Fast Arrays: Atomic Arrays with Constant Time
Initialization

Siddhartha Jayanti &4
?og“g 20008

MIT CSAIL, Cambridge, MA, USA
Julian Shun 24

MIT CSAIL, Cambridge, MA, USA

—— Abstract

Some algorithms require a large array, but only operate on a small fraction of its indices. Examples

include adjacency matrices for sparse graphs, hash tables, and van Emde Boas trees. For such
algorithms, array initialization can be the most time-consuming operation. Fast arrays were invented
to avoid this costly initialization. A fast array is a software implementation of an array, such that
the entire array can be initialized in just constant time.

While algorithms for sequential fast arrays have been known for a long time, to the best of our
knowledge, there are no previous algorithms for concurrent fast arrays. We present the first such
algorithms in this paper. Our first algorithm is linearizable and wait-free, uses only linear space,
and supports all operations — initialize, read, and write — in constant time. Our second algorithm
enhances the first to additionally support all the read-modify-write operations available in hardware
(such as compare-and-swap) in constant time.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms; Theory of
computation — Data structures design and analysis

Keywords and phrases fast array, linearizable, wait-free, asynchronous, multiprocessor, constant
time, space efficient, data structure

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.25

Funding Siddhartha Jayanti: NDSEG Fellowship from the US Department of Defense

Julian Shun: DOE Early Career Award #DESC0018947, NSF CAREER Award #CCF-1845763, a
Google Faculty Research Award, a Google Research Scholar Award, DARPA SDH Award #HR0011-
18-3-0007, and Applications Driving Architectures (ADA) Research Center, and a JUMP Center
co-sponsored by SRC and DARPA

1 Introduction

Arrays are the most fundamental data structure in computer science. Semantically, an array
of length m is an object that supports the following interface:
INITIALIZE (m, f): return an array O initialized to O[] = f(4) for each i € [m)].
O.READ(i): return O[], if i € [m)].
O.WRITE (i, v): update O[i]’s value to v, if i € [m)].

1

Here, INITIALIZE() is the constructor method that creates the object, and READ() and
WRITE() are the regular operations an array supports. Ordinarily, initialization is achieved
by allocating an array of length m and looping through to initialize its entries, while reads and
writes simply use the hardware load and store instructions. This standard implementation
achieves a space complexity of O(m), and time complexities of O(m) for initialization and
O(1) for reads and writes. These time complexities are good for applications that eventually
access most of the entries of the array. But, some applications — such as adjacency matrix

L For a positive integer m, we use the notation [m] £ {0,1,...,m — 1}.

© Siddhartha Jayanti and Julian Shun;

37 licensed under Creative Commons License CC-BY 4.0
35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 25; pp.25:1-25:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jayanti@mit.edu
http://people.csail.mit.edu/siddhartha/
https://orcid.org/0000-0002-2681-1632
mailto:jshun@mit.edu
https://people.csail.mit.edu/jshun/
https://orcid.org/0000-0001-6163-6625
https://doi.org/10.4230/LIPIcs.DISC.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2

Fast Arrays

representations of sparse graphs, van Emde Boas trees, and certain hash tables — need to
allocate a large array when only a small fraction of the array will eventually be accessed.
The time complexities of such algorithms would improve drastically if we had fast arrays:
arrays that support all three operations — READ(), WRITE(), and even INITIALIZE() — in
just O(1) worst-case time. Perhaps surprisingly, sequential fast array implementations have
been known for decades, but, to the best of our knowledge, concurrent implementations do
not exist. We design the first algorithms for concurrent fast arrays in this paper.

1.1 Sequential fast arrays: history and applications

Sequential algorithms for fast arrays date back to at least the 1970s [1,4,25]. In fact, the well
known folklore algorithm for the problem (which we will revisit in Section 3) was alluded to
in an exercise of the celebrated text by Aho, Hopcroft, and Ullman [1] and further described
by Mehlhorn [25] and Bentley [4]; it achieves a deterministic worst-case time complexity of
O(1) for each of the three operations, while using only 3m + 1 memory words. Fast arrays
have been important to the efficiency of several algorithms. Notably:
Fast arrays are used in implementations of van Emde Boas trees [6,30] — associative
arrays that store keys from a universe {1,2,...,u} and support insert, get, and delete
with a time complexity of just O(loglogu).
Katoh et al. [21] note that Knuth employs fast arrays in the implementation of the hash
table in his Simpath algorithm [22], which enumerates all simple paths between two
vertices in a graph. Knuth uses the hash table to efficiently implement a certain data
structure called ZDD (Zero-suppressed binary Decision Diagram) [27], which has many
applications besides Simpath [18,22,28,29, 34, 35].
When a sparse graph of n vertices and m < n? edges is represented using an adjacency
matrix, mere initialization can take ©(n?) time with a traditional array. With a fast
array however, the graph can be stored in just O(m) time. Consequently, for a constant
degree graph, storing the graph takes O(n) time instead of ©(n?) time.

More generally, fast arrays can increase the asymptotic efficiency of algorithms that have
higher space complexity than time complexity — just allocate all the space in one huge block
in O(1) time.

This range of applications has spurred a lot of research into fast arrays in recent years. A
string of papers, starting with Navarro’s work in 2012 and culminating in three back to back
papers in 2017 by Hagerup and Kammer, Loong et al., and Katoh and Goto, have brought
down the space complexity from 3m + 1 to m + 1 using complex bit-packing and chaining
techniques [13,21, 23,31, 32]. Fredriksson and Kilpeldinen recently studied the empirical
running times of the more practical implementations of these sequential fast arrays [9].

1.2 Concurrent fast arrays

In contrast to sequential fast arrays, which have been well studied, there has been no prior

work on concurrent fast arrays, to the best of our knowledge. In this paper, we propose and

design algorithms for two variants of concurrent fast arrays:
Fast Array: This is an implementation of an array which supports the standard operations
— INITIALIZE(m, f), READ(4), and WRITE(%,v) — and satisfies two conditions. First, each
operation is linearizable, i.e., it appears to take effect at some instant between its invocation
and response [15]. Second, each operation is not only wait-free [14], but the process that
executes the operation completes it in a constant number of its steps. The first condition
ensures atomicity, and the second condition ensures efficiency.

S. Jayanti and J. Shun

Fast Generalized Array: Besides load and store, modern architectures like x86 commonly
support read-modify-write (RMW) primitives, such as Compare-and-Swap (CAS), Fetch-
and-Add (FAA), and Fetch-and-Store (FAS) [17]. In fact, some of these primitives are
indispensible for efficiency and even solvability of problems that arise in concurrent
systems. For instance, implementing a wait-free queue is impossible using only loads and
stores [14]. Mutex locks can be implemented using loads and stores, but constant RMR
(remote memory reference) complexity implementations are impossible using only loads
and stores (3,7, 26].

