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ABSTRACT

This paper presents efficient shared-memory parallel implemen-
tations and the first comprehensive experimental study of graph
eccentricity estimation algorithms in the literature. The implementa-
tions include (1) a simple algorithm based on executing two-pass
breadth-first searches from a sample of vertices, (2) algorithms with
sub-quadratic worst-case running time for sparse graphs and non-
trivial approximation guarantees that execute breadth-first searches
from a carefully chosen set of vertices, (3) algorithms based on prob-
abilistic counters, and (4) a well-known 2-approximation algorithm
that executes one breadth-first search per connected component. Our
experiments on large undirected real-world graphs show that the al-
gorithm based on two-pass breadth-first searches works surprisingly
well, outperforming the other algorithms in terms of running time
and/or accuracy by up to orders of magnitude. The high accuracy,
efficiency, and parallelism of our best implementation allows the
fast generation of eccentricity estimates for large graphs, which are
useful in many applications arising in large-scale network analysis.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data
Mining; D.1.3 [Programming Techniques]: Concurrent Program-
ming—~Parallel Programming

General Terms
Algorithms, Experimentation, Measurement, Performance

1 Introduction

The eccentricity of a vertex in a graph is defined to be the largest
distance from the vertex to any other reachable vertex. Computing
the eccentricities of vertices in a graph is a well-studied problem due
to its many applications in the analysis of networks (see, e.g., [49]).
For example, the eccentricity of a vertex can be used to compute
its eccentricity centrality score, defined to be the inverse of its ec-
centricity. This can be used to measure a vertex’s accessibility in
the graph (i.e., “central” vertices tend to have a higher eccentricity
centrality score). Eccentricities have been used to study charac-
teristics of routing networks [32, 33]—a low average eccentricity
indicates that the devices are mostly near each other, whereas a high
average eccentricity implies that devices are spread out. A vertex’s
eccentricity value in a routing network could be indicative of a de-
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vice’s worst-case response time [46]. Graph eccentricities also find
applications in biological networks [38], location analysis [12], and
state-transition graphs of finite-state machines that arise in formal
hardware verification [35]. The eccentricity distributions of graphs
have been analyzed to classify the roles of vertices [28, 48, 46]. In
addition, for certain algorithms on matrices, it is desirable to identify
a starting vertex with a certain eccentricity criteria (see, e.g., [26]).

The exact eccentricity of every vertex in an unweighted graph
can be computed simply by executing a breadth-first search (BFS)
starting from each vertex, taking a total of O(mn) work. More
generally, computing the graph eccentricities can be solved exactly
using an all-pairs shortest paths (APSP) algorithm. However, these
algorithms inherently require Q(n2) work (see, e.g., [51, 15, 50]
and the references therein), which is prohibitive for large graphs. A
natural question to ask is whether there exists sub-quadratic work
algorithms for graph eccentricity. There have been several papers
describing methods for efficiently approximating all of the eccentric-
ities of a graph without resorting to APSP, while most other papers
focus on efficiently computing or approximating the diameter of a
graph. In this paper, we focus on the problem of approximating all
eccentricities as this has more applications than the diameter prob-
lem. Due to the large sizes of current graphs, we are also interested
in parallel solutions to the problem.

For a connected, undirected graph, it is well-known that a 2-
approximation for all vertex eccentricities can be achieved by per-
forming a BFS from an arbitrary vertex. As far as we know, the
only algorithms with a sub-quadratic worst-case work complex-
ity for sparse graphs that provide a better provable approximation
guarantee for eccentricities are the ones by Roditty and Vassilevska
Williams [40] and Chechik et al. [16]. Roditty and Vassilevska
Williams [40] present an algorithm for undirected, unweighted
graphs that generates eccentricity estimates é(v) for each vertex
v, such that (2/3)e(v) < é(v) < (3/2)e(v), where e(v) is the
true eccentricity of v. The algorithm requires O(m+/nlogn) work.
Chechik et al. [16] describe an algorithm for undirected, weighted
graphs that generates an estimate é(v) for each vertex v, such that
(3/5)e(v) < é(v) < e(v), and requires O((m logm)>/?) work.
This paper presents the first empirical evaluation of parallel imple-
mentations of (variants of) these two algorithms.

As for empirical work on eccentricity computation, Kang et
al. [28] present HADI, a parallel MapReduce algorithm based on the
Flajolet-Martin counters for estimating the number of distinct ele-
ments in a multiset [23]. The algorithm is more general in that it can
be used to estimate the neighborhood sizes of vertices [36]. Boldi
et al. [10] present an improved algorithm for estimating neighbor-
hood sizes using the HyperLoglLog counters of Flajolet et al. [24],
and their algorithm can be used for eccentricity estimation. This
paper will study these two algorithms. We note that the problem



of estimating the eccentricity distribution (i.e., estimate the counts
of vertices with each eccentricity value) has also been studied [19,
46]; however, the techniques are not applicable to the more general
problem of generating eccentricity estimates for all vertices.

In addition to the estimation algorithms described above, we also
study a simple method of running two-pass BFS’s from a sample of
vertices simultaneously, which we refer to as k-BFS. We show that
k-BEFS generates surprisingly good estimates with high efficiency,
and describe bit-level optimizations to improve its performance.

We give shared-memory parallel implementations of all of the
algorithms using the recent Ligra graph processing framework [41],
and empirically evaluate them on a variety of large-scale undirected,
unweighted real-world graphs. As far as we know, this is the first
comprehensive comprehensive study comparing all of the different
eccentricity algorithms in the literature. For all of the algorithms,
we present experiments showing their running time, accuracy, and
parallel scalability on a modern multicore machine. For k-BFS
and the algorithms based on probabilistic counters [36, 28, 10], we
study the running time versus the accuracy by varying the number
of BFS’s or number of counters used. We show that k-BFS is
much more accurate (at most 0.01% error on the real-world graphs
for which we could compute the true eccentricities) for a given
running time than the algorithms based on probabilistic counters.
k-BES is also much more accurate than the simple 2-approximation
algorithm on the real-world graphs, although the 2-approximation
algorithm achieves reasonable accuracy and is faster. Compared
to the algorithms of Roditty and Vassilevska Williams [40] and
Chechik et al. [16], k-BFS achieves comparable accuracy while
being orders of magnitude faster. In addition, k£-BFS is orders of
magnitude faster than two exact parallel eccentricity algorithms that
we implement, and achieves up to 38x parallel speedup on a 40-core
machine with hyper-threading. Due to the efficiency, parallelism,
and high accuracy of our implementation of k-BFS, we are able to
use it to quickly generate eccentricity distribution plots for several
of the largest publicly available real-world graphs, and produce
estimates that are useful for other applications in graph analytics.

2 Preliminaries

We denote an unweighted graph by G(V, E), where V is the set
of vertices and E is the set of edges in the graph. The number of
vertices in a graph is n = |V/|, and the number of edges is m = |E)|.
The vertices are assumed to be indexed from 0 to n — 1.

We use d(v,w) to refer to the shortest distance from vertex v
to vertex w in G (d(v,w) = oo if unreachable). For a set of
vertices S, we define d(v, .S) to be maxscs d(v, s); in other words,
it is the maximum distance from v to any vertex in S. We define
e(v) = maxyev|d(v,w)£00 A(V, W) to be the eccentricity of vertex
vin G, D = max,cv e(v) to be the diameter of the graph, and
R = min,cv e(v) to be the radius of the graph. We will use é(v)
to refer to an estimate of the eccentricity of vertex v.

