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Abstract—Differentially private algorithms allow large-scale
data analytics while preserving user privacy. Designing such
algorithms for graph data is gaining importance with the growth
of large networks that model various (sensitive) relationships be-
tween individuals. While there exists a rich history of important
literature in this space, to the best of our knowledge, no results
formalize a relationship between certain parallel and distributed
graph algorithms and differentially private graph analysis. In
this paper, we define locally adjustable graph algorithms and show
that algorithms of this type can be transformed into differentially
private algorithms.

Our formalization is motivated by a set of results that we
present in the central and local models of differential privacy
for a number of problems, including k-core decomposition, low
out-degree ordering, and densest subgraphs. First, we design
an ε-edge differentially private (DP) algorithm that returns a
subset of nodes that induce a subgraph of density at least
D∗
1+η
−O (poly(log n)/ε) , where D∗ is the density of the densest

subgraph in the input graph (for any constant η > 0). This
algorithm achieves a two-fold improvement on the multiplicative
approximation factor of the previously best-known private dens-
est subgraph algorithms while maintaining a near-linear runtime.

Then, we present an ε-locally edge differentially private
(LEDP) algorithm for k-core decompositions. Our LEDP algo-
rithm provides approximates the core numbers (for any constant
η > 0) with (2+η) multiplicative and O (poly (log n) /ε) additive
error. This is the first differentially private algorithm that
outputs private k-core decomposition statistics. We also modify
our algorithm to return a differentially private low out-degree
ordering of the nodes, where orienting the edges from nodes
earlier in the ordering to nodes later in the ordering results
in out-degree at most O (d+ poly (log n) /ε) (where d is the
degeneracy of the graph). A small modification to the algorithm
also yields a ε-LEDP algorithm for (4 + η,O (poly (log n) /ε))-
approximate densest subgraph (which returns both the set of
nodes in the subgraph and its density). Our algorithm uses
O(log2 n) rounds of communication between the curator and
individual nodes.

I. INTRODUCTION

The k-core decomposition and related objects—densest

subgraph and low out-degree ordering—are among the most

important and widely used graph statistics in a variety of

communities. The k-core decomposition assigns a number to

each node in a network which captures how well-connected it

is to the rest of the network; it is useful in applications where

one wants to find “influential” nodes, or to partition a network

based on each node’s influence. Concrete applications include

diffusion protocols in epidemiological studies [18], [46], [49],

[52], community detection and computing network centrality

measures (where centers tend to have larger core numbers)

[22], [35], [54], [71], [78], and network visualization [2],

[11], [75], [79]. Because of these applications, finding fast

and scalable algorithms for exact and approximate k-core

decompositions is an active research area with many results

spanning the past decade (see [51] for a survey).

However, one increasingly important topic that has been

overlooked thus far in the community is the privacy of the in-

dividuals whose data are used for computing the core numbers.

Privacy measures are particularly important for statistics such

as k-core numbers, since such statistics output a value for each

individual in the data set, allowing for more effective attacks

that can decipher individual links and also the information

of one or more individuals in the data set. Such ominous

possibilities call for a formal study of k-core decomposition

algorithms that are privacy preserving, which is the focus of

this paper.

Given an undirected graph G with n nodes and m edges,

the k-core of the graph is the maximal subgraph H ⊆ G such

that the induced degree of every node in H is at least k. The

k-core decomposition of the graph is a partition of the nodes
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of the graph into layers such that layer k contains all the nodes

that belong to the k-core but not the (k+1)-core. We illustrate

the kind of attack on a (private) input data set that can occur

provided the (anonymized) k-core decomposition of a social

network graph. In particular, the k-core decomposition gives

much more information about the structure of the graph than

many other graph statistics. Consider a social network graph

consisting of a k-clique and a k-ary tree. Suppose the attacker

does not know the graph but has access to the exact core

numbers of individuals in the data set. From the core numbers,

the attacker can determine the individuals in the clique and

the edges between them. Such an attack is not possible, for

example, if instead of the core numbers, the attacker has access

to the degree distribution of the graph. In this case, the attacker

cannot differentiate between the clique and the non-leaf nodes

of the k-ary tree.

Consider a graph G that, instead of friendships, represent

sensitive information such as HIV transmissions [47], [72],

[74] or cryptocurrency payments [55]. Two members of a

clique in G, users A and B, may not want others to know

that they share an edge; however, the k-core decomposition of

G reveals that they do indeed share an edge. Such an attack

emphasizes the need for k-core decomposition algorithms that

provide privacy for individuals.

With this goal in mind, we present novel differentially pri-
vate (DP) algorithms for the k-core decomposition and related

objects—densest subgraph and low out-degree ordering—that

match the multiplicative approximation bounds of the known

non-private algorithms. Differential privacy [23] is the gold

standard for privacy in data analysis. We present results in

two differential privacy models: central [23] and local [43].

The central model assumes a trusted curator that gathers and

processes non-private data from users. In contrast, the local

differential privacy model assumes no trusted third-party. Each

node represents an individual device of a user (e.g., phone)

which releases privatized data. A third-party can act as an

untrusted curator for computing statistics on the released data.

Such models are particularly important as individuals become

more wary of central authorities; and it is also a liability

for companies to keep such sensitive data. Local differential

privacy is a stronger notion of privacy than central differential

privacy because nobody besides the owner touches any private

data. Furthermore, privacy in the local model implies privacy

in the central model. On the other hand, local differential

privacy is more restrictive for the algorithm designer, and, for

some problems, locally differentially private algorithms must

have larger error than DP algorithms. In fact, several known

error lower bounds exhibit gaps between the central and local

models that could be as large as polynomial in the size of the

input (see, e.g., [6], [12], [23]).

a) Outline: We provide all definitions and notation for

this paper in Section II. We summarize our contributions and

provide a technical overview in Section III. In Section IV, we

present our locally differentially private k-core decomposition,

low out-degree ordering, and densest subgraph algorithms.

In Section V, we provide our DP densest subgraph algorithm

that achieves a better multiplicative factor approximation than

our densest subgraph algorithm in the local model. Finally,

in Section VI, we provide our privacy framework that allows

us to convert a class of algorithms that we call locally
adjustable into differentially private algorithms. It is open

whether one can show that, in general, the utility of locally

adjustable algorithms does not degrade significantly during the

transformation.

b) Related Works: DP algorithms have been developed

for graph statistics such as subgraph counts [9], [16], [38],

[39], [42], [44], [68], [80], degree distribution [20], [34], [60],

[81], minimum spanning tree and clustering [37], [41], [57],

[58], spectral properties [3], [73], cut problems [3], [25], [30],

[45], [62], [64], and parameter estimation [50], [76], [77].

DP Densest Subgraph. The currently best DP algorithms for

densest subgraphs are due to Nguyen and Vullikanti [56] and

Farhadi et al. [27]. We describe them in detail in Section III.