Since RMW primitives are supported by hardware and are essential for concurrent
algorithms, it would be ideal if the components of the fast array can be manipulated using
these primitives. For instance, when implementing a fast array O on a multiprocessor
that supports CAS and FAS in hardware, a process 7 should not only be able to read
Oli] and write to O[i], but should also be able to CAS OJi] and FAS O[i]. We term such
an array, which allows all hardware-supported operations to be applied to its components,
a generalized array.

Let S be the set of hardware-supported RMW primitives. A fast generalized array is an
implementation that not only supports O(1)-time linearizable INITIALIZE (m, f), READ(i),
and WRITE (¢, v) operations, but also supports O(1)-time linearizable operations from
the set S.

1.3 Our contributions

In addition to defining the two types of concurrent fast arrays, our paper makes the following

two principal contributions:
We design an algorithm for the (standard) fast array. If p processes share a fast array of
length m, our algorithm uses only O(m + p) space. More generally, to instantiate and
use k fast arrays (for any k) of lengths my, ..., my, our algorithm uses only O(M + p)
space, where M = Zle m;j.
We enhance the above algorithm to design a fast generalized array. Its space complexity
is the same as the previous algorithm’s — O(m + p) for a single array of length m, and
O(M + p) for multiple arrays of combined length M.

Both of the above algorithms require hardware support for read, write, and CAS.

2 Model

We work in the standard asynchronous shared memory multiprocessor model where p
processes, numbered 0, ...,p — 1 run concurrently but asynchronously, and each process is
either performing an initializable array operation or is idle. The computation proceeds in
steps, where an adversarial scheduler decides which process 7 takes the next step.

To provide synchronization, we assume the hardware compare-and-swap (CAS) synchro-
nization primitive. The CAS operation on a memory word X with arguments old and new is
called as follows: CAs(X,old, new). The operation is atomic and has the following behavior.
If X = old, then X’s value is updated to new and true is returned to indicate that the
operation successfully changed the value; otherwise, if X # old, the value of X is not changed
and false is returned. On modern x86 architectures, individual memory words are 64-bits,
and so any hardware primitive can be applied on a standard 64-bit word. Usefully however,
CAS can also be executed on 128-bit double-words, i.e., two adjacent words of memory [17].
We will make use of this feature. (Note that this 128-bit CAS operation is not DCAS — a
primitive that does CAS on two non-adjacent memory locations, which is not supported in
modern architectures.)

25:3

DISC 2021

25:4

Fast Arrays

A data structure is linearizable if each operation can be assigned a unique linearization
point between its invocation and return, and the return values of the operations are consistent
with those of a sequential execution in which operations are executed in the order of
linearization points [15]. Operations are bounded wait-free if there exists a bound b such that
every invocation by a process 7 returns within b of 7’s own steps [14]. In the literature, data
structures that are both linearizable and wait-free are called atomic.

We measure the efficiency of an algorithm by its worst-case work and space complexities.
The space complezity of an algorithm is the total number of memory words that the algorithm
uses. The work complexity of an operation by a process m, is the total number of steps
executed by 7 between the invocation and return of that operation. Since work complexity
is the natural generalization of time complexity to multiprocessors, it is often called time
complexity in the literature; we adopt this convention and use the two terms interchangeably.
Furthermore, as is standard [1,4,25,30-33], we assume that it takes constant time to allocate
an uninitialized array of any size n. We call an object implementation fast if every operation
on that object takes only O(1) time to execute in the worst-case. Our paper focuses on fast
algorithms for arrays and generalized arrays.

3 Folklore Sequential Algorithm

Our concurrent algorithms are inspired by the folklore sequential algorithm, and so we present
the pseudo-code for a folkore fast array object O in Algorithm 1, and describe it below.

Algorithm 1 The folklore algorithm for a sequential fast array.

procedure INITIALIZE(m, f)
A + new array[m]
B + new array[m)]
C + new array[m]
finit — f
X<«0

procedure READ(7)
6: if 0 < B[i] < X and C|[B][i]] = i then return A[i] else return f,;, ()

procedure WRITE(i, v)

T AM —v

8: if B[i] < 0 or B[i] > X or C[B]i]] # i then
9: ClX]+i

10: Bli] + X

11: X—X+1

The method INITIALIZE (m, f) instantiates a new fast array O of length m. The imple-
mentation of the fast array uses three un-initialized arrays A, B, and C, each of length m,
an integer X, and stores a pointer f;,,;, to the function f. We call A the principal array and
use A[i] to hold the current value of the abstract element OJi] for each index 4 that has been
initialized, i.c., written to at least once. The elements of A[i] corresponding to uninitialized
indices of O[i] hold their initial, arbitrary values. B, C, and X are used to keep track of
which indices i have already been initialized (as we describe later).

Using the mechanism described above, implementing read and write becomes simple.
READ() just returns A[é] if ¢ has been initialized, and f(i) otherwise. Correspondingly,
WRITE (4, v) simply writes A[i] < v, and ensures that index ¢ is marked as initialized.

S. Jayanti and J. Shun

The main difficulty of the algorithm lies in efficiently remembering which set of indices
1 have been initialized. We use the array C and the integer X to maintain this set as
follows. If k indices have already been initialized, then we ensure that X = k and that the
sub-array C]0,..., X — 1] holds the values of these initialized indices. Correspondingly, we
spend constant time in the INITIALIZE() method to set X <« 0. Terminologically, we call C
the certification array, call the elements of the array certificates, call the elements of the
sub-array C[0,..., X — 1] valid, and say that an index 7 is certified when it appears in the
valid sub-array.

Maintaining A, C, and X is sufficient to get a correct implementation of an array, but
not an efficient one. For efficiency, we need to distinguish between certified and un-certified
indices in constant time. We use the array B for this purpose. In particular, whenever we
certify a new index ¢ in an element C[j], we set B[i] <— j to maintain the invariant that

= VYiem], (0<B[i] <X and C[B[i]] =4 if and only if index ¢ is initialized).

The check that 0 < B[i] < X ensures that C[B[i]] is valid, while the check that C[B[i]] =i
ensures that this valid element of the certification array, indeed, certifies that index 7 is
initialized.

4 Our Concurrent Fast-Array

The goal of this section is to design a linearizable wait-free fast-array that is both time and
space efficient. We do so by building on the ideas of the folklore algorithm.

The folklore algorithm is built on two pillars: (1) the principal array A, which stores the
values of initialized indices, and (2) the certification mechanism constituted by B, C, and X,
which ensures that initialized indices can be identified in constant time by invariant Z. The
principal array can easily be maintained in the concurrent setting, however the certification
mechanism, which is the main workhorse of Algorithm 1, must be redesigned to cope with
concurrency.