A compare-and-swap (CAS) is an atomic instruction supported
on modern multicore machines that takes three arguments—a mem-
ory location (loc), an old value (0ldV), and a new value (newV); if
the value stored at loc is equal to oldV it atomically stores newV
at loc and returns true, and otherwise it does not modify loc and
returns false. An AtomicOR takes two arguments, a location x and
a value y, performs a bitwise-OR of the value at location x and the
value y, and stores the result in x. It can be implemented using a
loop with a CAS until the result of the bitwise-OR is successfully
stored at the location or until the result is equal to the value already
at location x. Throughout the paper, we use the notation &z to
denote the memory location of variable z, and “|” to denote the
bitwise-OR operator.

Algorithms in this paper are analyzed in the work-depth model [7],
where work is equal to the number of operations required and depth
is equal to the number of time steps required. Concurrent reads and
writes are allowed in the model, with which CAS can be simulated.
We make the standard assumption that ©(log n) bits fit in a word.

We will use the basic parallel primitives, prefix sum and filter [7].
Prefix sum takes an array X of length n, an associative binary
operator @, and an identity element L such that 1 & z = «x for any
x, and returns the array (L, 1L & X[0], L @ X[0] @ X[1],...,L &
X[0] 4 X[1]®...® X[n — 2]), as well as the overall sum L ¢
X[0]® X[1]®...® X[n —1]. Filter takes an array X of length n
and a predicate function f, and returns an array X’ of lengthn’ < n
containing the elements in z € X such that f(a) returns true, in the
same order that they appear in X. Filter can be implemented using
prefix sum, and both require O(n) work and O(log n) depth [7].

A breadth-first search (BFS) algorithm takes an unweighted
graph G(V, E) and a source vertex r € V, and computes d(r, v) for
all vertices v reachable from r. A standard parallel implementation
of BFS takes O(m + n) work and O(min(n, D logn)) depth by
proceeding in iterations and in iteration h visiting all vertices at
distance h away from r [7].

A well-known 2-approximation algorithm for graph eccentricity
works as follows: For each component in the graph, run a BFS
from an arbitrary vertex and use the maximum distance found as
the eccentricity estimate for all vertices in the component. Using
the triangle inequality, the estimates é(v) for each vertex v can be
shown to satisfy (1/2)e(v) < é(v) < 2e(v).

2.1 Ligra Framework

Our implementations are written using the recent Ligra shared-
memory graph processing framework [41]. We choose to use Ligra
because it is a high-level framework that allows graph traversal
algorithms to be expressed easily, and implementations using Ligra
have been shown to outperform other high-level graph processing
frameworks. The Ligra framework itself is very lightweight, incur-
ring minimal overheads compared to code written without outside of
a high-level framework, and the simplicity of the implementations
makes them easier to understand and more accessible. Many of the
implementation ideas described in this paper can be applied to fully
hand-written implementations of the algorithms as well. For the
implementations in this paper, we found the performance overhead
of the Ligra system itself to be at most 5% (usually much less)
compared to equally-optimized code that was fully hand-written.
Since the largest publicly-available real-world graphs fit in shared
memory, we did not find it necessary to use distributed-memory
frameworks. Furthermore, graph algorithms in shared-memory have
been shown to be more efficient than distributed-memory on a per-
core, per-dollar, and per-joule basis.

Ligra supplies a vertexSubset data structure used for representing
a subset of the vertices, and provides two simple functions, one
for mapping over vertices and one for mapping over edges. VER-
TEXMAP takes as input a vertexSubset U and a function F', and
applies F' to all vertices in U." F can side-effect data structures
associated with the vertices. EDGEMAP takes as input a graph
G(V, E), vertexSubset U, boolean update function F', and boolean
conditional function C; it applies F' to all edges (u,v) € F such
that w € U and C(v) = true (call this set of edges E,), and returns
a vertexSubset U’ containing vertices v such that (u,v) € E, and
F(u,v) = frue. Again, F can side-effect data structures associ-

U This is actually a less general version of VERTEXMAP, which suffices for the imple-
mentations in this paper. The more general version of VERTEXMAP takes a boolean
function F', and returns the vertices for which applying F' returned true.



. Dist={o0,...,00} > oo indicates unexplored
. procedure UPDATE(s, d)
return (CAS(&Dist[d], oo , Dist[s] + 1))

. procedure COND(v)

> atomically visit neighbor

return (Dist[v] == oco) > check if neighbor has been visited
. procedure BFS(G, r) > 7 is the root
Dist[r] = 0

vertexSubset Frontier = {r}
while (size(Frontier) > 0) do
Frontier = EDGEMAP(G, Frontier, UPDATE, COND)

return Dist
Figure 1: Pseudocode for BFS in Ligra.

e A

ated with the vertices. The programmer must ensure the parallel
correctness of the functions passed to VERTEXMAP and EDGEMAP.
A key feature of Ligra that makes it efficient is that it has two
implementations of EDGEMAP, a version for sparse input vertexSub-
sets that writes data from just the vertices in the input, and a version
for dense input vertexSubsets that reads data from all vertices in
the graph satisfying the conditional function. Ligra automatically
switches between the two versions of EDGEMAP based on the size
of the input vertexSubset. This optimization is very beneficial for
graph traversal algorithms where the size of the active vertex set
changes over time. The idea was first used in BFS by Beamer et
al. [5]. Ligra also supports graph compression, which leads to im-
provements in space usage as well as performance [43]. We refer
the reader to [41, 43] for implementation details of Ligra. Ligra
compiles with either Cilk Plus or OpenMP.
BFS in Ligra. We describe how to implement BFS in Ligra (pseu-
docode shown in Figure 1). The distances of all vertices are ini-
tialized to oo, indicating that they have not yet been visited (Line
1). The starting vertex r has its distance set to O (Line 7) and is
placed on the initial frontier, which is represented as a vertexSubset
(Line 8). An EDGEMAP is applied on the frontier vertices until
the frontier becomes empty (Lines 9-10). The EDGEMAP uses an
Update function that visits the unexplored neighbors by updating
their distance values atomically using a compare-and-swap (Lines
2-3). The Cond function (Lines 4-5) simply checks if a vertex has
been visited. Newly visited vertices in each iteration are placed
on the next frontier. The algorithm terminates when the frontier
becomes empty, as this means that all vertices reachable from r have
been visited. The implementation can be shown to take O(m + n)
work and O(min(n, D logn)) depth, matching that of the standard
parallel BFS algorithm.

2.2 Exact Eccentricity Algorithm

Takes and Kosters describe an algorithm for exact eccentricity com-
putation, and show that it is faster than APSP in practice [46]. We de-
scribe their algorithm for undirected graphs, and refer to it as TK. We
assume a connected graph; otherwise, the algorithm is separately run
on each connected component. The algorithm is based on repeatedly
selecting a vertex, executing a BFS from it to compute its eccentric-
ity, and using the result to bound the eccentricity of the remaining
vertices with the following property: for all vertices v,w € V,
max(e(w) — d(w,v), d(w,v)) < e(v) < e(w) + d(w,v).

Each vertex v maintains a lower bound ey, (v) and an upper bound
ev(v) on its eccentricity. A set W of vertices is initialized to
contain all vertices. The algorithm proceeds in rounds. In each
round, a vertex w € W is selected and a BFS is executed from w.
Then for all v € W, er(v) is updated to be max(er (v), e(w) —
d(w,v),d(w,v)), and ey (v) is updated to be min(ev (v), e(w) +
d(w,v)). Afterward, vertices v in W where ez (v) = ey(v) are
removed, as their exact eccentricities have been determined. The
algorithm terminates when W becomes empty. In the worst case, the
overall work is O(mn), however Takes and Kosters show that it is
much lower in practice [46]. In each round, the vertex w to execute a
BFS from can be selected using a heuristic, and the heuristic shown

to work best is to alternate between a vertex with the highest ey (v)
value and a vertex with the lowest ey, (v) value [45].