Non-Private Algorithms for k-Core Decomposition and Re-
lated Problems. In the non-DP, fully-dynamic setting, Bhat-

tacharya et al. [8], Henzinger et al. [36], and Sawlani and

Wang [61] provide sequential algorithms that use poly(log n)
update time and obtain a (4 + η)-approximate densest sub-

graph, O(1)-approximate low out-degree ordering, and (1+η)-
approximate densest subgraph, respectively, for any η > 0.

Sun et al. [67] provide the first dynamic (4 + η)-approximate

k-core decomposition in the sequential model, using a peeling

algorithm. A similar technique is used by Chan et al. [13] in

the distributed setting. Finally, Liu et al. [48] formulate a paral-

lel, batch-dynamic (4+ η)-approximate k-core decomposition

algorithm which we use in our work1.

II. PRELIMINARIES

We provide both DP and LDP algorithms with a focus on

the k-core decomposition, low out-degree ordering, and the

densest subgraph. We define these problems here. All privacy

tools presented in this section are used in both the DP and

LDP settings.

A. Graph Definitions

We use [n] to denote {1, . . . , n}. We consider undirected

graphs G = (V,E) with n = |V | nodes and m = |E| edges.

For ease of indexing, we set V = [n]. The set of neighbors

of a node i ∈ [n] is denoted N(i), and the degree of node

i is denoted deg(i). Our algorithms take an input graph G
and output an approximate core number for each node in

the graph (Definition II.1), an approximate densest subgraph
(Definition II.4), and an approximate low out-degree ordering
(Definition II.3).

Definition II.1 ((φ, ζ)-Approximate Core Number). The k-

core of a graph G = (V,E) is a maximal subgraph H of G
such that the induced degree of every node in H is at least k.
A node v ∈ V has core number κ if v is part of the κ-core but

1 We only consider one-sided multiplicative error. Thus, we translate the
approximation factors of [67] and [48], which give two-sided error, to instead
give one-sided error, resulting in an additional factor of 2 in our statement of
their approximation bounds.
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not the (κ + 1)-core. Let k(v) be the core number of v and
k̂(v) be an approximation of the core number of v, and let
φ ≥ 1, ζ ≥ 0. The core estimate k̂(v) is a (φ, ζ)-approximate
core number of v if k(v)− ζ ≤ k̂(v) ≤ φ · k(v) + ζ.

Whereas an algorithm that outputs the exact k-core decom-

position does not satisfy the definition of DP (or LDP), we ob-

tain an LDP algorithm for approximate k-core decomposition

which gives (2 + η,O(log3 n/ε))-approximate core numbers

for any constant η > 0. We define the related concept of an

approximate low out-degree ordering based on the definition

of degeneracy.

Definition II.2 (Degeneracy). An undirected graph G =
(V,E) is d-degenerate if every induced subgraph of G has
a node with degree at most d. The degeneracy of G is the
smallest value of d for which G is d-degenerate.

It is well known that degeneracy d = maxv∈V {k(v)}.
Definition II.3 ((φ, ζ)-Approximate Low Outdegree Order-

ing). Let D = [v1, v2, . . . , vn] be a total ordering of nodes in
a graph G = (V,E). The ordering D is an (φ, ζ)-approximate
low out-degree ordering if orienting edges from earlier nodes
to later nodes in D produces outdegree at most φ · d+ ζ.

We denote the density of a graph G = (V,E) by ρ(G) :=
|E|
|V | . The densest subgraph problem is defined as follows.

Definition II.4 (Densest Subgraph). The densest subgraph
Smax of a graph G = (V,E) is a maximal induced subgraph
with maximum density.

When defining an approximate densest subgraph, we re-

move the condition on maximality of the subgraph and require

the density to be within the specified approximation factors.

Definition II.5 ((φ, ζ)-Approximate Densest Subgraph). Let
the density of the densest subgraph in G be D∗ and φ ≥ 1, ζ ≥
0. A (φ, ζ)-approximate densest subgraph S has density ρ (S)
at least D∗

φ − ζ.

B. Differential Privacy

We consider two models of differential privacy: central [23]

and local [43]. In the central model, there is a trusted curator

that has direct access to the input, whereas in the local model,

the curator is not trusted and gets access only to outputs of

private algorithms, called randomizers. Both notions of privacy

require a definition of neighboring inputs. We focus on edge-
neighboring graphs, defined next.

Definition II.6 (Edge-Neighboring [57]). Graphs G1 =
(V1, E1) and G2 = (V2, E2) are edge-neighboring if they
differ in one edge, namely, if V1 = V2 and the size of the
symmetric difference of E1 and E2 is 1.

Definition II.7 (ε-Edge Differential Privacy [57]). Algorithm
A(G), that takes as input a graph G and outputs some value

in range R, is ε-edge differentially private (ε-edge DP) if for
all S ⊆ R and all edge-neighboring graphs G and G′,

1

eε
≤ Pr[A(G′) ∈ S]

Pr[A(G) ∈ S]
≤ eε.

The primary complexity measure for ε-edge DP algorithms

is the running time.

C. Local Edge Differential Privacy (LEDP)

The LEDP model is an extension of the local differential

privacy (LDP) model originally introduced by [43]. Below we

use the definitions given in [24] which are based on definitions

in [40] for non-graph data. The LEDP was also defined in [38],

[39] for the special case of one round, and [39] additionally

provides a proposition on the sequential composition of their

LEDP algorithms.

Our LEDP algorithms are described in terms of an (un-

trusted) curator, who does not have access to the graph’s

edges, and individual nodes. During each round, the curator

first queries a set of nodes for information. Individual nodes,

which have access only to their own (private) adjacency lists,

then release information via local randomizers, defined next.

Definition II.8 (Local Randomizer (LR)). An ε-local random-
izer R : a → Y for node v is an ε-edge DP algorithm that
takes as input the set of its neighbors N(v), represented by
an adjacency list a = (b1, . . . , b|N(v)|). In other words,

1

eε
≤ Pr [R(a′) ∈ Y ]

Pr [R(a) ∈ Y ]
≤ eε

for all a and a′ where the symmetric difference is 1 and all sets
of outputs Y ⊆ Y . The probability is taken over the random
coins of R (but not over the choice of the input).

The information released via local randomizers is public

to all nodes and the curator. The curator performs some

computation on the released information and makes the result

public. The overall computation is formalized via the notion

of the transcript.

Definition II.9 (LEDP). A transcript π is a vector consisting
of 5-tuples (StU , S

t
R, S

t
ε, S

t
δ, S

t
Y ) – encoding the set of parties

chosen, set of randomizers assigned, set of randomizer privacy
parameters, and set of randomized outputs produced – for each
round t. Let Sπ be the collection of all transcripts and SR
be the collection of all randomizers. Let ⊥ denote a special
character indicating that the computation halts. A protocol
is an algorithm A : Sπ → (2[n] × 2SR × 2R

≥0 × 2R
≥0

) ∪
{⊥} mapping transcripts to sets of parties, randomizers, and
randomizer privacy parameters. The length of the transcript,
as indexed by t, is its round complexity.