The difficulty of using the sequential certification mechanism with multiple processors
stems from the contention on the variable X, and on the next available slot in the certification
array, C[X]. In particular, if all p processors are concurrently performing different write
operations on different un-initialized indices 4o, ..., %p—1, then the old certification mechanism
will direct all of them to the same location C[X] in the certification array. Regardless of how
the contention is resolved, only one index can fit into C[X], meaning that p — 1 processes
will fail to certify their index by placing it in C[X] and will thereby need to find an alternate
location in the certification array. So, in the worst-case, only one process will finish its
operation after all p processes do one unit of work each, meaning the algorithm will do O(p)
work per operation rather than O(1).

We overcome this difficulty of adapting the certifying mechanism posed by contention on
C and X by introducing four ideas that we detail below. Our first idea will eliminate the
contention, thereby enabling constant time certifications and look-ups; however, it bloats
the space complexity to Q(m - p). Our second and third ideas, in combination, eliminate
this space overhead and bring the space complexity down to just O(m + p), while ensuring
that the time complexities of operations remain at just O(1). Our fourth idea describes how
to share resources in order to minimize the space complexity when multiple fast arrays are
instantiated.

Individual certification arrays. Our first idea is to eliminate the universal C' and X, and
instead equip each process m with its own certification array c, and a corresponding control
variable X[r]. Here, X is a one-dimensional array of length p that is indexed by process

25:5

DISC 2021

25:6

Fast Arrays

ids, and each ¢, is an array of length m. Thus, process 7 certifies a new index i by
performing three steps: (1) writing c.[X[n]] + i, (2) setting X[r] + X[x] + 1, and (3)
writing B[i] + (7, X[x] —1). (While it will not yet be clear to the reader at this stage,
the relative order of steps 2 and 3 is very important for the correctness of later ideas. We
expand on this thought in the forthcoming Remark 1.) Unlike the act of certifying a new
index which involves modifying certification arrays and control variables, the act of checking
whether a given index ¢ is certified only requires reading. We allow process 7 to freely read
the arrays of other processes while checking if an index is certified. This idea of individual
certification arrays by itself would lead to a concurrent fast-array algorithm; however, the
space complexity of this algorithm is inherently super-linear. In particular, if all p processes
concurrently write to a previously un-initialized location 4, an adversarial scheduler can force
each of them to certify that location in its own certification array; if this happens for each
of the m indices, then each ¢, must store m indices, leading to a total space complexity of
O(mp).

Synchronization and walk-back. To reduce the space complexity induced by individual
certification arrays, we must ensure that each index 7 is certified by at most one process,
even if multiple processes perform concurrent writes to the same un-initialized index. To
do this, we introduce two related ideas: synchronization on B and walk-back. That is, each
processor 7 that wishes to certify an index i attempts to CAs (rather than write) the pair
(m, X[r] — 1) — indicating the location in its certification array where i is certified — into B[i].
We orchestrate the update to BJi] using CAS to ensure that at most one process gets a return
value of true, indicating that it is the process that succeeded in certifying i. Each other
process m, whose CAS to Bli] fails, “walks back”, i.e., it reclaims the location ¢, [X[7] — 1]
that it was going to use to certify ¢ by decrementing X[r]. Since each index is certified by at
most one process, and each process has at most one certification location that it will walk
back on at any given time, the total space used across all ¢, arrays is O(m + p).

Array doubling. Our synchronization and walk-back scheme guarantees that at most
O(m + p) space is used across all of the ¢, arrays, but we do not a priori know how many
locations each process 7 will use in its ¢, array. To ensure that we allocate only as much
space as we use, we employ the classic idea of array-doubling from sequential algorithms.
We initially allocate constant sized c¢, arrays. Each time ¢, fills up, we replace it with a
newly allocated array ¢ of length 2 - ¢,;.len and copy over the old ¢,.len elements from c,
to c... Note that we do not de-allocate the old array ¢, when we switch to ¢/, since other
processes could be accessing it; yet, since the sum of a geometric series is proportional to the
largest term in the series, our total memory allocation for the ¢, arrays is proportional to
the amount of space we end up using. (Note that it is important to have a mechanism by
which other processes can get access to the current array c,, since the location of the array
is changing whenever we double. We describe this detail when we discuss the pseudo-code in
a later sub-section. We will also describe how to implement array doubling with worst-case,
rather than amortized, constant time per operation in the same sub-section.)

Sharing the certification mechanism. Array doubling allows us to share a single certification
mechanism across all fast-array objects that we initialize. In particular, if we have multiple
fast-arrays Oq, ..., Oy, each O; can simply maintain the two instance variables 0;.4 and
0;.B, and share the certification mechanism — V& € [p], (X[n],¢,). All we need to do to
enable this sharing is store a pointer &(0O,.A[i]) as the certificate that ¢ is initialized in

S. Jayanti and J. Shun

fast-array Oj;, rather than just store the index 7. Since all fast array objects can share one
certification mechanism, the space complexity of maintaining k fast-arrays Oq,..., O of
sizes myq, ..., my is just O(M + p), where M = Z?Zl mj.

» Remark 1 (the relative order of synchronizing and incrementing). When a process m, with
next available certification location z, = X[r], is certifying a new index 4, we described that
our algorithm follows three logical steps (not including potential walk-back): (1) writing
the certificate: cqlx;] < 1, (2) incrementing X[r]: X[r] - x, + 1, and (3) synchronizing on
BJi]: attempting to CAS the value (7, z,) into B[i]. At first glance, it may appear that step
(3) can be executed before step (2). Indeed, if this were possible, then we could simplify
our algorithm by avoiding walk-backs altogether, since a process m that fails the CAS could
simply not increment X[r]. However, as we mentioned earlier, the relative order of steps (2)
and (3) is pivotal to correctness. We now explain why.

Consider a scenario where two processes m and 7 are each performing the operation
WRITE (i, new) on a previously un-initialized location O[i] whose initial value is O[i] =
f(@) = old, with the order of steps (2) and (3) swapped. Then the following sequence of
events can occur:

1. Both process 7 and 7 write A[i] < new, read the same old value b <— B[] (in anticipation
of having to Cas B[i] in step (3)), and start the certification process.
2. 7 completes steps (1) and (3) and thereby successfully changes B[i]’s value to (7, z).

However, 7 is still not certified since step (2) is yet to be done, and X[n] % z,.

3. 7 completes steps (1) and (3), but because 7’s CAS in step (3) fails, it does not need to
execute step (2), and it returns from its write operation.
4. Having finished its write operation, 7 performs READ(7), but sees that i is not yet certified

(since 7 has not yet finished step (2)), and returns f(i) = old.

e This execution is not linearizable, since T reads the value old in O[i] even after it finishes
writing new.