This algorithm can easily be parallelized by executing each BFS
in parallel, and performing the updates to the lower/upper bounds in
parallel. Selecting the vertex to perform a BFS from can be done
with a prefix sum computation over the ey or ey, values. Removing
vertices from W can be done with a parallel filter. We implement
this algorithm in Ligra using the BFS procedure in Figure 1, and
use it as a baseline to compare with the eccentricity estimation
algorithms. A GPU implementation of a similar algorithm (for
diameter computation) is described in [22].

3 k-BFS

This section describes k-BFS, an eccentricity estimation algorithm
that performs two phases of executing multiple BFS’s simultane-
ously. The algorithm assumes an undirected, unweighted graph.
We describe the algorithm for a single connected component; if the
graph is not connected, then the algorithm is run on each component,
and this will be discussed in more detail at the end of this section.

Conceptually, the algorithm is very simple. Define S to be an
initial set of k£ randomly sampled vertices, and call each of these
vertices a source. The algorithm proceeds in two phases. The
first phase computes d(v, S) for all vertices v € V' (the maximum
distance from v to any vertex in S). This can be accomplished by
performing a BFS from each source vertex, and keeping track of the
current level of the BFS. d(v, S) is then equal to the highest level
of a BFS that visits v. Then define S’ to be the k vertices with the
largest d(v, S) values. The second phase of the algorithm computes
eccentricity estimates é(v) for all v, defined to be the maximum
distance from v to a vertex in S U S’. Computing d(v, S") can
again be accomplished by performing a BFS from each vertex in
S’, and keeping track of the levels of each BFS. Then é(v) =
max(d(v, S),d(v,S’)). The sources in the second phase are likely
to produce good eccentricity estimates as they are likely to be far
from many vertices. This algorithm is similar to the double-sweep
BFS technique used for diameter estimation [17, 31], except that we
execute k BFS’s together and also compute eccentricity estimates
for the vertices.

A naive implementation of this algorithm simply executes each of

the first £ BFS’s independently in parallel, and then the next & BFS’s
independently in parallel. Overall, the BFS’s take O(km) work and
O(min(n, Dlogn)) depth. Finding the & BFS sources for the
second phase can be accomplished with a parallel integer sort [39]
in O(n) work and O(log n) depth with high probability.” The total
work of the algorithm is O(km) and depth is O(min(n, D logn))
with high probability. For our implementation, we combine the &k
BFS’s together to improve practical performance, leveraging the
fact that there is shared work among the BFS’s.
Implementation. We describe our implementation of the first phase
of the multiple-BFS algorithm in detail (pseudocode shown in Fig-
ure 2). The second phase is similar, except that the BFS source
vertices are determined from the first phase instead of being random.
The implementation is an extension of the eccentricity estimation
algorithm in [41].

For each vertex, we need to keep track of which BFS’s have
visited it, which is done by keeping one bit per BFS source. In
particular, for a word size of w and sample size of k, each vertex
maintains [k/w] words, which we refer to as a bit-vector. When
the 7’th BFS visits vertex v, the (¢ — w|i/w ) th bit of the |i/w]’th
word of v’s bit-vector will be set to 1. We will take advantage of
bit-level parallelism to set multiple bits together by advancing the
frontiers of all BFS’s simultaneously. The words in each bit-vector

2Probability atleast 1 — 1/n° for any constant ¢ > 0.



> words initialized to all 0
> words initialized to all 0
> initialized to all co

: Visited = {{0,...,0},...,{0,...,0}}
: NextVisited = {{0,...,0},...,{0,...,0}}
Ecc = {o0,...,00}
round = 0
. procedure UPDATE(s, d)
Changed = false
forj =0to [k/w] — 1do
if (Visited[d][j] # Visited[s][7]) then

: ATOMICOR (&NextVisited[d][5], Visited[d][5] | Visited[s][j])

10: oldEcc = Ecc[d]

Voo HW =

11: if (Ecc[d] # round) then
12: Changed = Changed | CAS (&Ecc[d], oldEcc, round)

13: return Changed

14: procedure CopY(7)

15: parfor j = Oto [k/w] — 1 do

16: Visited[7][j] = NextVisited[4][5]

17: procedure INIT(7)

18: Set unique bit in Visited[z] and NextVisited[z] to 1
19:  Ecc[i] =0

20: procedure COMPUTE-ECC(G)

21: vertexSubset Frontier = k randomly sampled vertices

22: VERTEXMAP (Frontier, INIT) 1> initializes frontier
23: while (size(Frontier) > 0) do

24: round = round + 1

25: Frontier = EDGEMAP(G, Frontier, UPDATE, Clyy, )

26: VERTEXMAP(Frontier, COPY)

27: return Ecc
Figure 2: Pseudocode for k-BFS (first phase)

are all initialized to 0, except for the vertices in the sample, each
of which have a unique bit set in their bit-vector. To allow our
implementation to be as portable across architectures as possible,
we use a word size of 64 bits, supported on all modern machines.
We note that certain architectures support vector operations on a
larger number of bits, and using them may improve the performance
of our implementation on these architectures.

The implementation proceeds in iterations, where each iteration
advances the search frontier of all £ BFS’s by one level. The imple-
mentation uses two arrays of bit-vectors, Visited and NextVisited
(Lines 1-2), as well as an array Ecc to keep track of the eccentricity
estimates for all vertices (Line 3). Initially, £ random vertices are
placed on the frontier, represented as a vertexSubset (Line 21). They
are initialized on Line 22 with a VERTEXMAP using the Init function
(Lines 17-19), which sets a unique bit in their bit-vectors in Visited
and NextVisited to 1, and their eccentricity estimate to 0.

In each iteration, the implementation applies an EDGEMAP to
the frontier vertices to visit their unvisited neighbors and advances
all BFS searches by one level (Line 25). Cle, a function that al-
ways returns frue, is passed to EDGEMAP because vertices can be
visited multiple times, unlike in a single BFS. The Update function
(Lines 5-13) checks for all j € {0,..., [k/w] — 1} whether the
7’°th word of the bit-vector of the frontier vertex s is different from
the corresponding word of its neighbor d’s bit-vector in the Visited
array (Line 8); if so, this means that at least one BFS has found an
unvisited neighbor d, and it performs a bitwise-OR of s’s word with
d’s word and passes the result to d using an AtomicOR (Line 9).
Atomicity is needed because multiple frontier vertices could visit
the same neighbor in parallel. The result is stored in the NextVisited
array, which keeps the state of the bit-vector of d for the next itera-
tion. This is done to prevent a BES from visiting vertices more than
one hop away in a single iteration (which may happen if d is also
on the frontier and processed after s). In addition, the eccentricity
estimate of d is updated to be the current round number, which is
equal to the current level of each BFS (Lines 10-12). This is done
using a read followed by a CAS for performance reasons. If the
value was updated to the current round number (the CAS returns
true), then the Update function will return frue on Line 13, placing
the neighbor on the next frontier.

The EDGEMAP returns a vertexSubset containing the vertices
on the next frontier, and a VERTEXMAP is applied to the next

frontier (Line 26) to update the vertices’ Visited bit-vectors with the
newly computed bit-vectors from the EDGEMAP that are stored in
NextVisited. The VERTEXMAP takes as input the Copy function
which simply copies the NextVisited entries into the Visited array
(Lines 14-16).

The code terminates when no new vertices are visited in an itera-
tion, which causes EDGEMAP to output an empty frontier. At this
point, Ecc[v] stores d(v, S) where S is the set of initially sampled
vertices. The second phase of the algorithm finds S’, the k vertices
with the largest Ecc values breaking ties arbitrarily (we use a parallel
integer sort from [42] for this), places them onto an initial frontier,
and proceeds in the same manner as in the first phase. The final
result gives estimates é(v) = max(d(v, S),d(v, S")) for all v.