Given ε ≥ 0, a randomized protocol A on (distributed)
graph G is ε-locally edge differentially private (ε-LEDP) if
the algorithm that outputs the entire transcript generated by
A is ε-edge differentially private on graph G. If t = 1, that
is, if there is only one round, then A is called non-interactive.
Otherwise, A is called interactive.
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Since LEDP algorithms operate in the distributed setting,

the complexity measures that we care about for our LEDP

algorithms is the number of rounds of communication and

the node communication complexity, or the maximum size

of each message sent from a user to the curator. We assume

each user can see the public information for each round on

a public “bulletin board”. Additional differential privacy tools

and definitions can be found in the full version of our paper.

III. OUR CONTRIBUTIONS AND TECHNICAL OVERVIEW

Our main contributions in this paper are our locally private

approximation algorithms for k-core decomposition, low out-

degree ordering, and densest subgraphs that achieve bicriteria

approximations where the multiplicative factors exactly match
the multiplicative approximations of the original non-private

algorithms, and they only incur additional small
poly(logn)

ε
additive error. Our key observation is that the release of noisy

levels in the recent level data structures of [8], [36], [48] used

for these problems allows for privacy at the cost of only a

poly(log n) increase in the additive error.

We first give ε-LEDP algorithms using a number of recent

non-private algorithms for static and dynamic orientation and

k-core decomposition algorithms [8], [13], [36], [48]. Our

algorithms are the first ε-LEDP algorithms for approximate

k-core decomposition, low out-degree orientation and densest

subgraph. For the approximate k-core decomposition problem,

we must return an approximate core number for every node in

the graph. Even though a single edge addition can cause the

exact core number of every node to change, we are able to

give a
(
2 + η,O

(
log3 n
ε

))
-approximate ε-LEDP algorithm.

One of the challenges in adapting known techniques to

obtain LEDP algorithms for the k-core decomposition is that

the vector of k-core numbers has high sensitivity. Specifically,

its global sensitivity is n, as one edge update can cause the k-

core number of every node to increase or decrease by 1. E.g.,

all nodes in a cycle have core number 2, and the deletion of

any edge decreases the core number of every node by 1.

The key to our results is to instead consider a function that

returns the induced degree of each node in a special subgraph

of the input graph. The sensitivity of this function is 2, since

one additional edge can increase the degree of at most two

nodes, each by 1. We bound the number of times the curator

queries the value of this function by O(log2 n) in the worst

case, thus eliminating the need for the sparse vector technique

(SVT) used in previous works [27], [28].

Our algorithm runs in O(log2 n) rounds where each node

sends messages with O(1) bits to the curator. Our algorithm

is based on a level data structure investigated by a number

of works [8], [36], [48]. In these data structures, nodes are

partitioned into levels. The key insight that allowed us to

achieve privacy in the local model is that each node in our al-

gorithm only requires knowledge of the levels their neighbors

are on. Thus, nodes can publish a noisy level for each phase.

Using the noisy level in multiple phases directly leads to core

number estimates. Our algorithm matches the multiplicative

approximation factor of the best known algorithm for this

problem by Chan et al. [13]. We also give a version of our

algorithm that uses only O(log n) rounds (with messages of

size O(log n) sent to the curator). We present this algorithm

and its analysis in Section IV.

Theorem III.1 (ε-LEDP k-Core Decomposition). There exists
an O

(
log2 n

)
round ε-LEDP algorithm that, given a constant

η > 0, returns
(
2 + η,O

(
log3 n
ε

))
-approximate core num-

bers with high probability.

As a consequence of our algorithm, we give an ε-LEDP

algorithm for approximate low out-degree ordering. Edge

orientations obtained from such orderings are useful in graph

algorithm design and contribute to a variety of faster al-

gorithms for fundamental problems, such as coloring [53],

matching [19], triangle counting [17], independent set [59],

dominating set [1], and many others. Furthermore, many real-

world graphs have small degeneracy [7], [21], [26], [63],

making such algorithms practically useful. Note that (perhaps

obviously) an algorithm that explicitly outputs an orientation

for every edge cannot be edge DP. Instead, the output of our

private algorithm is an ordering on the vertices, and the edge

orientation can be obtained by orienting each edge from the

lower to the higher endpoint in the ordering. Private orderings

have been considered in previous works: e.g., Gupta et al. [30]

give an ε-edge DP ordering for the vertex cover problem

(where the earliest endpoint of an edge covers that edge).

Theorem III.2 (ε-LEDP Low Out-Degree Ordering). There
exists an O(log2 n)-round ε-LEDP algorithm that, given a
constant η > 0 and a graph of degeneracy d, returns a total
ordering of the nodes such that orienting edges from nodes
earlier in the ordering to nodes later in the ordering results in
out-degree at most (4+η)d+O

(
log3 n
ε

)
, with high probability.

With an additional tweak, our algorithm also yields the first

result for the densest subgraph problem in the local model.

Theorem III.3 (ε-LEDP Densest Subgraph). There exists an
O(log n)-round ε-LEDP algorithm that returns a set of nodes
that induce a

(
4 + η,O

(
log3 n/ε

))
-approximate densest sub-

graph. Our algorithm returns both the nodes in the densest
subgraph as well as the approximate density.

Interestingly, our static LEDP algorithms are inspired by

a body of non-private works in the dynamic setting [8],

[36], [48], [67]. We show that the locality of these dynamic

algorithms and the bounded sequential dependency paths allow

us to provide our LEDP guarantees as well as minimize the

number of rounds of communication. Our techniques may

potentially lead to other LEDP algorithms inspired by non-

private dynamic algorithms.

There are currently no known (1 + η)-approximate k-core

decomposition algorithm (even in the non-private setting) that

use poly(log n) phases. (Non-private (1 + η)-approximate

algorithms that use ω(poly(log n)) phases do exist.) This

bound on the number of phases is essential for obtaining our

additive approximation guarantees. It is open whether we can
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obtain a framework without additive error dependence on the

number of phases. Also, independently, it is interesting to see

whether non-private (1+η)-approximate k-core decomposition

algorithms that take poly(log n) phases exist.

Then, we give an ε-edge DP densest subgraph algorithm

based on the non-private parallel algorithm of Bahmani et

al. [5] together with the modifications made by Su and Vu [66]

in their non-private distributed algorithm. Using this algo-

rithm and our mechanism, we present a
(
1 + η,O

(
log4 n
ε

))
-

approximate ε-edge DP algorithm for the densest subgraph

problem with runtime O((n+m) log3 n) when η > 0 is con-

stant. This improves on the multiplicative approximation fac-

tors of the previous (ε, δ)-edge DP O
(
2 + η, log(n) log(1/δ)

ε

)
-

approximation results of Nguyen and Vullikanti [56] and

the more recent ε-edge DP
(
2 + η,O

(
log2.5(n) log(1/σ)

ε

))
-

approximation algorithm of Farhadi et al. [27] that obtains

this approximation guarantee with probability 1 − σ. We

achieve this improvement in the approximation factor with

only an O(log3 n) increase in the runtime. Furthermore, when

η > 0 is constant, our algorithm matches the ((n+m) log2 n)
runtime up to a O(log n) factor of the best known non-

private algorithm of Chekuri et al. [15], which obtains a

(1 + η)-approximate densest subgraph algorithm. We present

our algorithm and its analysis in Section V.