Remark 1 establishes that a process m must increment X[n] before it synchronizes at BJi]
in the certification process. This means that we must indeed implement walk-back to achieve
space efficiency. However, if walk-back is not implemented very carefully, it can lead to a
nasty race condition. We describe this possible race condition, and how to overcome it, in
the next subsection.

4.1 A tricky race condition that must be avoided

Until now, we have described the main ideas that propel our space-efficient fast-array imple-
mentation at a high-level. Of these ideas, individual certification arrays are straightforward
to implement as suggested, and array-doubling requires only mild adaptation to work in
the face of asynchronous concurrency. The idea of walk-back however can lead to a nasty
race-condition if it is not implemented correctly. We describe this potential race, and how
we overcome it below.

In order to understand the race condition, let us consider the following set-up. We have
a freshly initialized fast-array O with just two locations O[0, 1], and initialization function
f(@) = old. There are three processors m, 7, and p with: X[x] =0, X[r] =0, and X][p] = 0.
The processes will perform the following operations:

7 will perform O.WRITE (0, new) followed by O.WRITE (1, new)

7 will perform O.WRITE(0, new)

p will perform O.READ(0) followed by another O.READ(0)

25:7

DISC 2021

25:8

Fast Arrays

By design, both locations initially hold the value old and at some point in time will take
on the value new and hold that value forever. However, the race condition will be that p’s
first read of index 0 will return new, while its second read will return old. The initial value
of B[0] — which can be arbitrary by design of the algorithm — is pivotal to achieving the race.
In particular, we consider the initial value B[0] = (7,0). The initial values of A[0,1] and
B[1] can be arbitrary.

We describe the offending run below in a sequence of bullet points. When the relative
order of certain operations do not matter, we may describe them all in the same bullet point.
e Recall that B[0] = (m,0), m is performing WRITE(0, new), and 7 is performing

WRITE (0, new).

1. 7 and 7 both write A[0] < new, and both read the initial value b of B[0]. (They will
need this value b when they attempt to certify index 0 and do a CAs on B[0] later.)

2. 7 and 7 both conclude that index 0 is not certified yet, and thus wish to certify the

location.
Recall that X[r] = 0.
. 7’s next open certification location is 0, thus m writes ¢, [0] + 0, and increments X[r] « 1.
7 now stalls (before attempting to CAS its certification location (7,0) into B|0]).
Notice that while 7 is not finished with its certification process, index 0 is already certified,
since B[0] = (m,0) initially, and location ¢.[0] is valid and holds the value 0.

4. p does its first READ(0) operation. That is, it reads B[0] = (w,0), checks that ¢,[0] is
valid and that ¢,[0] = 0 and thereby returns the value A[0] = new.

5. p starts its second READ(0) operation. It starts its verification by reading B[0] = (w,0),
and then stalls.

6. 7’s next open certification location is 0, thus 7 writes ¢,[0] < 0, increments X[7] < 1,

and successfully CAses its certification location (7, 0) into B[0].

Notice that index 0 is now certified by two certificates ¢,[0] and ¢,[0]. B[0] = (7,0)
identifies only the new certificate, but process p is about to check for the old certificate
¢x[0].

7. m attempts to finish its certification process by Casing (m,0) into B[0]. However, its CAS
fails. Thus, © walks-back, and resets X[n] - 0. This completes 7’s write operation to
index 0.

8. m does its entire WRITE (1, new) operation. That is, it writes A[1] <— new, writes ¢, [0] + 1,
increments X|[x] to 1, successfully Cases (,0) into B[1], and returns.

9. p now finishes its operation. Since it had previously read B[0] = (,0) and X[x] =1 > 0,
it checks ¢, [0], finds the value 1 there, concludes that index 0 is not certified, and thereby
returns f(0) = old.

This run cannot be linearized since O[0] was initially old and became new, but p reads its
value to be new and subsequently re-reads the value to be old.

w

We observe that the cause of this race condition is the coincidental initial value of BI0].
In particular, B[0]’s (potentially arbitrary) initial value, happened to coincide with the exact
location that process m would use to certify index 0 and later have to walk-back on. This
coincidence, in turn, caused B[0] to become certified during step (3), before 7 finished its
certification operation by updating B[0] with a CAs.

Tombstoning. Since we have only constant time to initialize O, we cannot control the initial
values of all the elements B[i]. However, we can control which location in the certification
array 7 uses to certify B[i]. Therefore, we eliminate this nasty race condition as follows.
If the initial value of BJi] is (, k), then we ensure that that particular process = does not

S. Jayanti and J. Shun

attempt to use its certificate c;[k] to certify index 4. If it so happens that ¢, [k] is the next
available certificate for process m when process 7 is attempting to certify ¢, then we simply
tombstone that location by writing a special null-value ¢, [k] + L, and use the next location
cr|k + 1] to certify ¢. This ensures correctness.

Furthermore, observe that for each location i, there is exactly one initial value Bli] = (m, k)
that references exactly one process m and one specific location k. Thus, at most m locations
get tombstoned by our method across all processes, and the space complexity bound of
O(M + p) continues to hold true even in the worst-case. (We expect that tombstoning will
occur only very rarely in practice.)

4.2 The pseudo-code and its description

Having described individual certification arrays, synchronization and walk-back, array-
doubling, and tombstoning, we are ready to describe our fast-array algorithm. We present
the pseudo-code as Algorithm 2, and describe it below.

Naming conventions. In order to distinguish between variables of different processes and
operations that are performed by a particular process m, we use subscripts. For example, we
denote a local variable x of process 7 by 2, and denote a READ() operation by process 7 as
READ,(). We use captial letters, such as A and X, to refer to arrays that all processes have
the address of by default. Importantly, note that the pointer to the current certification
arrays, cr, follows the above convention, and by default only process 7 has access to the
array. In order to allow other processes to access these arrays, our implementation stores a
pair in the control variable X[x|. So, initially X[r] = (0,¢;) (rather than X[r] = 0).

In order to implement array doubling, we maintain a next certification array ¢, alongside
the current array c,. As such, initially X[r] = (0, ¢;) and no process other than 7 has access
to the array pointed to by c.. When ¢, fills up entirely, we maintain the invariant that

/

c[0,...,crdlen — 1] = ¢ [0, ..., cr.len — 1] and thus, we can simply replace X[n] = (2, ¢x)

s

by X[n] = (zx, c.); we also rename ¢, as ¢, because it has become the current array, and
allocate a new (un-initialized) ¢ that is twice the length of the new current array. In order
to ensure that ¢, [0, ..., cr.len — 1] = ¢, [0,. .., cr.len — 1] by the time ¢, gets entirely full,
we transfer two values from ¢, to ¢, each time a new value is appended to ¢,. We note that
we do not de-allocate the old certification arrays because other processes could potentially
be reading from them — this does not change the asymptotic space complexity. However,
each process can store pointers to all of its arrays so that they can be de-allocated when the
fast array is no longer needed. In our algorithm, we choose to start with a ¢, of length 2.
(Any other constant length would have sufficed.)