The k-BFS implementation takes advantage of shared work among
the different BES’s in several ways. First, when a vertex from multi-
ple BFS’s whose sources are associated with bits in the same word
is on the frontier, only a single word-level operation is needed to
visit a shared neighbor that has not yet been visited by any of those
BFS’s, as opposed to needing multiple operations had the BFS’s
been run separately. Second, even if the sources of multiple BFS’s
are not associated with bits in the same word, as long as they are in
the same cache line, only one cache miss per neighbor is required to
load their data, leading to fewer cache misses overall compared to
separate BFS’s. Third, compared to doing separate BFS’s, in k-BFS
vertices are placed on the frontier fewer times, each time doing more
work. This leads to fewer edge traversals overall, which is more
cache-friendly since each edge traversal typically causes a cache
miss.

The work and depth of our k-BFS implementation is bounded by

that of the naive implementation, as the worst case corresponds to
executing 2k separate BFS’s. The space usage is O((1+k/logn)n)
as one length-k£ bit-vector is stored per vertex. To reduce the space
usage, we can separate the & BFS’s into ¢ < k groups and run
groups of k/c BFS’s at a time. Then, the sources for the second
phase of the algorithm are the k/c farthest vertices found in the
first phase. This reduces the space to O((1 + k/(clogn))n) and
increases the depth by a factor of ¢. While k-BFS does not have
provable approximation guarantees, we will see that it works very
well in practice.
Multiple Components. To handle graphs with more than a sin-
gle connected component, we first run a connected components
algorithm to identify all the components and their sizes. This can
theoretically be done within the stated work/depth bounds [7]. Our
code uses a connected components algorithm by Slota et al. [44],
which we implement in Ligra. We run the algorithm on each of the
remaining components. We implemented a version that applies the
algorithm to each of the components in parallel, as well as a version
that processes the components one at a time, and found the latter
version to be faster overall due to lower overheads.

4 More BFS-based Algorithms

In this section, we review two BFS-based algorithms for eccentricity
estimation with non-trivial approximation guarantees that require
o(mn) work, and describe how to parallelize them.

4.1 RV Algorithm

Roditty and Vassilevska Williams [40] describe an algorithm (which
we refer to as RV) for undirected graphs that returns estimates
é(v) for each vertex v such that max(R, (2/3)e(v)) < é(v) <
min(D, (3/2)e(v)) with high probability. We assume a single
component in the graph; otherwise the algorithm can be run sep-
arately for each component. We describe the version of RV for
unweighted graphs. For a parameter s = ©(y/nlogn), RV picks
a random sample S of O((n/s)logn) = ©(y/nlogn) vertices



and computes a BFS for each of these vertices. Following the no-
tation of [40], let ps(v) be the closest vertex in .S to v and N (v)
be the s closest vertices to v, including v (breaking ties arbitrar-
ily). Let w be the vertex with largest d(w, ps(w)) value. RV
computes a BFS for w, obtaining N,(w), and computes a BFS for
each vertex in N, (w). This gives the exact eccentricity for each
vertex in S U Ng(w). For every vertex v € S U Ng(w), define
€' (v) = max(maxges d(v,q),d(v,w)) and let v; € Ns(w) be
the closest vertex to v on the shortest path from v to w. Then
é(v) = max(e' (v),e(vy)) if d(v,v;) < d(ve,w) and é(v) =
max (e’ (v), minge s e(q)) otherwise. We refer the reader to [40] for
the proof that the é(v) values are within the stated accuracy bounds.
The RV algorithm spends O(m(n/s)logn) = O(m+/nlogn)
work to generate the BFS’s for S. Computing ps(v) for all v
can be done with O(|S|) comparisons per vertex, for a total of
O(n+/nlogn) work. The BFS from w gives N, (w) as well as vy
for all vertices, and requires O(m) work. Computing the BFS for
all vertices in N (w) requires O(m+/nlogn) work. Computing
é(v) for all v takes O(|S|) comparisons per vertex, for a total of
O(n+/nlogn) work. The overall work is O(m+/nlogn).

Parallelization. The random sample S can be generated in O(n)
work and O(logn) depth using a parallel filter. Each BFS can
be implemented in O(m) work and O(min(n, Dlogn)) depth.
Finding the ps(v) values can be done in parallel using prefix sums
in O(nl|S|) work and O(log|S|) depth [7]. Finding w is done by
computing the maximum distance, again using prefix sums, in O(n)
work and O(log n) depth. Computing all é(v) values can be done
in parallel, each one taking O(|S|) work and O(log |S|) depth to
compute the maximum and minimum over a set of | S| values. The
overall work is O(m+/nlogn) and depth is O(min(n, D logn)).

Implementation. We implement the RV algorithm using Ligra. As
in k-BFS, we find the connected components of the graph, and run
RV for each component. The sample S is generated by picking
(n/s)logn = ©(y/nlogn) vertices at random and placing them
into a packed array in parallel. Each vertex in .S maintains a distance
array to all other vertices, and fills the array using Ligra’s parallel
BFS (Figure 1), which also gives its own eccentricity estimate.
While all parallel BFS’s can execute together, we found it more
efficient in practice to execute the parallel BFS’s one at a time.
To find the vertex w that is farthest from S, each vertex v € V
computes d(v, S) in parallel, and a prefix sum is applied to the
results to compute the vertex with maximum d(v, S) value.

Then a parallel BFS is executed from w. In addition to computing
the distance array for w, we also compute the set IV, (w) and for each
v, the closest vertex v: in N(w) on the path from v to w. The BFS
is modified (from Figure 1) to fill an array storing N, (w) each time it
visits a new vertex until N, (w) contains s = ©(y/n logn) vertices.
Furthermore, the distance array is modified to store the closest
vertex vy in Ng(w) as well for each vertex outside of N, (w), and
the Update function of BFS is modified to pass the this information
from a frontier vertex to a newly visited neighbor.

Next, a parallel BFS is executed from each vertex in N, (w) and
their exact eccentricities are computed. For each vertex v ¢ S U
N, (w), we compute €' (v) = max(maxqes d(v,q),d(v,w)) in
parallel. Then we look up d(v, v:), and set é(v) = max (e’ (v), e(vt))
if d(v,v:) < d(ve,w) and é(v) = max(e’(v), minges e(q)) oth-
erwise. Note that minge g e(q) only needs to be computed once.

The space usage of the implementation is ©(m+/nlogn) for
the distance arrays of the BFS’s. As an optimization, we reuse the
distance arrays for the BFS’s of the vertices in .S for the BFS’s of the
vertices in Ns(w), which requires us to compute maxqes d(v, q)
for all v ¢ S before executing the BFS’s from N (w).

4.2 CLRSTYV Algorithm

Chechik, Larkin, Roditty, Schoenebeck, Tarjan, and Vassilevska
Williams describe a eccentricity estimation algorithm for undirected,
weighted graphs, which we refer to as CLRSTV [16]. The algo-
rithm returns estimates é(v) for each vertex v such that (3/5)e(v) <
é(v) < e(v). CLRSTV is similar to RV, but to obtain the claimed ap-
proximation guarantee for the weighted case it differs in four aspects:
(1) CLRSTYV first applies a transformation to the graph to make it
have bounded degree, (2) it sets the parameter s to ©(y/m logm)
and finds the sample S deterministically so that S has a non-empty
intersection with N(v) for all v (i.e., a hitting set), (3) it runs a
single-source shortest paths algorithm not only from S U Ns(w)
but also from vertices one hop away from Ns(w) (call this set
T), and (4) the estimates é(v) for v ¢ S U Ns(w) U T are set
to max,ecsun, (wyur (max(d(u, v), e(u) — d(u,v))). The overall
work of the algorithm is O((m logm)3/?), and the proof of the
approximation guarantee is discussed in [16].