Theorem III.4 (ε-Edge DP Densest Subgraph). There ex-
ists an

(
1 + η,O

(
log4 n
ε

))
-approximate algorithm for the

densest subgraph problem that is ε-edge DP and runs in
O((n + m) log3 n) worst-case time for constant η > 0 that
returns an approximation factor within the stated bounds with
high probability.

Finally, we present our general framework. This framework

is a formalization of a category of graph algorithms that we

call locally adjustable. We present a simple mechanism for

converting locally adjustable graph algorithms into ε-edge DP

and ε-LEDP algorithms. Our framework and privacy proofs

are given in Section VI.

Three crucial observations about locally adjustable algo-

rithms allow us to obtain private algorithms with small error.

First, such algorithms proceed in several phases where the state

of each node or edge is updated via a function that uses only
information from its immediate neighbors and incident edges.

We are thus able to bound the sensitivity of such functions by

a small constant in edge-neighboring graphs. Second, these

local functions often only require the number of neighbors

and incident edges that satisfy a condition without requiring

knowledge of the states of these neighbors. This property

allows us to easily add noise via the geometric mechanism

to the count of neighbors/incident edges that satisfy the

condition. The noise can be viewed as either hiding actual

edges or representing dummy edges which may additionally

satisfy the condition. In edge-neighboring graphs G and G′, a

dummy edge incident to node v can account for the additional

neighbor of v that is present in G′ but not in G. Finally, we see

that the additive error of each of our algorithms depends on its

total number of phases (or the number of times the algorithm is

run before returning an output). We show that state-of-the-art

parallel and distributed algorithms naturally run in poly(log n)
phases, thus leading to only a poly(log n) factor in the additive

error. It is as an interesting open question whether general

utility guarantees can be obtained for our framework.

IV. LOCAL ALGORITHMS FOR CORE DECOMPOSITION,

LOW OUT-DEGREE ORDERING, AND DENSEST SUBGRAPH

In this section, we give local algorithms for core decomposi-

tion, low out-degree ordering, and densest subgraph. Our local

algorithms are based on extending algorithms for a recently

developed non-private batch-dynamic level data structure to

the private setting. We start with our local core decomposition

algorithm and its privacy guarantees and accuracy, and then

present our local low out-degree ordering and densest subgraph

algorithms. All proofs are provided in the full version of our

paper.

A. ε-LEDP k-Core Decomposition

We present our algorithm in this section, and provide our

analyses in the full version of our paper. Our LEDP algorithm

is inspired by the sequential level data structure algorithms

of [8], [36] and the parallel level data structure of [48] used

to obtain the densest subgraphs and bounded degeneracy orien-

tations of a graph in the dynamic setting. We crucially use the

observation made by [48] that the longest path of sequential

dependencies is O(log2 n) for any number of updates. We

use this, along with our new private procedures for releasing

multiple outputs simultaneously for a phase at once, to prove

both our privacy guarantees and our O(log2 n) rounds, O(1)
node communication complexity bound. A simple extension

allows us to obtain an LEDP algorithm that uses O(log n)
rounds and O(log n) communication complexity per node.

Finally, we are able to improve the multiplicative approxi-

mation factor from (4+ η) in [48] to (2+ η) (see Footnote 1)

because [48] is a dynamic algorithm while ours is a static

algorithm. The additional factor of 2 was useful in reducing

the parallel work in the fully batch-dynamic algorithm (when

accounting for both insertions and deletions). In our static

setting, we only need to maintain insertions (from inserting all

the edges of the graph as a batch) which allows us to reduce

the approximation factor by 2. However, in order to ensure our

privacy guarantees in the LEDP model, we compute a new

noise for every node. In the sequential computation setting,

this incurs an additional factor of n in the running time, which

also means that we no longer need the amortized analysis from

previous works, since the additional factor of n dominates the

running time. But in the distributed setting, we are still able to

show that the worst-case number of rounds is O(log2 n) (and

O(log n) rounds with a modification).

a) Non-Private Dynamic Algorithms of [8], [36], [48],
[67]: The level data structure of [8], [36] partitions the nodes

of the graph into O(log2 n) levels. The levels are partitioned

into groups of O(log n) levels each. Nodes move up and down

the levels according to a set of rules on the induced degree
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of a node i with respect to the number of neighbors in the

same or higher level than i (sometimes the set of nodes in the

level just below the level of i is also considered). Specifically,

if the induced degree is too high, i moves one level up; if

the induced degree is too low, i moves one level down. One

crucial aspect of this algorithm is that a node only needs to
know the levels of its immediate neighbors.

In addition to the above structure, we use a crucial aspect of

the algorithm of [48] that allows us to move nodes from the

same level simultaneously without causing additional nodes

below them to move. Since we only have O(log2 n) levels, we

can process them in a bottom-up fashion while accounting for

all vertices in the current level of the iteration simultaneously,

achieving the O(log2 n) round complexity of our ε-LEDP

algorithm. A further modification that accounts for different

groups simultaneously allows us to decrease the round com-

plexity.

B. Detailed Algorithm

For the remainder of this section, log n means log(1+ψ) n for

a parameter ψ > 0 that affects our approximation factor. There

are 4 log2 n levels in the structure. As in previous works [8],

[36], [48], we call this structure a level data structure. Our

descriptions use terminology from these previous works. How-

ever, because we are in the static setting, we are able to

simplify the algorithm of [48] in some ways by considering

the input graph as a single batch of edge insertions.

Levels in the level data structure are partitioned into 2 logn
groups of equal size. Each group gi contains 2 logn con-
secutive levels. We number the levels starting with 0 as the

bottommost level and 4 log2 n− 1 as the topmost level. Each

group gi has an associated index i, and contains levels in

[i · 2 logn, (i + 1) · 2 logn). Let the group index that a level

r belongs to be F(r). In other words, F(r) = f if r ∈ gf ,

which can be computed as F(r) = 	r/2 logn
. We denote

the level of a node i as level(i). Finally, a node is unsettled
if it must move to a higher level.

We now describe our algorithm. The pseudocode for our

algorithm is given in Algorithm 1. The algorithm is given a

sequence of adjacency lists, (a1, . . . , an), constant parameters

λ, ψ > 0 that will determine the approximation factor, and

privacy parameter ε ∈ (0, 1) as input. The algorithm outputs(
2 + η,O

(
log3 n
ε

))
-approximate core numbers and a low out-

degree ordering with the same guarantee on the out-degree.

The approximation parameter η is determined from λ and ψ.

All nodes start in level 0 (Line 5). Throughout the algorithm,

the curator maintains and publishes the current levels of the

nodes in a set of 4 log2 n lists, each of size n where the i-th
index of a list contains the level of node i (Line 18).

First, the curator iterates through the levels starting from

level 0 to level 4 log2 n − 1 (Line 6). Let r be the current

level. The curator asks each node, i, in level r to compute its

noisy number of neighbors in level r, denoted Ûi (Line 9).