A line-by-line description of the code is as follows. O.INITIALIZE, (m, f-) simply allocates
the unintialized arrays A and B of length m, (Lines 1 and 2), and stores the initialization
function fr as f;,;, for future use (Line 3). The elements of A[i] will be used to hold the
values of the abstract elements O[i]. The elements of B[i] will be used to hold process-index
pairs (7, j); as a matter of convention, we call the first element in the pair B[i].pid (process
id) and the second element Bli].loc (location).

WRITE (ir, vr) first updates Afi,] to the new value v, (Line 4). Since index i, may not
yet be certified, it calls CERTIFY(i;) (Line 5). As we describe below, CERTIFY (i) only
creates a new certificate for i, if the index is not already certified.

Since CERTIFY, (i) creates a new certificate (if necessary), and must perform the
synchronization-CAS on Bli,| after creating a certificate, it must read the old value of
Bli,]. Thus, CERTIFY,(i,) starts by reading b'¢ <— BJi] (Line 16). Certification should

25:9

DISC 2021

25:10 Fast Arrays

Algorithm 2 Atomic fast array for p processes. Pseudo-code shown for an arbitrary process 7.

Variables:
For each process 7 € [p] the following variables are shared across all fast-arrays O:
e ¢.[0,1] is a pointer to an allocated un-initialized array of length 2.
e c[0,...,3] is a pointer to an allocated un-initialized array of length 4.
e k. is a non-negative integer that is initialized to 0.
e X[r] is a pair that is initialized to (0, cx).

Each object O has three instance variables instantiated by INITIALIZEx (M, fr):
e A and B are arrays of length m.
o i+ stores the initial value function.

Each process m € [p] uses the following arbitrarily initialized temporary local variables:
o by, b2 hold (process id, array index) pairs.
e z,: holds an array index.

o "€ holds an array pointer.

procedure O.INITIALIZEx (M, fr)

1: A + new array[mq|
2: B + new array|[mx]
3: finit « f7f
procedure O.WRITE (ir, Ur)
4: A[Zﬂ'} — Urn
5: CERTIFY 7 (ir)

procedure O.READx (ir)
6 if ISCERTIFIED, (ir) then
7 return Ali,]
8 else return f;, ,, (ix)

9: procedure O.ISCERTIFIED (i)
10: by + Blix]
11: if 0 < br.pid < p then

12: (@7, 2 — X[y .pid]
13: if 0 < by.loc < zx and c2ther [br.loc] = &Alix] then return true
14: return false

15: procedure O.CERTIFY (ir)
16: b9 < Blis]

17: if ISCERTIFIED (ir) then return

18: (7, —) + X[n]

19: if zr > cq.len then

20: Crn — C

21: cp < new array|2 - cx.len|

22: kr <0

23: if 82 pid = 7 and b2'%.loc = z, then
24: erlza] =L

25: Tr —Tx+1

26: Crlzr] < &Alix]

27: X[n] + (zx + 1,¢x)

28: while k; < 22, — cr.len do

29: C;r [kﬂ'] <~ Cr [kw]

30: kr < kr+1

31: if not Cas(Blix], b2, (x, 2x)) then
32: X[r] + (2, cn)

S. Jayanti and J. Shun

only be done if i, is not already certified, and so it calls ISCERTIFIED, (i) and returns
immediately if location i, is already certified (Line 17). Otherwise, it fetches the next
location x, that is free for creating a certificate (Line 18). Certification proceeds in five
steps:

1. If the current certification array is full (check on Line 19), then the next array becomes

the current one (Line 20), and a new (un-initialized) next array is allocated (Line 21).

Finally, the local variable k, — which is used to keep track of how many elements in the
current array have already been transferred to the next array — is reset to 0 (Line 22).

2. At this point, we are sure that location c¢;[z,] exists, and is free to certify a new index.

Lines 23-25 tombstone this location and increment z, if B[i]’s initial value happens to
already hold the value (7, z.). (This step eliminates the nasty race condition described
earlier.)

3. Lines 26-27 certify location Ali,], by writing a pointer to &A[i;] in ¢;[z;] and updating
the current array pointer and the length of the valid sub-array values in X|[r].

4. Since a new location has been filled up in ¢,, we must transfer values from ¢, to c,. If
there were no walking-back (described in the next step), then we would need to transfer
exactly two values. However, because of potential walk-backs (in previous operations), it
is possible that no values need to be transferred in this operation. Lines 28-30 orchestrate
this transfer by maintaining k,’s progress relative to x.

5. Finally, m performs the synchronization step: it tries to finish its certification process
with a CAS on Line 31. If the CAS fails, then it walks-back on Line 32.

That completes the description of CERTIFY (i).

READ, (ir) simply checks whether element i, is certified (Line 6), and returns Afir] or
finit(ir) accordingly (Lines 7-8).

Like the read operation, ISCERTIFIED, (i,) is also short. However, its code highlights
an important point. The operation starts by reading b, < Bl[i,] which would hold the
location of a certificate if i, was initialized (Line 10). This is where it must be careful. The
values in the pair b, = (b;.pid, by.loc) are directly read from Bli,], and are thus potentially
un-initialized ill-formed values. Thus, before the operation proceeds, it must check that
by.pid is indeed a real process id (Line 11). If so, it reads the control information in X[b,.pid)
to get a pointer to c2"°" = ¢;,_,iq and the length of its valid sub-array x.. After checking
that b,.loc is indeed in the valid portion of 2" it verifies that the location c2!*" [b,.loc]
certifies Ali,] (Line 13). The careful well-formedness checks are necessary to avoid accessing
un-allocated portions of memory. Of course, the operation returns ¢rue only if all of the
checks pass (Line 13); if any checks fail (well-formedness or otherwise), it simply returns
false (Line 14).

» Remark 2 (old certification arrays). A process 7 that is performing ISCERTIFIED, (i,) may
hold a reference c2"*" that is no longer the current array of any process. That is, after
7 reads (x,, c2hem) < X[b,.pid], the process b,.pid may have certified more elements and
updated its current certification array. However, our algorithm remains correct, since the old
certification arrays are not de-allocated, and the value of c2**"[b,.loc] is guaranteed to be

equal to ¢ pig[br.loc] — the corresponding value in the current array.

The preceding discussion is summarized in the theorem below.

» Theorem 3. Algorithm 2 is a linearizable wait-free fast array implementation for p
processes. That is, it supports INITIALIZE, (M, fr), READ,(iy), and WRITE (ix,v:) each
with a time complexity of O(1). The total space complexity of the algorithm for supporting k
fast-arrays of sizes my,...,my is O(M + p), where M = Z?Zl m;.