The original algorithm in [16] is designed for weighted graphs,
but because the large real-world graphs that we could obtain for
our experiments are unweighted, we simplify the algorithm to
give a slightly weaker approximation guarantee for unweighted
graphs. The algorithm can be simplified to have the same struc-
ture as RV. In particular, no graph transformation is done, we set
s = ©(y/nlogn), and we run BFS’s only from the vertices in
S U N, (w) instead of from S U N(w) U T. Now the only differ-
ences from RV are whether we find the set S deterministically or via
sampling, and how we compute the é(v) values. We choose to com-
pute S using random sampling as in RV because it is simpler and
easily parallelizable. The computation of the é(v) values uses the
formula max, e gun, (w) (Mmax(d(u, v), e(u) — d(u,v))), and takes
O(|S| + |Ns(w)]) = O(v/nlogn) work. The overall work bound
is O(m+/nlogn). The approximation guarantee of this modified
algorithm can be shown to be (3/5)e(v) — 2 < é(v) < e(v) with
high probability for undirected, unweighted graphs.’
Parallelization and Implementation. Using the same paralleliza-
tion ideas as we did for RV, we obtain a (modified) CLRSTV al-
gorithm with O(m+/nlogn) work and O(min(n, D logn)) depth.
Our Ligra implementation of CLRSTV is similar to that of RV,
except that the step of computing the é(v) values uses a different
formula, and the BFS from w does not need to compute the closest
vertex v; in N, (w) for vertices outside of Ns(w).

S Counter-based Algorithms

This section describes two algorithms for eccentricity estimation
that were originally developed for approximating the neighborhood
function of a graph, which given a distance A returns the number of
pairs of vertices reachable within distance h. The algorithms work
by approximating the individual neighborhood function for each
vertex v, which gives the number of vertices reachable from v within
distance h, using probabilistic counters that estimate the number of
distinct elements in a multiset. The following descriptions assume
an undirected, unweighted graph.

5.1 Flajolet-Martin Counters

The ANF (approximate neighborhood function) algorithm [36] uses
Flajolet-Martin (FM) counters [23] to maintain size estimates, where
each counter is a bit-vector B of length L = ©(logn). Adding an
item works by setting a single bit b € {0, ..., L — 1} with probabil-
ity 2~ ("+1_ The ANF algorithm maintains &k independent counters
per vertex (using multiple counters gives more accurate estimates),

3Refer to the proof of Theorem 5.1 in [16]. In the last paragraph of the proof, when
analyzing the approximation guarantee for vertex v, consider the distances d(w, )
and d(z, v) instead of d(w, w’) and d(w’, v), where z is the last vertex in N5 (w)
on the path P from w to v, and w’ is the vertex after « on P.



which approximate the individual neighborhood function for a given
distance h, and proceeds in rounds. Initially A = 0, and the counters
are initialized to represent a single item (the vertex itself) by setting
a single bit per counter with the appropriate probability. Each round
computes the individual neighborhood estimates for the current h
using the appropriate formula (see [36, 23]), increments h, and
updates the counters. To update the counters to represent a distance
of h + 1, each vertex computes a bitwise-OR of each of its coun-
ters with all of its neighbors corresponding counters, all of which
represent the neighborhood size at distance h (see [36] for details).

Kang et al. [28] adapt the ANF algorithm for eccentricity esti-
mation by iterating until none of the counters change in a given
iteration D. The estimated diameter of the graph is then D, and the
estimated eccentricity for a vertex v is the largest h such that the
neighborhood functions for ~ and h + 1 give the same value. We
note that Kang et al. [28] actually compute the effective eccentricity,
which for each vertex gives an estimate of the smallest value A such
that at least 90% of the vertices in the graph are within A hops away.
Their algorithm is parallelized using MapReduce.

Implementation. In this paper, we compute estimates of the true
eccentricities, and implement the algorithm in Ligra. Since we
are interested in estimating the true eccentricities, we do not need
to output the individual neighborhood functions for each distance.
Instead we only need to keep track of the round in which any of a
vertex’s counters have last changed, as this is an approximation of
the distance to the furthest reachable vertex.

We implement the algorithm in Ligra, and refer to it as FM-Ecc.
The implementation maintains two arrays of length n, each entry
storing £ FM counters associated with a vertex. The size of each
counter is set to 32 bits. The counters are initialized using a VER-
TEXMAP, which uses a function that sets a single bit in each counter
with the appropriate probability. All vertices are placed onto the ini-
tial frontier. An EDGEMAP is used to perform an AtomicOR of the
counters of the frontier vertices with their neighbors’ counters, and
vertices whose counters have changed in a given round will be active
in the following round. The logic of the rest of the implementation
is the same as the first phase of k-BFS (Figure 2).

As all vertices can be active in each round and the number of
rounds is bounded by D, the overall work of the algorithm is
O(kmD) and depth is O(D log n) (each application of EDGEMAP
can be shown to take O(logn) depth). The space usage is O(kn)
as k counters are stored per vertex; as in k-BFS, this can be reduced
to O(kn/c) for ¢ < k, with the depth increasing by a factor of c.

5.2 LoglLog Counters

Recently, Boldi et al. [10] describe HyperANF, an improved al-
gorithm for approximating the neighborhood function. The high-
level idea is similar to ANF, but instead of using the FM counters,
they use the more recent HyperLogl.og counters [24]. The Hyper-
Logl.og counters take less space than the FM counters, requiring
O(loglogn) bits as opposed to O(log n) bits. Thus they are able
to fit more than one counter in a single word and use broadword
programming to update multiple counters with a single operation.
They use HyperANF to estimate the effective diameter of graphs as
well as other distance statistics. The implementation in [10] uses
parallelism by splitting the vertices among processors, keeps track
of modified counters, and processes only vertices with modified
counters when this set is small enough.

Implementation. As in ANF, the HyperANF algorithm can be
modified to not output the individual neighborhood functions when
approximating true eccentricities. To perform a fair comparison
with other methods, we implement this algorithm in Ligra, and
refer to it as LogLog-Ecc. Ligra automatically performs the opti-

Input Graph Num. Vertices | Num. Edges* Diameter | Avg. Ecc.
com-Youtube 1,157,828 2,987,624 24 14.59
as-skitter 1,696,415 11,095,298 31 21.2
roadNet-CA 1,971,281 2,766,607 865 662.1
wiki-Talk 2,394,385 4,659,565 11 7.49
soc-LJ 4,847,571 42,851,237 20 12.82
cit-Patents 6,009,555 16,518,947 26 11.14
com-LJ 4,036,538 34,681,189 21 13.47
com-Orkut 3,072,627 117,185,083 10 7.1
nlpkkt240 27,993,601 373,239,376 242% 211.4*
Twitter 41,652,231 1,202,513,046 23* 15.2%
com-Friendster 124,836,180 1,806,607,135 37* 11.76*
Yahoo 1,413,511,391 | 6,434,561,035 2919* 770.9*
randLocal (synthetic) 10,000,000 49,100,524 12 11
3D-grid (synthetic) 9,938,375 29,815,125 321 321

Table 1: Graph inputs. Number of unique undirected edges. *Numbers are based on
estimates using k-BFS.

mization of processing only vertices with modified counters when
this set is small enough, as discussed in Section 2. The high-level
structure of the algorithm is similar to FM-Ecc, except for how
counters are initialized and combined. We implement an atomic
version (using CAS) of the broadword programming procedure to
perform a bitwise-OR of multiple counters within a single word
described in [10]. The implementation uses 64-bit words and fits 10
HyperLogLog counters per word.

The work of the algorithm is O((1 + kloglogn/logn)mD)
as O(logn/loglogn) counters fit in each word, and the depth is
O(D logn). The space complexity is O((1+k loglogn/logn)n),
and again can be reduced to O((1 + kloglogn/(clogn))n) by
increasing the depth by a factor of c.