To compute its Ûi, node i first computes Ui using the most

recently published levels of its neighbors (Line 10) where

Ui is the number of its neighbors in level r. If this is the

Algorithm 1: LEDP Decomposition and Ordering

1 Input: Adjacency lists (a1, . . . ,an), constant η ∈ (0, 1), and
privacy parameter ε ∈ (0, 1).

2 Output: ε-LEDP
(
2 + η,O

(
log3 n

ε

))
-approximate core

numbers and low out-degree ordering of each node in G.
3 Function LEDPCoreDecomp((a1, . . . ,an), ε, η)
4 Set ψ = 0.5 and λ = 2

9
(2η − 5).

5 Curator initializes L0, . . . , L4 log2 n−1 with Lr[i]← 0
for every i ∈ [n], r ∈ [0, . . . , 4 log2 n− 1].

6 for r = 0 to 4 log2 n− 1 do
7 for i = 1 to n do
8 Lr+1[i]← Lr[i].
9 if Lr[i] = r then

10 Let Ui be the number of neighbors j ∈ ai

where Lr[j] = r.
11 Sample X ∼ Geom(ε/(8 log2 n)).

12 Compute Ûi ← Ui +X .

13 if Ûi > (1 + ψ)F(r) then
14 i releases 1.
15 Lr+1[i]← Lr[i] + 1. � Curator moves i

up one level.
16 else
17 i releases 0.
18 Curator publishes Lr+1.
19 Curator calls

C ← EstimateCoreNumbers(L4 log2 n−1, λ, ψ).
20 Curator orders nodes in D by L4 log2 n−1 (from smaller

to larger) breaking ties by node index.
21 Return (C,D).

first round of the algorithm, then all neighbors of i are on

its level, level 0. Then, i computes Ûi ← Ui + X , where

X ∼ Geom(ε/(8 log2 n)) denotes a noise drawn i.i.d. from the

symmetric geometric distribution with parameter ε/(8 log2 n)
(Line 12). The curator moves i up a level (to level r + 1) if

and only if the released bit is 1 (i.e., when Ûi > (1+ψ)F(r) in

Lines 13 to 15). (The curator performs this step for each node

in level r.) Otherwise, i releases 0 (Line 17) and it stays in

the same level. Then, the curator publicizes a new list, Lr+1,

that contains the new levels of each node (Line 18). If the

node does not move up, then its old level is included in Lr+1

(Line 8). This repeats in subsequent rounds until we reach the

final level 4 log2 n− 1.

After processing the final level, 4 log2 n − 1, the curator

estimates the core numbers of nodes using their levels. This

computation is shown in Algorithm 2. We use Definition 3.14

of [48] to calculate this estimate. Intuitively, the core number

estimate for node i is calculated to be (1 + ψ)g , where g is

the maximum group index, where L4 log2 n−1[i] is the topmost

level in group g or is higher than the topmost level in group g.

We provide some brief intuition for the privacy of this

algorithm. Each node moves up at most 4 log2 n − 1 lev-

els. Thus, there will be at most 4 log2 n − 1 rounds of

communication. We show that the sensitivity of Ui for any

0 ≤ r ≤ 4 log2 n − 1 of any node i is 1; not only that, but

the sensitivity of the vector of these values is 2 for edge-

neighboring graphs. Hence, we add sufficient noise each round

to maintain LEDP using the geometric mechanism. We show
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Algorithm 2: Estimate Core Number [48]

1 Function EstimateCoreNumbers(L, λ, ψ)
2 for i = 1 to n do

3 k̂(i)← (2 + λ)(1 + ψ)
max

(⌊
L(i)+1

4�log1+ψ n�

⌋
−1,0

)
.

4 Return {(i, k̂(i)) : i ∈ [n]}.

that by the adaptive composition theorem over O(log2 n)
rounds that our algorithm is a ε-LEDP algorithm. This is a

simplification of our privacy proofs; full details can be found

in the full version of our paper.

a) Core Number Estimation: Our algorithms here use the

core number estimation algorithm presented in Algorithm 2,

which takes r as input and computes the estimate of the core

number of all nodes according to r. This estimate is denoted

k̂(i) for each node i.
b) Low Out-Degree Ordering: The ordering of the nodes

is determined first by sorting its final level (contained in

L4 log2 n−1), from smallest level to largest, and then breaking

ties using the nodes’ indices.

c) Densest Subgraph: A straightforward extension of Al-

gorithm 1 where nodes move up levels in all groups simulta-

neously also leads to a ε-LEDP approximate densest subgraph

algorithm which is derived from the non-private algorithm

of [8] that finds an approximate densest subgraph by peeling

the layers of the level data structure one by one for each group

g and taking the subgraph with largest density. Our algorithm

is given in Algorithm 3 and the proof of our approximation

bound follows from the proofs of Theorem 2.6 and Corollary

2.7 of Bhattacharya et al. [8] with minor modifications.

First, we describe a few key points of Algorithm 3. The

algorithm operates over O(log n) rounds (Line 5) where in

each round, each node (Line 6) computes its noisy degrees

for each of the O(log n) groups (Line 7). For each group,

each node i computes a noisy degree (if it is in the current

level r) and releases this noisy degree (Line 13); this is in

contrast to Algorithm 1, where i releases either 1 or 0. The

noisy degree in this setting is used to compute the approximate

density. Finally, Line 17 is performed by the curator who has

all of the released degrees of every node i ∈ [n] in each of

the O(log n) levels and O(log n) groups. Thus, the curator

can successively peel levels from the smallest to largest level

while computing the sum of the noisy degrees of all nodes

that remain after the most recently peeled level. Using this

sum of noisy degrees as well as the public set of levels of each

node, the curator can produce a subset of nodes whose induced

subgraph is an approximate densest subgraph as follows.

The curator finds the group g with the largest index that

has a non-empty last level (using Lg2 logn−1 for every g ∈
{0, . . . , 2 logn − 1}). Taking the noisy degrees of all nodes

released for group g and using Lg2 logn−1, the curator peels

the levels one by one from the smallest level to the largest

level while maintaining the sum of the degrees divided by

the number of nodes that remain after each round of peeling.

The curator uses the released noisy degrees corresponding

Algorithm 3: ε-LEDP Densest Subgraph

1 Input: Adjacency lists (a1, . . . ,an), constants ψ ∈ (0, 1),
and privacy parameter ε ∈ (0, 1).

2 Output: A private set of nodes whose induced subgraph is a(
2 + η,O

(
log3 n

ε

))
-approximate densest subgraph in G.

3 Function LEDPDensestSubgraph((a1, . . . ,an), ε, ψ)
4 Curator initializes

L0
0, L

0
1, . . . , L

0
2 logn−1, . . . , L

2 logn−1
0 , . . . , L2 logn−1

2 logn−1

with Lg
r [i]← 0 for every

i ∈ [n], r, g ∈ [0, . . . , 2 log n− 1].
5 for r = 0 to 2 log n− 1 do
6 for i = 1 to n do
7 for g = 0 to 2 log n− 1 do
8 Lg

r+1[i]← Lg
r [i].