25:11

DISC 2021

25:12

Fast Arrays

5 A Concurrent Fast Generalized Array

In this section, we implement fast generalized arrays, which we motivated in Section 1.2.
Recall that, if S is the set of hardware-supported RMW primitives, then a fast generalized
array is an implementation that not only supports O(1)-time linearizable INITIALIZE (m, f),
READ(i), and WRITE(i,v) operations, but also supports O(1)-time linearizable operations
from the set S. To this end, we consider the operation:
O.APPLY (i, 0p, args): perform operation op with arguments args on OJi], and return
the response.

Here op can be any RMW operation — such as Write, CAS, FAA or FAS — that is supported
in hardware, and args are the arguments that the primitive requires. For example, if
O[5] = 17, then a call to O.APPLY (5, CAs, (17, 35)) changes the value of O[5] to 35 and returns
true. We term an array that supports INITIALIZE(m, f), READ(¢), and APPLY (4, 0p, args),
a generalized array, and an implementation that runs each operation in O(1) time, a fast
generalized array. Note that a WRITE(4,v) can be executed as APPLY (i, WRITE, v). While
READ (%) can similarly be executed using APPLY (i, READ), we design a simpler read method
that circumvents the certification overhead for locations that are only read and never updated.

The goal of this section is to design a fast generalized array. We will achieve this goal by
building on our ideas from Algorithm 2 for concurrent fast arrays. Therefore, we will continue
to use the ideas of individual certification arrays, synchronization and walk-back, array
doubling, sharing of certification arrays, and tombstoning. Even so, supporting arbitrary
RMW operations poses yet new challenges. We first describe these challenges, and then
explain how we overcome them.

Recall that at a high level, our fast array algorithm represents each abstract array element
Oli] by the value of Ali], along with the certification mechanism which keeps track of whether
i has been initialized. Thus, READ(¢) simply returns A[¢] if ¢ is initialized and f(¢) otherwise.
Write operations, on the other hand, follow an apply-then-certify scheme. That is, WRITE (i, v)
blindly applies its operation by writing A[i] < v, and subsequently certifies i if necessary.

A natural idea for implementing an RMW operation on O[i] would be to mimic the apply-
then-certify scheme used by writes in Algorithm 2. For example, O.APPLY (i, CAS, (old, new))
would blindly apply r <+ Cas(A[i], old, new), and then certify 4 if necessary, and finally return
r. Indeed, this idea would work if ¢ were already initialized, since, in that case, A[i] would
hold the value of O[i]. However, if i were not already initialized, then the abstract element
O[i] has the value f(i), while A[i] has some arbitrary value. In particular, if f(i) = old, but
Ali] = some-other-value (not equal to old), then O.APPLY (i, CAs, (old, new)) should change
Oli]’s value to new and return true, but the proposed scheme would keep the value the same
(at Oi] = A[i] = some-other-value), certify index 4, and return false. Thus, both the final
value of O[i] and the return value of the operation would be incorrect.

From the example above, we see that RMW operations are difficult to apply before index
1 is initialized and certified, but easy to apply after the certification process. So, our idea is to
reverse the scheme, rather than apply-then-certify, we will implement certify-then-apply. Since
this new scheme will ensure that ¢ is always certified first, the actual application of the RMW
primitive can be realized as a hardware primitive applied directly to A[i]. Consequently, we
can apply any primitive operation that hardware supports, not just the select few that we
listed at the beginning of the section.

Certifying first poses a new challenge. When we applied writes to A[i] before certifying,
we were guaranteed that A[i] would hold a valid (linearizable) value by the time i was
certified. Since a reader will return A[i] as the value of O[i] any time after i is certified,

S. Jayanti and J. Shun

we still need to guarantee that A[i] = O[i] at the time of certification. This seems to be a
difficult requirement with our current setup, since our previous certification process did not
touch A[i], but rather linearized at the time that a CAS was performed on B[i]. To overcome
this challenge, we introduce the idea of fusing as described below.

Fusing. The values stored in each A[i] correspond to the values stored in the corresponding
abstract element O[i]. So, it is important to allow these values to take up a full-pointer
sized word, e.g., a 64-bit full-word in a modern 64-bit architecture. The pairs (m,j) that
we are storing in B[i] however, are just an internal representation used by our algorithm.
Furthermore, it is entirely reasonable to assume that this pair can be stored in a single
full-word. For example, allocating 14-bits for the process id = would allow for over 16,000
processors, and the remaining 50-bits would be enough to index an array with a thousand-
trillion indices (i.e., an array taking up 8000 terabytes of memory). Therefore, we modify our
representation by, intuitively, “absorbing the array B into A”. Now, each element of our array
Ali] will hold a triple (A[é].val, A[i].pid, Ali].loc), where the value Ali].val is stored in the first
word and the process id Ali].pid and the location Ali].loc are packed into the second word of
a double-width word. Modern architectures, such as x86-64, allow us to perform double-width
Cas operations on the full double-word A[i], while also allowing all the standard single-width
hardware primitives (Cas, Faa, FAs, WRITE, etc.) on the first word A[i].val. Using this
feature of hardware, we can safely implement the “certify” portion of the certify-then-apply
scheme. In particular, if process 7 reads ag + A[i] in its “un-initialized” state, and creates a
certificate for it in ¢, [j], it can perform the certify step via: CAS(A[i], aq, (f(2),m, 7))

5.1 The pseudo-code and its description

The pseudo-code for a process 7’s operations on our fast generalized array is presented as
Algorithm 3. The algorithm is built on all of the ideas from the previous section — individual
certification arrays, synchronization and walk-back, concurrent array-doubling, tombstoning,
and certification mechanism sharing — along with the ideas introduced above — fusing, and
the certify-then-apply scheme. We proceed to briefly describe the pseudo-code below.

The code of the three operations in the interface is simple to understand.
O.INITIALIZE, (m, fr) simply instantiates a single new un-initialized array A (Line 1), and
stores the initialization function (Line 2). O.APPLY ;(ix, 0px, args,) executes certify-then-
apply by simply certifying at Line 3 and applying (and returning) at Line 4. O.READ, (i)
simply returns Afi.]’s value field val if i, is certified and f;,;; (i) otherwise (Line 5).

Once again, the main workhorse of the algorithm is the certification mechanism.
O.CERTIFY (ir) returns early if i, is already certified (Lines 13-14). Otherwise, it loads the
next available certification location x, from X[rn] at Line 15, and follows the same logical
steps as our earlier certification method: (1) update current arrays if necessary (Lines 16-19),
(2) tombstone the location if the nasty race condition might arise (Lines 20-22), (3) create a
certificate for Afi,] (Lines 23-24), (4) transfer values to the next array (Lines 25-27), and (5)
synchronize, and walk-back if necessary (Lines 28-29). The most noteworthy difference from
Algorithm 2 is Line 28, where we perform the double-width CAS operation to simultaneously
update Alir].val to f;,;;(ix) and (A[i].pid, Alir].loc) to (7w, zx).