6 Experiments

This section experimentally compares the performance and accuracy
of our parallel implementations of approximate and exact algorithms
for graph eccentricity on undirected, unweighted graphs.

6.1 Setup

Experimental Setup. The experiments are performed on a 40-core
(with two-way hyper-threading) machine with 4 x 2.4GHz Intel
10-core E7-8870 Xeon processors (with a 1066MHz bus and 30MB
L3 cache), and 256GB of main memory. All implementations are
written using Ligra, and compiled with Cilk Plus for parallelism.
Cilk Plus automatically assigns work to available processors using
a work-stealing scheduler. Using the scheduler, an implementation
with work W and depth D using p processors has an expected
running time of W/p + O(D) [8]. The code is compiled with g++
version 4.8.0 (which supports Cilk Plus) with the —02 flag. The
results reported are based on a median over multiple trials.

Input Graphs. We use a set of undirected, unweighted real-world
and synthetic graphs, whose size, diameter, and average eccen-
tricity are shown in Table 1. The first 8 graphs are real-world
graphs obtained from the Stanford Network Analysis Project (nttp:
//snap.stanford.edu/data). nipkkt240 is a graph obtained from
http://www.cise.ufl.edu/research/sparse/matrices/. Twitter
is a graph of the Twitter network [29]. Yahoo is a web graph ob-
tained from http://webscope.sandbox.yahoo.com/catalog.php?
datatype=g. The two synthetic graphs are generated using graph
generators from the Problem Based Benchmark Suite [42]. randLo-
cal is a random graph where every vertex has five edges to neighbors
chosen with probability proportional to the difference in the neigh-
bor’s ID value from the vertex’s ID. 3D-grid is a grid graph in
3-dimensional space where every vertex has six edges, each con-
necting it to its 2 neighbors in each dimension. We symmetrized
the graphs for the experiments, and removed all self and duplicate
edges. The number of edges reported in Table 1 is the number of
undirected edges, although our implementations store each edge in
both directions. We note that all of the graphs fit in main memory,



and the Yahoo graph is the largest graph considered in previous
work on eccentricity estimation.

Accuracy Measures. We use two metrics to measure the accuracy
of the algorithms. The first is the average relative error, defined to
be (1/n) >, cy |€(v) — e(v)|/e(v) (if e(v) = 0, our implemen-
tations always compute é(v) = 0, so in this case we define the
contribution of v to the average relative error to be 0). The second
measure is the correctness ratio, which is the number of vertices
with a correct eccentricity estimate divided by n. While both mea-
sures should be minimized, we believe that for many applications,
the average relative error more closely indicates the usefulness of
the approximation, i.e. estimates “close” to the true value are still
likely to be useful whereas estimates “far” from the true value are
unlikely to be useful. We note that all of the algorithms, except for
RV and the simple 2-approximation algorithm, never overestimate
the eccentricity of a vertex.

6.2 Performance and Accuracy

Accuracy versus Running Time. We ran the implementations of
k-BFS, FM-Ecc, and Loglog-Ecc with varying values of k. To
demonstrate the importance of the second phase of k-BFS, we also
experimented with a variant of k-BFS that only performs a single
phase of BFS’s, which we refer to as k-BFS-1Phase. All of the
bit-vectors and counters fit in memory for the values of k used.
Each implementation was run multiple times for different values of
k using all 40 cores with hyper-threading and plots of the average
relative error versus running time are shown in Figure 3 for the
subset of graphs in Table 1 that we were able to compute the true
eccentricities of.

Overall, k-BFS achieves significantly (up to orders of magnitude)
lower error for a given time budget than the other three implemen-
tations on real-world graphs. The detailed accuracy and running
time data for k-BFS is shown in Table 2, and we see that it is able
to achieve less than 10™* (0.01%) error for all of the real-world
graphs. In contrast, using about the same amount of time as k-BFS
for the largest k& we tried, the other three implementations achieve
errors ranging from 0.1% to 59%, as shown in Table 3. Overall,
k-BFS also outperforms the other three implementations in terms
of correctness ratio. On the real-world graphs, k-BFS achieves a
correctness ratio of at least 96% and at least 99.9% in most cases
(see Table 2), while the other three implementations achieve much
lower correctness ratios overall (see Table 3).

Intuitively, k-BFS works very well in practice because the first
phase identifies many of the “periphery” vertices (vertices on the
edge of the component). Since the eccentricity of a vertex is mea-
sured by its distance to the component’s periphery, the second phase
uses these periphery nodes to generate very accurate eccentricity
estimates for most of the vertices. For the real-world graphs, k-BFS
is much more accurate for a fixed running time than k-BFS-1Phase
due to having the second phase.

For the two synthetic graphs (randLocal and 3D-grid), the curves
in Figure 3 for k-BFS and k-BFS-1Phase are similar, with k-BFS-
1Phase being slightly faster for a given accuracy, and both k-BFS
and k-BFS-1Phase outperform FM-Ecc and LogLog-Ecc. k-BFS-
1Phase is slightly better than k-BFS here because there are no pe-
riphery vertices in these graphs, and so the second phase of k-BFS
does not provide much improvement in accuracy.

Overall, k-BFS-1Phase is more accurate for a given running time
than FM-Ecc and LoglLog-Ecc. FM-Ecc and LoglLog-Ecc have
similar curves, with Loglog-Ecc being more efficient as it fits
multiple counters per word.

Comparison to 2-Approximation Algorithm. As a baseline, we
also compare with the 2-approximation algorithm described in Sec-

tion 2 that runs a BFS from an arbitrary vertex in each component in
the graph, and we refer to it as Simple-Approx. Our implementation
first finds the connected components of the graph, and then picks
a random vertex in each component to run a parallel BFS from.
The running time and accuracy for Simple-Approx is shown in Ta-
ble 3. Not surprisingly, Simple-Approx is faster than all of the other
implementations, as it performs just a single BFS per component.
Observe that for the real-world graphs, k-BFS achieves up to orders
of magnitude lower average relative errors than Simple-Approx.
However, k-BFS is 2.2-15.8x slower as it performs more BFS’s.

On the two synthetic graphs, Simple-Approx performs extremely

well because the range of eccentricities of the vertices is small
(in fact, all vertices have the same eccentricity in 3D-grid, and
99.8% have the same eccentricity in randLocal), and so using the
eccentricity of a random vertex as the estimate for the remaining
vertices gives high accuracy. Simple-Approx is more accurate than
k-BFS-1Phase (k = 2'%) on all of the graphs except com-Youtube
and roadNet-CA, and more accurate than FM-Ecc (512 counters)
and LogLog-Ecc (5120 counters) on all but the roadNet-CA graph.
Observe that the average relative error of Simple-Approx is much
lower than the worst-case 2-approximation. Overall, Simple-Approx
is reasonably accurate, and can be used over k-BFS if some accuracy
can be sacrificed in exchange for lower running time.
Comparison to RV and CLRSTYV. We experiment with RV and
CLRSTYV, which have non-trivial theoretical guarantees on the es-
timates produced. Due to the high running time and space usage
of RV and CLRSTYV, we were only able to run experiments on
four of the graphs. The parallel running time, average relative er-
ror, and correctness ratio for the inputs are shown in Table 3. RV
and CLRSTYV achieve reasonably low average relative errors, with
CLRSTYV achieving better accuracy overall but with a slightly higher
running time. The relative error of the implementations is much
lower than the theoretical worst case discussed in Section 4.