9 if Lg
r [i] = r then

10 Let Ui,g be the number of neighbors
j ∈ ai where Lg

r [j] = r.
11 Sample X ← Geom(ε/(8 log2 n)).

12 Compute Ûi,g ← Ui,g +X .

13 i releases Ûi,g .

14 if Ûi,g > (1 + ψ)g then
15 Lg

r+1[i]← Lg
r [i] + 1. � Curator

moves i up one level in group g.
16 Curator publishes Lg

r+1 for every
g ∈ [0, . . . , 2 log n− 1].

17 Curator uses released noisy degrees of all nodes and
Lg

2 logn−1 for all g ∈ [0, . . . , 2 log n− 1] to peel the
levels one by one and determine and return the set of
nodes S whose induced subgraph is an approximate
densest subgraph.

18 Let Ŵ be the sum of the noisy degrees of S. return
(S, Ŵ

2|S| − c log3 n
ε

) for sufficiently large c ≥ 1.

with L2 logn−1[i] for each i ∈ [n]. The curator keeps and

returns as S the subset of nodes whose ratio of the sum of

the noisy degrees over the number of nodes in the subset is

the largest across all iterations of peeling. Line 18 returns the

noisy density of the set S using the sum of the released noisy

degrees.

V. ε-EDGE DP DENSEST SUBGRAPH

In this section, we present an ε-edge DP densest subgraph

algorithm that returns a subset of vertices V ′ ⊆ V that induces

a
(
1 + η,O

(
log4 n
ε

))
-approximate densest subgraph for any

constant η > 0 in O
(
(n+m) log3 n

)
time. Specifically, we

prove the following theorem.

Theorem V.1. There exists an ε-edge DP densest subgraph
algorithm that runs in O

(
(n+m) log3 n

)
time and returns a

subset of vertices V ′ ⊆ V that induces a
(
1 + η,O

(
log4 n
ε

))
-

approximate densest subgraph for any constant η > 0.

We build upon the multiplicative weight update algorithm

from [5] along with modifications made by [66] in their

distributed algorithm. Although a number of private algo-

rithms [10], [29]–[33], [65], [69], [70] exist for the multi-

plicative weight updates (MWU) method of Arora et al. [4],

such private algorithms focus on private multiplicative weights
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for linear and non-linear queries into databases and data

release. Such techniques in the database query setting do

not immediately transfer to our densest subgraph setting;

namely, these algorithms often use the exponential mechanism

to select queries, which is unnecessary in our setting, since

all nodes are queried during each update step and every

node provides a value to update the state of the algorithm.

Conversely, our ε-edge DP densest subgraph algorithm also

does not have implications for private multiplicative weight

update algorithms for database queries.

In this section, to be consistent with the previous non-private

works [5], [15], [66], we give our multiplicative approximation

factors as (1− a · η′) for fixed constant a and η′ ∈ (0, 1/a).
Specifically, they define a (1 − η′)-approximate densest sub-

graph to be one with density at least (1− η′) ·D∗, where D∗

is the density of the densest subgraph. In Section II, we define

our multiplicative approximation factor as (1+η) to be consis-

tent with the other private densest subgraph works [27], [56].

It is easy to convert between the two approximation factors

since a (1 − a · η′) guarantee for any constant η′ ∈ (0, 1/a)
implies a (1+ η) multiplicative guarantee for any η > 0 since

(1−a · η′) ≤ 1
1+η when 0 < η ≤ aη′

1−aη′ , and we can choose a

sufficiently small constant η. For simplicity, from now on we

fix a constant η ∈ (0, 1/12) to be the input parameter for our

algorithms.

We present our algorithm in two parts. The main part, given

in Algorithm 4, calls the subroutine given in Algorithm 5 on

various values of z. Algorithm 4 iterates through powers of

(1 + η)i for every i ∈ [	log(1+η) n
]. For each (1 + η)i,
the algorithm passes the value as the input parameter z

into Algorithm 5. Algorithm 5 goes through O
(

logn
η3

)
phases

where loads are added to the edges in each phase. Then, the

algorithm returns a set of nodes whose induced subgraph has

density at least (1 − 12η)z − c log4 n
ε for sufficiently large

constant c ≥ 1 whp. Algorithm 4 then returns the set of nodes

returned for the largest power of (1 + η)i or all of the nodes

in the input graph if Algorithm 5 did not return a subset of

the nodes for any of the inputs for the parameter z.

The crux of our approximate densest subgraph algorithm

lies in Algorithm 5. In order to ensure ε-edge DP, our

algorithm creates dummy edges that take a portion of the load.

Such dummy edges are responsible for both accumulating

load and for determining whether the stopping conditions

are satisfied. We describe our algorithm in more detail and

prove its privacy, approximation, and runtime guarantees in

the following sections.

The densest subgraph algorithm performs multiplicative

weight update on the dual of the densest subgraph LP [14].

Intuitively, this algorithm works by distributing a given load

z on a node (corresponding to the loads given by edges to

the nodes in the dual LP) to its adjacent edges. Nodes with

a large number of adjacent edges will be able to spread out

its load among its many adjacent edges. Edges with small

cumulative load will be adjacent to two high-degree nodes.

Hence, they should be included in the densest subgraph. We

Algorithm 4: ε-Edge DP Densest Subgraph

1 Input: Graph G = (V,E) with n = |V | and m = |E|, a
constant η ∈ (0, 1/12), and privacy parameter ε ∈ (0, 1).

2 Output: A subset of nodes whose induced subgraph is a(
1− 12η,O

(
log4 n

ε

))
-approximate densest subgraph.

3 Function EdgeDPDensestSubgraph(G = (V,E), η, ε)
4 Vmax ← V .
5 for i ∈ [�log(1+η) n�] do
6 Set z = (1 + η)i.
7 (S, x)← EdgeDPDensestSubgraphZ(G =

(V,E), z, η, ε) (Algorithm 5).
8 if x �= 0 then
9 Vmax ← S.

10 return Vmax.

can find such a subgraph by iterating from small to large

load and keeping nodes that are adjacent to many edges with

small loads. Bahmani et al. [5] were the first to apply the

MWU framework to densest subgraphs and Su and Vu [66]

give an explicit analysis for this algorithm. Although the non-

private algorithms of [5], [66] adapt the MWU framework,

the analyses of [66] are self-contained. Thus, we present our

private algorithm in its entirety without the need to define the

MWU framework. We modify the analysis of [66] to show the

approximation factor of our ε-DP algorithm.