O.IsCERTIFIED, (i) now reads a triple a, (rather than the pair b;) at Line 7, but
performs the same logical function as in the standard fast array. It returns true only if a,.pid
and cq, pialar.loc] are valid, and if so certifies Afi;] (Lines 8-10). Otherwise, it returns false
(Line 11).

The preceding discussion is summarized in the theorem below.

25:13

DISC 2021

25:14 Fast Arrays

Algorithm 3 Atomic fast generalized array for p processes. Pseudo-code shown for an arbitrary
process 7.

Variables:
For each process 7 € [p] the following variables are shared across all fast-arrays O:
e ¢.[0,1] is a pointer to an allocated un-initialized array of length 2.
e c[0,...,3] is a pointer to an allocated un-initialized array of length 4.
e k. is a non-negative integer that is initialized to 0.
e X is an array, where each X[7] stores pair that is initialized to (0, cr).

Each object O has two instance variables instantiated by INITIALIZEx (M, fx):
e A is an array of double words.
o ..+ stores the initial value function.

Each process m € [p] uses the following arbitrarily initialized temporary local variables:
e ar,a%?: hold (value, process id, array index) triples.
e z.: holds an array index.

o c2the": holds an array pointer.

procedure O.INITIALIZEx (M, fr)
A + new double-width-array[m.]
2: f;nit — fﬂ'

procedure O.APPLY (ir, Opr,argsx)
CERTIFY r (ir)
return opx (Alir].val,argsx)

—_

procedure O.READx (ir)
if ISCERTIFIED, (i) then return Afir].val else return f;,;, (ix)

5

6: procedure O.ISCERTIFIED (ir)

7 an Alix]

8: if 0 < ar.pid < p then

9 (zr, cj',th”) — X[ar.pid]

10: if 0 < ax.loc < zr and cgth”[aw,loc] = &Alir] then return true
11: return false

12: procedure O.CERTIFY (ir)

13: a2 Alin]

14: if ISCERTIFIED (i) then return

15: (zr, —) + X[7]

16: if xr > cr.len then

17: Cr & Cp

18: ¢p < new array[2 - cx.len|

19: kr <0

20: if a2 pid = p and a2'?.loc = 2 then
21: erlzx] =L

22: Tp —Tr+ 1

23: crlzx] ¢ &Alix]

24: X[n] « (zx + 1,¢x)

25: while &, < 22, — cx.len do

26: chlkr] + cxlkx]

27: kr < kr+1

28: if not Cas(Afix], a2?, (fi:(ix), 7, Tx)) then
29: X[r] + (zx,cx)

S. Jayanti and J. Shun

» Theorem 4. Algorithm 3 is a linearizable wait-free fast generalized array implementation for
p processes. That is, for each process w € [p], it supports INITIALIZE, (M, fr), READ;(iz),
and APPLY(ir,0px,argsy) each with a time complexity of O(1). The total space complexity
of the algorithm for supporting k fast generalized arrays of sizes mq,...,my is O(M + p),
where M = 2?21 mj, gwen that each memory word has at least [logy M| + [log, p] bits.

6 Discussion and Future Work

In this paper, we designed the first algorithms for concurrent fast arrays and fast generalized
arrays. Just as sequential fast arrays have found several applications, we envisage future
work that explores applications of these concurrent fast arrays. The following directions
seem promising.

The concurrent union-find data structure of Jayanti and Tarjan [19], which is used in the
fastest parallel algorithms for computing connected components and spanning forests on
CPUs and GPUs [8,16], requires a generalized array of n nodes, with each node initially
pointing to itself, i.e., f(i) =i. So, any concurrent union-find object on which only o(n)
operations are performed benefits from the use of our fast generalized array.

A concurrent (standard) fast array is useful for implementing an adjacency matrix, F, of
a mutable sparse graph. In particular, adding or removing an edge (i, 7) is implemented
by writing 1 or 0 (respectively) in E[i, j], and querying an edge (i,) is a simple read
of E[i,j]. The real saving lies in storing the graph initially. To store a sparse graph of
m < n? edges, we initialize the matrix E with all-zero entries in just O(1) time, and
then add the m edges, one at a time. Thus, the entire graph is stored in just O(m) time,
instead of the usual ©(n?) time.

Kanellakis and Shvartsman introduced the write-all problem, a version of which is stated
as follows: given an array A of length m such that each entry A[i] has an arbitrary initial
value, devise an algorithm for p asynchronous processes to initialize each entry A[i] to
0, such that no process returns before the initialization is complete. This problem has
attracted a lot of research [2,5,12,20,24], especially since a write-all solution is a critical
subroutine in some implementations of concurrent hash tables [10,11,33].

Although the two problems are different, fast arrays and write-all share the quest to
achieve “fast initialization”. The difference is that write-all insists on physically initializing
each array element, whereas a fast array promises only to create the illusion of initializing
each element. Thus, initialization takes only O(1) time with fast arrays, while it takes at
least linear time in any solution of write-all. Consequently, if an algorithm that uses a
write-all solution can instead be satisfied with a fast array, then the algorithm’s speed
can potentially improve.

Allocating a hash table of size n requires ©(n) time using conventional arrays (because of
initialization). As a result, it has been difficult to implement efficient re-sizable lock-free
hash tables [10,11,33]. Using fast arrays however, a new table of any size can be allocated
in just O(1) time. Exploiting this feature, we are in the process of designing a re-sizeable
wait-free hash table that guarantees O(1) average time for find and insert operations.

We present some brief experiments to measure the empirical efficiency of our standard fast
array algorithm in the appendix (Appendix A). We look forward to the further development
and deployment of these ideas by algorithmists and practioners alike.

25:15

DISC 2021

25:16

Fast Arrays

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21
22

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

Richard J. Anderson and Heather Woll. Algorithms for the certified write-all problem. SIAM
J. Comput., 26(5):1277-1283, 1997.

Hagit Attiya, Danny Hendler, and Philipp Woelfel. Tight RMR lower bounds for mutual
exclusion and other problems. In Rida A. Bazzi and Boaz Patt-Shamir, editors, Proceedings of
the Twenty-Seventh Annual ACM Symposium on Principles of Distributed Computing, PODC
2008, Toronto, Canada, August 18-21, 2008, page 447. ACM, 2008. doi:10.1145/1400751.
1400843.

Jon Louis Bentley. Programming pearls. Addison-Wesley, 1986.

Jonathan F. Buss, Paris C. Kanellakis, Prabhakar L. Ragde, and Alex Allister Shvartsman.
Parallel algorithms with processor failures and delays. Journal of Algorithms, 20(1):45-86,
1996.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

Robert Cypher. The communication requirements of mutual exclusion. In Proceedings of the
ACM Symposium on Parallel Algorithms and Architectures, pages 147-156, 1995.