Both implementations are more than two orders of magnitude

slower than k-BFS for a similar accuracy (for com-Youtube, as-
skitter, and wiki-Talk, refer to the running time of k-BFS for k =
2% in Table 2, and for roadNet-CA refer to the running time for
E = 2'°). The performance agrees with the work bounds for k-
BFS, RV, and CLRSTV. In particular, k-BFS requires O (km) work,
whereas RV and CLRSTYV require O(m+/nlogn) work (with large
constant factors). For k-BFS to achieve a comparable accuracy to
RV and CLRSTYV, usually & < v/nlogn. We conclude that k-BFS
is orders of magnitude faster than RV and CLRSTV in practice while
obtaining similar accuracy. Note that RV and CLRSTYV can achieve
much higher accuracy than k-BFS-1Phase, FM-Ecc, LogLog-Ecc,
and Simple-Approx (see Table 3).
Comparison to Exact Algorithms. We study the performance of
two parallel algorithms that compute exact vertex eccentricities—
the TK algorithm discussed in Section 2.2 (run on each component
in the graph), and one which runs k-BFS-1Phase for each set of n/k
vertices in the graph, which we refer to as k-BFS-Exact. Parallel
running times are shown in Table 3 for the three graphs on which
the algorithms finished in a reasonable amount of time.

Observe that TK is much faster than k-BFS-Exact for two of the
inputs as the number of BFS’s is much lower than n. However, for
as-skitter, TK is slower than k-BFS-Exact because the number of
BFS iterations is only reduced to about 0.75n, and TK has additional
overheads compared to k-BFS-Exact. Due to their quadratic work
complexities, both TK and k-BFS-Exact are orders of magnitude
slower than k-BFS. Compared to RV and CLRSTV, TK is sometimes
faster and sometimes slower. The running time of TK highly varies,
as the reduction in number of BFS’s performed is strongly related
to the graph structure.
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Figure 3: Parallel (40 cores with hyper-threading) running time versus average relative error for k-BFS, k-BFS-1Phase, FM-Ecc, and LogLog-Ecc (log-log scale). *k-BFS achieves

an error of 0 for all data points for this graph.

k 26 27 28 29 210 212 214
[ RT TARE] CR | RT [ARE[ CR | RT [ARE| CR | RT [ARE] CR | RT [ARE| CR | RT [ARE] CR | RT | ARE| CR
com-Youtube | 0.146] 0 I J0202] 0 I [0266] 0 T 0439 0 T [074] 0O T [281] O I 11 0 I
as-skitter [ 0.578 | 107° [ 0.999 | 0.984 | 107° | 0.999 | 1.2 |107°[0.999 [ 2.01 [ 1075 [0.999 [3.94|107°]0.999 | 16.3 | 1072 [ 0.999 | 64.3 | 10~° | 0.999
roadNet-CA | 2.89 | 0.05 | 0.09 | 3.72 | 0.04 | 0.09 | 533 | 0.02 | 0.21 | 9 | 0.02 | 0.21 |16.3]0.005| 0.39 | 60.8 | 0.002 | 0.85 | 270 [ 10~* | 0.964
wiki-Talk | 0.288 [ 1072 0.999 | 0.427 | 107° [ 0.999 | 0.765 | 1076 | 0.999 | 1.18 [ 1076 ]0.999 | 1.82 | 107 |0.999 | 6.51 | 107 0.999 | 17.1 | 107 | 0.999
soc-LJ 0.76 | 10751 0.999 | 1.07 | 1072|0999 | 1.58 | 1075 [0.999 | 2.53 [ 1075 [0.999 | 4.5 | 1072 [0.999 | 15.9 | 1072 [ 0.999 | 57.1 | 10~? | 0.999
cit-Patents | 0.894 | 1074 0.997 | 1.24 [107°]0.999 | 1.86 [107° [ 0.999 | 2.63 | 1075 |0.999 [ 3.85 [ 107> [ 0.999 | 13.3 [ 1072 [ 0.999 | 46.9 | 1075 | 0.999
com-LJ 0526 0 1 |0874| o0 1 1421 0 1 26 0 1 [417] o 1 |167] 0 1 |566]| 0 1
com-Orkut | 1.01 | 0.001| 0.99 | 1.64 [ 0.001 | 0.994 | 2.85 [10=%|0.999 | 5.16 | 107°]0.999 [9.19 [ 107> [ 0.999 | 32.1 [ 1076 [0.999 | 114 | © 1
nlpkkt240 | 305 | - - |464 | - - |81 | - - 142 | - - | 289 - - |1140| - - |4070| - -
Twitter 200 | - - | 238 | - - | 409 | - - | 518 - - |781| - - |2690| - - |s5990]| - -
com-Friendster | 85.1 - - 117 - - 198 - - 251 - - 367 - - 1120 | - - - - -
Yahoo 655 | - - |1060 | - - - - - - - - - - - - - - - - -
randLocal | 0.829 [ 0.078 [ 0.143 | 1.13 | 0.07 | 0.228 | 1.58 | 0.061 | 0.334 | 2.42 | 0.05 | 0.45 | 4.18 | 0.035 | 0.616 | 15.2 | 0.014 | 0.846 | 55.2 | 0.003 | 0.965
3D-grid 9.67 [0.123 1076 | 14 [0.098 [ 107* | 21.4 |0.078 | 1074 | 36.4 | 0.061 | 0.001 | 66.8 | 0.047 | 0.001 | 264 | 0.028 | 0.005 | 1340 | 0.016 | 0.019
Table 2: Running time (seconds) on 40 cores with hyper-threading (RT), average relative error (ARE), and correctness ratio (CR) versus k for k-BFS.
k-BFS-1Phase FM-Ecc LogLog-Ecc Simple-Approx RV CLRSTV TK | k-BFS-Exact
(k = 21%) (512 counters) (5120 counters)

RT [ARE| CR | RT [ARE| CR | RT [ARE| CR | RT |ARE| CR | RT [ARE]| CR | RT | ARE | CR | RT RT

com-Youtube | 11.9 | 0.001 | 0.986 [ 6.02]0.239 [ 0.02 | 13.8 | 0.25 | 0.02 | 0.033 | 0.042 [ 0.473 | 81.1 | 0.001 | 0.988 [ 87.1 [ 0.001 | 0.988 [ 46.5 644

as-skitter | 55.8 | 0.39 | 0.001 | 28.6 | 0.591 | 0.001 | 53 |0.561 | 0.001 | 0.038 | 0.025 [ 0.527 | 136 | 0.002 |0.956 | 139 | © 1| 15000 2240

roadNet-CA | 399 | 0.008 | 0.036 | 154 | 0.033 [ 0.007 | 390 | 0.018 | 0.01 |0.309 | 0.187 | 0.009 | 3110 | 0.019 | 0.015 | 2950 | 0.008 | 0.08 - -

wiki-Talk | 16.1 | 0.14 | 0.02 | 11.5 | 0.305 | 0.002 | 24.9 | 0.211 | 0.002 | 0.036 | 0.063 | 0.5 | 142 [ 0.003 | 0.976 | 152 | 0.003 | 0.979 | 168 3220

soc-LJ 624 | 0.14 |0.002 | 40.1 | 0.357 [ 0.001 | 75.9 | 0.254 | 0.001 | 0.077 | 0.039 | 0.54 | — - - - - - - -

cit-Patents | 47 |0.084 | 038 |26.2]0.197 | 0.374 | 56.5 | 0.159 | 0.374 | 0.408 | 0.032 | 0.572 | - - - - - - - -

com-LJ 62210212 | 0.01 [33.5[0.298 | 0.01 | 69.3 | 0.17 | 0.01 | 0.071 | 0.046 | 0.447 | — - - - - - - -

com-Orkut | 107 | 0.067 | 0.52 | 77.2|0.184 | 0.006 | 132 | 0.132 | 0.085 | 0.064 | 0.02 [0.852 | - - - - - - - -

randLocal | 64.4 | 0.002 [ 0.975 [ 59.6 | 0.055 | 0.395 | 121 |0.022|0.763 | 0.149 | 10~* | 0.998 | — - - - - - - -