VI. DIFFERENTIAL PRIVACY FROM LOCALLY

ADJUSTABLE ALGORITHMS

The graph algorithms studied in this paper all have a gener-

alizable structure that is conducive to privacy. Our framework

applies to a number of parallel, distributed, and dynamic

algorithms [5], [8], [13], [36], [48], [66], described in detail

in Sections IV and V. In this section, we describe a general

class of algorithms and show that we can transform them to be

ε-edge DP (Section VI-B). We call the algorithms that have

these characteristics locally adjustable algorithms. Beyond

the various algorithms we study in this paper, we believe

that our generalization and the privacy framework can be

applied to a broader set of non-private graph algorithms, most

naturally, in the parallel and distributed settings. Furthermore,

interestingly, the techniques that we use to obtain our privacy

guarantees result in only a small additive polylogarithmic

error while maintaining the same multiplicative approximation

factor of each of the original non-private algorithms given

in Sections IV and V. However, we do not have a general

statement bounding the utility (or error) of private algorithms

obtained via our framework and leave this as an interesting

open question.

A. Locally Adjustable Graph Algorithms

We call a graph algorithm A on input graph G = (V,E)
locally adjustable if it has the following characteristics. The

algorithm proceeds in at most K total phases. Two or more

phases may occur in parallel if the pairs of phases k1, k2 ≤ K
do not depend on each other. Each node v maintains an internal

state Iv,p parameterized by the phase number p; similarly, each
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Algorithm 5: Edge DP Densest Subgraph using

Density Parameter z

1 Input: Graph G = (V,E) with n = |V | and m = |E|,
density z ≥ 0, constant η ∈ (0, 1/12), privacy parameter
ε ∈ (0, 1), and sufficiently large constants c0, c1, c2, c > 0.

2 Output: A pair (V ′, z′) where V ′ is a set of nodes V ′ ⊆ V
where G[V ′] has density at least z′ −O

(
log4 n

ε

)
.

3 Function
EdgeDPDensestSubgraphZ(G = (V,E), z, η, ε)

4 Let T ← c0 logn
η3 .

5 Initialize load �(e)← 0 for all e ∈ E.
6 if z = 0 then
7 return (V, 0).
8 for phase t = 1 to T do
9 for each node v ∈ V do

10 Let [e1, e2, . . . , edeg(v)] be an ordered list of
edges adjacent to v sorted in non-decreasing
order by �(e1) ≤ �(e2) ≤ · · · ≤ �(edeg(v))
(breaking ties by the ID of the other endpoint).

11 Sample Xv ∼ Geom
(

ε
6T log(1+η) n

)
.

12 Initialize each α̂t
eiv ← 0.

13 Set α̂t
eiv ← 2 for

i = 1, . . . , [�z/2� − 1 +Xv]
deg(v)
0 .

14 for each integer � ∈ [0, 4T ] do
15 Set V ′

� ← ∅.
16 for each node v ∈ V do
17 Sample Z ∼ Geom

(
ε

6T (4T+1) log(1+η) n

)
.

18 if number of incident edges e to v with
�(e) ≤ � is at least �z/2�+ Z − c1 log4 n

ε
then

19 V ′
� ← V ′

� ∪ {v}.
20 Sample Y ∼ Geom

(
ε

3T (4T+1) log(1+η) n

)
.

21 if G[V ′
� ] is a non-empty graph with density

≥ z + Y − c2 log4 n
ε

then
22 return (V ′

� , z)
23 for each edge e = (u, v) ∈ E do
24 Set �(e)← �(e) + α̂t

eu + α̂t
ev .

25 return (V, 0).

edge e maintains an internal state Ie,p also parameterized by p.

Initially, in phase 0, all states are set to default identical values.

Since the phases may be processed in parallel, for each phase

p, we refer to the previous phase that phase p depends on as

p̃, where p̃ < p, but p̃ is not necessarily equal to p− 1.

During each of the at most K phases, each node v ∈ V
computes a function using only the previous states Iw,p̃, Ie,p̃
of its immediate one-hop neighborhood, where w ∈ N(v)
and e = {v, a} for any a ∈ N(v). Notably, these func-

tions determine for a node v whether its neighbors and/or

its incident edges satisfy a condition. Then, v uses another

function with the number of neighbors or incident edges that

satisfy the condition as input to compute a new state. Each

edge e ∈ E also computes a function using only information

received from its two endpoints. Formally, these functions are

defined in the following paragraphs. Importantly, all of the

functions satisfy a “local” property where any edge insertion

or deletion, e′ = (u, v), in the graph affects the count of the

number of neighbors that satisfy the condition of only u or v
and no other nodes. The output of the function is not changed

for any other node w 
∈ {u, v} or any other edge e = (i, j)
where neither i or j is u or v. This is the locally adjustable
specification of the type of algorithms that we are considering.

a) Node functions: Let B be a predicate that can be

satisfied (or not) by a neighbor w ∈ N(v) of v. Node v has a

deterministic function that is evaluated in each phase p:

adj-neighbv(w) =

⎧⎨
⎩

1, if w ∈ N(v) and Iw,p̃
satisfies condition B

0, otherwise

that takes as input a neighbor, w ∈ N(v), of v and outputs a

0 or 1 bit for the neighbor indicating whether the neighbor

satisfies B using the previous state of the neighbor Iw,p̃.

Whether w satisfies B is determined by the state Iw,p̃ of node

w, parameterized by the last phase p̃ that p depends on.

For clarity, we emphasize a few crucial observations re-

garding B. Suppose, without loss of generality, that an edge

e = {u, v} is inserted in the beginning of phase p. This means

that only the count of the number of neighbors of u or v
that satisfy B is affected compared to the case when e is

not inserted. Specifically, this count can increase by at most

1. Since the previous states Iv,p′ for all p′ < p are fixed

prior to the insertion, the insertion cannot affect the output

adj-neighbv(w) for any other w 
= u ∈ N(v). Hence, the

count for the number of neighbors of v that satisfy B increases

by 1 (compared to the case when e is not inserted) when

adj-neighbv(u) = 1. Symmetrically, for an edge deletion,

the number of neighbors that satisfy B can decrease by at

most 1 compared to the case when e is not deleted. If the

update is not incident to a node w, then whether B is satisfied

or not does not change for any neighbor of w. This means

that adj-neighbv is a “local” function where edge updates in

the graph can only affect their incident endpoints.

Similarly, let C be a condition that can be satisfied (or not)

by an incident edge to v. Again, we specify the trivial “local”

requirement for C that the addition or deletion of any edge

e = {u, v} (with an arbitrary state Ie,p̃) at the beginning of

phase p changes whether C is satisfied only for edge e; this

is a trivial requirement since edge e did not exist prior to the

insertion of e (and the edge e no longer exists after the deletion

of e). Then, v has another deterministic function that is also

evaluated in phase p,

adj-edgev({v, w}) =
⎧⎨
⎩

1, if {v, w} ∈ E and I{v,w},p̃
satisfies condition C

0, otherwise

that takes as input an incident edge to v and outputs a 0 or 1 bit

depending on whether the edge satisfies C. As before, whether

{v, w} satisfies C depends on the previous state I{v,w},p̃ of

the edge {v, w}.
Let update-node-statev be a deterministic function

that updates the state of v using only the number of

neighbors, nv,p and/or edges, ev,p, that satisfy the condi-

tions B and C, respectively. Notably, the function does
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not require knowledge about the state of the neigh-

bors or edges that satisfy the condition. Specifically, let

nv,p = |{w ∈ N(v) : adj-neighbv(w) = 1}| and ev,p =
|{{v, w} ∈ E : adj-edgev ({v, w}) = 1}|. In phase p, the

function update-node-statev(Iv,p̃, nv,p, ev,p) → Iv,p out-

puts the next state of v provided the state Iv,p̃ of v from the

most recent phase p̃ that p depends on the computed values

nv,p and ev,p.

