round-trip, leading to an over-
all higher throughput since the failed transaction can be
restarted faster (cf. Section 7.5.2).
Furthermore, we see that ChP+Quro*, which re-orders

operations to access the low contended records first, ini-
tially increases the throughput by 20% compared to ChP but
then its advantage decreases as the number of partitions
increases. The reason for this is that the longer latency of
multi-partition transactions offsets most of the benefits of
operation re-ordering if the commit order of operations re-
mains unchanged. In fact, with 5 partitions, Schism (yellow
line) starts to outperform ChP+Quro*, even though Schism
does not leverage operation re-ordering.

In contrast to these baselines, Chiller (blue line) not only re-
orders operations but also splits them into an inner and outer
regionwith different commit points, and thus can outperform
all the other techniques. For example, for the largest cluster
size, the throughput of Chiller is by approximately 1 million
txns/sec higher than the second best baseline. This clearly
shows that the contention-centric partitioning must go hand-
in-hand with the two-region execution to be most effective.
8 Related Work
Data Partitioning:A large body of work exists for partition-
ing OLTP workloads with the ultimate goal of minimizing
cross-partition transactions [8, 37]. Most notably, Schism [8]
is an automatic partitioning and replication tool that uses a
trace of the workload to model the relationship between the
database records as a graph, and then applies METIS [22]
to find a small cut while approximately balancing the num-
ber of records among partitions. Clay [29] builds the same
workload graph as Schism, but instead takes an incremen-
tal approach to partitioning by building on the previously
produced layout as opposed to recomputing it from scratch.
E-store [34] balances the load in the presence of skew in tree-
structured schemas by spreading the hottest records across
different partitions, and then moving large blocks of cold
records to the partition where their co-accessed hot record
is located. Given the schema of a database, Horticulture [28]
heuristically navigates its search space of table schemas to
find the ideal set of attributes to partition the database. As
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stated earlier, all of these methods share their main objective
of minimizing inter-partition transactions, which in the past
have been known to be prohibitively expensive. However,
in the age of new networks and much “cheaper” distributed
transactions, such an objective is no longer optimal.

Transaction Decomposition: There has been also work
exploring the opportunities in decomposing transactions into
smaller units. Gemini [25] introduces a mixed consistency
model called BlueRed in which transaction operations are
divided into blue operations, which are eventually consistent
with lower latency, and red operations, which are strongly
consistent which require global serialization. Gemini opti-
mizes for overall latency and requires data to be replicated
at all servers, and therefore does not have the notion of dis-
tributed transactions. Chiller, on the other hand, optimizes
for minimizing contention, and supports distributed transac-
tions. There has also been work on the theory of transaction
chopping [30, 31, 46], in which the DBMS splits a transaction
into smaller pieces and treats them as a sequence of inde-
pendent transactions. In contrast to the idea of transaction
chopping, our two-region execution not only splits a trans-
action into cold and hot operations, but re-orders operations
based on which region they belong to. Also, we do not treat
the outer region as an independent transaction and will hold
the locks on its records until the end of the transaction. This
allows us to our technique to abort a transaction later in
the inner region. Transaction chopping techniques, however,
must adhere to rollback-safety, in which all operations with
the possibility of rollback must be executed in the first piece,
since subsequent pieces must never fail. This restricts the
possible ways to chop the transaction.

Determinism and Contention-Reducing Execution:
Another line of work aims to reduce contention through
enforcing determinism to part or all of the concurrency con-
trol (CC) unit [7, 21, 35]. In Granola [7], servers exchange
timestamps to serialize conflicting transactions. Calvin [35]
takes a similar approach, except that it relies on a global
agreement scheme to deterministically sequence the lock
requests. Faleiro et al. [14, 15] propose two techniques for
deterministic databases, namely lazy execution scheme and
early write visibility, which aim to reduce data contention in
those systems. All of these techniques and protocols require
a priori knowledge of read-set and write-set.
There has also been a large body of work on optimizing

and extending traditional CC schemes to make them more
apt for in-memory databases. MOCC [38] targets thousand-
core systems with deep memory hierarchies and proposes a
new concurrency control which mixes OCC with selective
pessimistic read locks on contended records to reduce clob-
bered reads in highly contended workloads. Recent work on
optimistic CC leverages re-ordering operations inside a batch
of transactions to reduce contention both at the storage layer

and validation phase [10]. While Chiller also takes advantage
of operation re-ordering, it does so at an intra-transaction
level without relying on transaction batching. MV3C [9] in-
troduces the notion of repairing transactions in MVCC by
re-executing a subset of a failed transaction logic instead of
running it from scratch. Most related to Chiller is Quro [40],
which also re-orders operations inside transactions in a cen-
tralized DBMSwith 2PL to reduce lock duration of contended
data. However, unlike Chiller, the granularity of contention
for Quro is tables, and not records. Furthermore, almost all
these works deal with single-node DBMSs and do not have
the notion of distributed transactions, 2PC or asynchronous
replication on remote machines, and hence finding a good
partitioning scheme is not within their scopes.

Transactions over Fast Networks: This paper contin-
ues the growing focus on distributed transaction processing
on new RDMA-enabled networks [3]. The increasing adop-
tion of these networks by key-value stores [19, 24, 27] and
DBMSs [5, 11, 20, 43] is due to their much lower overhead for
message processing using RDMA features, low latency, and
high bandwidth. These systems are positioned in different
points of the spectrum of RDMA. For example, FaSST [20]
uses the unreliable datagram connections to build an opti-
mized RPC layer, and FaRM [11] and NAM-DB [43] leverage
the RDMA feature to directly read or write data to a remote
partition. Though different in their design choices, scalabil-
ity in the face of cross-partition transactions is a common
promise of these systems, provided that the workload itself
does not impose contention. Therefore, Chiller’s two-region
execution and its contention-centric partition are specifically
suitable for this class of distributed data stores.
9 Conclusions
This paper presents Chiller, a distributed transaction pro-
cessing and data partitioning scheme that aims to minimize
contention. Chiller is designed for fast RDMA-enabled net-
works where the cost of distributed transactions is already
low, and the system’s scalability depends on the absence of
contention in the workload. Chiller partitions the data such
that the hot records which are likely to be accessed together
are placed on the same partition. Using a novel two-region
processing approach, it then executes the hot part of a trans-
action separately from the cold part. Our experiments show
that Chiller can significantly outperform existing approaches
under workloads with varying degrees of contention.
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