3D-grid | 1610 | 0.013 [ 0.026 | 676 | 0.074 | 0.001 | 1620 | 0.03 | 0.003 [ 0.509 | 0 1 -

Table 3: Running time (seconds) on 40 cores with hyper-threading (RT), average relative error (ARE), and corre

512 counters per vertex, LogLog-Ecc using 5120 counters per vertex, Simple-Approx, RV, CLRSTV, TK, and k-BFS-Exact.

ctness ratio (CR) for k-BFS-1Phase using k = 215 FM-Ecc using



k-BEFS FM-Ecc LogLog-Ecc

(k = 26) (1 counter) | (10 counters)
com-Youtube 20.93 23.29 26.39
as-skitter 15.6 20.17 18.5
roadNet-CA 19.45 17.72 24.86
wiki-Talk 14.43 14.24 15.5
soc-LJ 36.47 47.28 37.53
cit-Patents 29.43 34.61 36.63
com-LJ 36.12 34.71 35.77
com-Orkut 38.45 41.25 36.03

Table 4: Self-relative parallel speedup on 40 cores with two-way hyper-threading.
k-BFS — Naive BFS

let12 ¢
le+11 [ ]
le+10 £ E
le+09 E E
les8E E
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Num. edges traversed

k
Figure 5: Number of edge traversals in largest connected component of the com-
Youtube graph as a function of k (log-log scale).

We note that Takes and Kosters [46] also describe a pruning strat-
egy that removes all degree-1 vertices from the graph to reduce the
number of BFS’s needed to compute eccentricities. While we did
not implement this strategy in TK, it can be applied to all of the im-
plementations in this paper to possibly improve their performance.
Parallelism. The parallel speedups of k-BFS, FM-Ecc, and LogLog-
Ecc on 40-cores with hyper-threading for a subset of the graphs are
shown in Table 4. We observe that the implementations achieve
reasonably good speedup, ranging from 14x to 47x on 40 cores with
two-way hyper-threading. The parallel speedup tends to be better
for larger graphs, as there is more work to offset the overheads of
parallelism. Figure 4 plots the self-relative parallel speedup versus
thread count for all of the implementations on several input graphs,
showing improvements in speedups as the thread count increases.
Sharing work in k-BFS. Observe from Table 2 that the parallel
running time of k-BFS increases as we increase k, but usually sub-
linearly with k. This is because k-BFS takes advantage of shared
work among the different BFS’s, as described in Section 3. As
an illustration of one of the benefits of k-BFS, Figure 5 plots the
number of edge traversals of k-BFS in the largest component as a
function of & for the com-Youtube graph, compared to the number
of edge traversals required by running k separate BFS’s in each
phase of the algorithm (naive BFS). We see that k-BFS does fewer
edge traversals, with the difference being larger for larger k. This
improves cache performance since each edge traversal typically
corresponds to a cache miss. The same trend was observed for the
other inputs as well.

6.3 Eccentricity Plots

Due to the efficiency and high accuracy of k-BFS, we are able to
quickly generate eccentricity distributions for some of the largest
real-world graphs studied in the literature. Figure 6 plots the eccen-
tricity distributions generated using k-BFS with k = 26 for our three
largest graphs—Twitter, com-Friendster, and Yahoo. Generating the
distribution for the largest graph, Yahoo, took only 11 minutes.
For Twitter and com-Friendster, we observe that the diameter is
relatively small (23 and 37, respectively, as estimated by k-BFS),
while the diameter for Yahoo is large (estimated by k-BES to be
2919). There is a single peak in the plot for the Twitter graph at an
eccentricity of 15, which is close to its average eccentricity of 15.2.
For com-Friendster, there are two peaks, the first at O caused by the
many disconnected vertices (almost half of the vertices in the graph
are singletons), and the second at 22 (about 29% of the vertices have
this value). There are two obvious peaks in the eccentricity plot for
the Yahoo graph at 0 (almost half of the vertices are disconnected)

and 1552 (about 30% of the vertices have this value), and another
flatter peak at around 800-1100. k-BFS estimates the average
eccentricity of the Yahoo graph to be 770.9, and excluding the
singleton vertices, the average eccentricity is about 1513. The high
average eccentricity of the vertices is due to the long “whiskers” [28]
present in the graph. We note that Kang et al. [28] have previously
studied the effective eccentricities (the distance at which 90% of the
vertices can be reached) of the Yahoo graph using MapReduce.

7 Related Work

For a connected, undirected graph with diameter D, Aingworth et
al. [1] descrjbe an algorithm to generate an estimate D such that
(2/3)D < D < Din O(m+/nlogn +n”logn) work. Their algo-
rithm extends to graphs with non-negative edge weights, generating
an estimate D such that (2/3)D — wyax < D < D, where Wi 18
the maximum edge weight. Roditty and Vassilevska Williams [40]
improve the work of the diameter estimation algorithm of [1] to
O(m+/nlogn) with high probability. They also show that the algo-
rithm can be used for eccentricity estimation, which we described
in Section 4.1. The diameter approximation of weighted graphs
was improved by Chechik et al. [16], who present two algorithms
that generate estimates D such that (2/3)D < D < D, with the
first algorithm requiring O (m?>/2/Tog n) work and the second al-
gorithm requiring O(mn?/®log®/® n) work. They also describe
how to generate an additive n°-approximation to the diameter in
O(n*~¢(m+nlogn)) work. Finally, they present an algorithm for
eccentricity estimation, which we described in Section 4.2. There
have been several other papers on approximating the graph diam-
eter or radius [17, 18, 37, 9, 6] as well as on their exact computa-
tion [45, 11, 31, 21, 20]. Diameter estimation has also been studied
in the external-memory setting [34, 2, 3] and parallel/distributed
setting [28, 10, 27, 14]. Leskovec et al. study the evolution of the
diameter of real-world graphs over time [30].

Almeida et al. [4] describe a distributed algorithm for exact eccen-
tricity computation, which essentially does a BFS from each vertex,
hence requiring O(nm) work. Cardoso et al. [13] and Garin et
al. [25] describe a distributed algorithm for eccentricity estimation
using probabilistic counters, where combining counters uses the
minimum operator. The algorithm is equivalent to executing one
phase of BFS’s from multiple sources and for each vertex, using the
maximum distance from a source as its eccentricity estimate.

Related to our k-BFS implementation, Then et al. [47] recently
describe an algorithm for executing multiple BFS’s using bit-level
optimizations. Their algorithm, however, is optimized for the case
where BFS’s are executed from a large fraction of the vertices in the
graph. In contrast, our algorithm is optimized for the case where
only a small set of vertices execute BFS’s. Another difference is
that their algorithm obtains parallelism across several multiple-BFS
instances, whereas k-BFS has parallelism within a single multiple-
BFS instance. This is advantageous when BFS’s are executed from
a small number of sources, as in eccentricity estimation.

8 Conclusion

We have presented a comprehensive study of parallel algorithms for
eccentricity estimation on large-scale undirected real-world graphs.
Our study shows that k-BFS achieves high accuracy, efficiency, and
parallelism, and we believe that the implementation will be useful
in the analysis of large-scale networks. An interesting direction
for future work is to prove approximation guarantees for k-BFS
(or variants of it). We are also interested in evaluating eccentricity
estimation algorithms for directed and/or weighted graphs.
Acknowledgments. This work is partially supported by the Na-
tional Science Foundation under grant CCF-1314590, and by the
Intel Labs Academic Research Office for the Parallel Algorithms



Figure 4: Self-relative parallel speedup versus thread count for
k-BFS-Exact in log-log scale. “40h” corresponds to 40 cores witl
were unable to generate the plots in a reasonable amount of time.
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Figure 6: Eccentricity distributions for several large input graphs using k-BFS with k = 26 (y-axis is in log scale).
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