Finally, on the set of incident edges to v that satisfy

condition C, {{v, w} ∈ E : adj-edgev({v, w}) = 1}, A uses

each edge’s function, update-edge-state{v,w}, to update the

state of the edge, the details of which are given next.

b) Edge function: Each edge e = {u, v} has a function

update-edge-statee that takes its previous edge state

and real-valued inputs from its adjacent nodes and outputs

its current state. Namely, in phase p, edge e computes

update-edge-statee(Ie,p̃, iu, iv) → Ie,p to determine its

next state Ie,p using its previous state Ie,p̃ and inputs from

its endpoints, iu and iv .

The algorithm proceeds with the next phases until a

stopping condition is satisfied for the entire graph. The

stopping function of the algorithm is based on a threshold
function, which takes as input the states of the nodes and

edges computed in the current phase p. If the number of

nodes/edges that satisfy the condition exceeds a threshold,

then the algorithm terminates. Specifically, these stopping

functions are defined as follows.

c) Stopping functions: The stopping functions determine

whether the algorithm stops running or continues running

with the next phase. There are stopping functions for each

individual node and also a global stopping function that

determines whether a certain number of nodes and edges

that satisfy a condition F is at least some threshold T .

The individual stopping function prevents a particular node

from participating in the next phases while a global stopping

function stops the algorithm. The individual stopping function

for each node, stopv , relies on how many neighbors’ states

or neighboring adjacent edges’ states satisfy a condition F .

We denote the number of neighbors and adjacent edges

that satisfy F by sv,p = |{w ∈ N(v) : Iw,p satisfies F}|
and tv,p =

∣∣{w ∈ N(v) : I{v,w},p satisfies F
}∣∣, respectively.

Then, we define stopv as follows, for some fixed constants

c1, c2 ≥ 0 and fixed threshold T ≥ 0:

stopv (sv,p, tv,p) =

{
1, if c1 · sv,p + c2 · tv,p ≥ T ;
0, otherwise.

We define the global stopping function, in each phase

p, using sp = |{v ∈ V : Iv,p satisfies F}| and tp =
|{e ∈ E : Ie,p satisfies F}|, for some fixed constants c3, c4 ≥
0 and fixed threshold T ≥ 0:

global-stop (sp, tp) =

{
1, if c3 · sp + c4 · tp ≥ T ;
0, otherwise.

d) Output function: Once the algorithm terminates, each

node outputs an answer to the problem using output functions

outv(Iv,p) → Z, where Z is the set of integers. There may

exist a global function global-out({Ic,p : c ∈ V ∪E})→ Z,

which takes the internal states of the nodes and edges and

outputs an integer answer.

A non-trivial number of parallel and distributed graph

algorithms are locally adjustable, including the non-private

algorithms from prior sections for k-core decomposition,

densest subgraphs, and low out-degree orderings. In the next

section, we discuss how to obtain ε-edge DP graph algorithms

from locally adjustable graph algorithms.

B. Edge Differential Privacy from Local Adjustability

We first show how to obtain ε-edge DP locally adjustable

algorithms. Then, a slight modification to the locally adjustable

conditions also allows us to obtain ε-LEDP algorithms. We

leave as an interesting open question proving general utility

bounds for our framework.

The main idea here is to show that, on edge-neighboring

graphs G = (V,E) and G′ = (V,E′), the probability that

the same states are maintained over the at most K phases

satisfy Definition II.7. We prove this by conditioning on the

states from previous phases. Then, we show via the chain rule

that this implies that our algorithm is ε-edge DP. To do this, we

make several modifications to the node, edge, stopping, and

output functions. Our privacy framework is given as follows:

a) Privacy Framework: Suppose we are provided a lo-

cally adjustable algorithm A. Then we formulate the following

mechanism M(G, Ip̃,A, p) → (Ip,O) performed by the

curator which takes as input the graph G, the node and edge

states of G from phase p̃, the locally adjustable algorithm A,

and the phase number p. Mechanism M outputs the next set

of states Ip for phase p if the algorithm is still running or ∅
if the algorithm has stopped. It also outputs the set of outputs

O if the algorithm has stopped or ∅ if the algorithm is still

running. The mechanism modifies A in the following ways:

• For each node v, the node computes n̂v,p and êv,p by

first sampling Xv,p, Yv,p ∼ Geom(ε/20K) and calcu-

lates n̂v,p = nv,p + Xv,p and êv,p = ev,p + Yv,p.

Node v uses n̂v,p and êv,p instead of nv,p and ev,p in

update-node-statev(Iv,p̃, n̂v,p, êv,p).
• When determining the stopping condition, node v sam-

ples Sv,p, Tv,p ∼ Geom(ε/(20K)) and computes ŝv,p =
sv,p + Sv,p and t̂v,p = tv,p + Tv,p. Node v uses ŝv,p
and t̂v,p instead of sv,p and tv,p in stopv(ŝv,p, t̂v,p).
The curator also samples Sp, Tp ∼ Geom(ε/(5K)) and

computes ŝp = sp + Sp and t̂p = tp + Tp. The curator

uses ŝp and t̂p as input into global-stop(ŝp, t̂p).
• Let GSglobal-out and GSoutv be the global sensitivities

of global-out and outv , respectively. To compute the

output after satisfying the stopping condition, each node

v samples Qv,p ∼ Geom(ε/(10 · GSoutv · K)) and

outputs outv(Iv,p) + Qv,p. Then, the curator samples
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Wp ∼ Geom(ε/(5 · GSglobal-out · K)) and outputs

global-out(Ip) +Wp.

The main intuition behind our privacy framework is derived

from our ε-edge DP densest subgraph algorithm (Section V)

regarding the creation of dummy edges that satisfy the con-

ditions of the various functions. These dummy edges account

for the case when the extra edge e′ ∈ E′ \ E where e′ ∈ E′

satisfies any of the functions. The number of these dummy

edges that are added for each node is drawn from a symmetric

geometric distribution using the sensitivities of the appropriate

functions that we analyze in the full version of our paper.
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proximation algorithm for the maximum matching problem in bounded
arboricity graphs. In Algorithms and Computation, 2009.

[20] W.-Y. Day, N. Li, and M. Lyu. Publishing graph degree distribution
with node differential privacy. In Proceedings of the 2016 International
Conference on Management of Data, pages 123–138, 2016.

[21] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 2018.

[22] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classifica-
tion of dense implicit communities in the web graph. ACM Trans. Web,
3(2), Apr. 2009.

[23] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise
to sensitivity in private data analysis. In Proceedings of the Third
Conference on Theory of Cryptography, page 265–284, 2006.

[24] T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith. Triangle counting
with edge local differential privacy, 2022. Manuscript submitted for
publication.
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