Laxman Dhulipala, Changwan Hong, and Julian Shun. Connectit: A framework for static and
incremental parallel graph connectivity algorithms. Proc. VLDB Endow., 14(4):653-667, 2020.
Kimmo Fredriksson and Pekka Kilpeldinen. Practically efficient array initialization. Softw.
Pract. Ezp., 46(4):435-467, 2016.

Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Almost wait-free resizable hashtable. In
International Parallel and Distributed Processing Symposium, 2004.

Hui Gao, Jan Friso Groote, and Wim H. Hesselink. Lock-free dynamic hash tables with open
addressing. Distributed Comput., 18(1):21-42, 2005.

Jan Groote, Wim Hesselink, and Sjouke Mauw. An algorithm for the asynchronous write-all
problem based on process collision. Distributed Computing, 14:75-81, April 2001.

Torben Hagerup and Frank Kammer. On-the-fly array initialization in less space. In Interna-
tional Symposium on Algorithms and Computation, volume 92, pages 44:1-44:12, 2017.
Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124-149,
1991.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463-492, 1990.

Changwan Hong, Laxman Dhulipala, and Julian Shun. Exploring the design space of static and
incremental graph connectivity algorithms on GPUs. In Proceedings of the ACM International
Conference on Parallel Architectures and Compilation Techniques, pages 55—69, 2020.

Intel. Intel 64 and IA-32 architectures software developer manuals, 2020. URL: https:
//software.intel.com/content/www/us/en/develop/articles/intel-sdm.html.
Masakazu Ishihata, Shan Gao, and Shin-ichi Minato. Fast message passing algorithm us-
ing ZDD-based local structure compilation. In Proceedings of the Workshop on Advanced
Methodologies for Bayesian Networks, volume 73, pages 117-128, 2017.

Siddhartha V. Jayanti and Robert E. Tarjan. A randomized concurrent algorithm for disjoint
set union. In Proceedings of the ACM Symposium on Principles of Distributed Computing,
pages 75-82, 2016.

Paris C. Kanellakis and Alex A. Shvartsman. Efficient parallel algorithms can be made robust.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, page 211-219,
1989.

Takashi Katoh and Keisuke Goto. In-place initializable arrays. CoRR, abs/1709.08900, 2017.
Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks
& Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 12th edition, 2009.

https://doi.org/10.1145/1400751.1400843
https://doi.org/10.1145/1400751.1400843
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

S. Jayanti and J. Shun 25:17

23 Jacob Teo Por Loong, Jelani Nelson, and Huacheng Yu. Fillable arrays with constant time
operations and a single bit of redundancy. CoRR, abs/1709.09574, 2017. arXiv:1709.09574.

24 C. Martel, R. Subramonian, and A. Part. Asynchronous PRAMs are (almost) as good as
synchronous PRAMSs. In Proceedings of the IEEE Symposium on Foundations of Computer
Science, pages 590-599, 1990.

25 Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, volume 1 of EATCS
Monographs on Theoretical Computer Science. Springer, 1984.

26 John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21-65, 1991.

27 Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
Proceedings of the International Design Automation Conference, page 272-277, 1993.

28 Shin-ichi Minato. Counting by ZDD. In Encyclopedia of Algorithms, pages 454-458. Springer
Publishing Company, 2016.

29 Shin-ichi Minato. Power of enumeration—recent topics on BDD/ZDD-based techniques for
discrete structure manipulation. IEICE Trans. Inf. Syst., 100-D(8):1556-1562, 2017.

30 Dana Moshkovitz and Bruce Tidor. Lecture notes 15: van Emde Boas data structure.
URL: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_
046JS12_lec15.pdf.

31 Gonzalo Navarro. Constant-time array initialization in little space. In Proceedings of the
International Conference of the Chilean Computer Science Society (SCCC), 2012.

32 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document retrieval
on sequences. ACM Comput. Surv., 46(4):52:1-52:47, 2013.

33 Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash tables. J. ACM,
53(3):379-405, 2006.

34 Hirofumi Suzuki and Shin-ichi Minato. Fast enumeration of all pareto-optimal solutions for 0-1
multi-objective knapsack problems using ZDDs. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., 101-A(9):1375-1382, 2018.

35 Ryo Yoshinaka, Toshiki Saitoh, Jun Kawahara, Koji Tsuruma, Hiroaki Iwashita, and Shin-ichi
Minato. Finding all solutions and instances of numberlink and slitherlink by ZDDs. Algorithms,
5(2):176-213, 2012.

A Experiments

We perform experiments using two 8-core Intel Xeon E5-2670 CPUs with two-way hyper-
threading. The machine has 64GB of DRAM. Our machine ran 64-bit Ubuntu 12.04 with
Linux kernel 3.13.0-143. All algorithms were coded in C++ and without any optimizations
or specific algorithmic engineering to increase the speeds from the pseudo-code presented in
the body of the paper. We used std: :threads to implement our concurrent fast array, and
we compiled our code with g++ version 4.8.4 with the -std=c++11, -pthread, and -mcx16
options set. We experiment with four different algorithms:

1. standard: a classic array, where initialization is performed by a linear-time for-loop
through the indices of the array.

2. memset: a classic array, where initialization is performed by the C++ memset primitive.
The memset operation can only be used to initialize an array to all Os. In particular, it
cannot be used to initialize it to an arbitrary function f.

3. folklore: the sequential folklore fast array algorithm (i.e., Algorithm 1). This algorithm
can only be used by a single process; it is not a concurrent algorithm, but it can serve as
a baseline.

4. fast array: our concurrent fast array (i.e., Algorithm 2).

DISC 2021

http://arxiv.org/abs/1709.09574
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec15.pdf

25:18 Fast Arrays

Time to Initialize Integer Arrays of Various Lengths Time to Initialize 4GB Fast Array for Various Numbers of Processes

= standard = fast array folklore = memset 0.6
1.00E+0 »
g

0.4
g 100 8
§ 1.00E-2 2
g " E

E 1.00E-3 -5 02
£ £
= 1.00E4 - —_— =

XD X £0 X0 M £) 0.0

& R\ R\ & R4 R\ R\ 5 10 15 20 25 30
length of array number of processes

(a) (b)

Figure 1 Figure la is a log-log plot charting the time to initialize arrays of various lengths for a

single process. Figure 1b is a plot charting the times to initialize fast arrays of length one billion for
various numbers of processes.

Our experiments focus on measuring the speeds of the three operations — INITIALIZE(),

READ(), and WRITE(). We present the results below.

1.

To compare the speed of INITIALIZE() across all four algorithms, we measure the time
to initialize arrays to all zeroes. The array lengths we test are m = 10* for k €
{3,4,5,6,7,8,9} with each entry being 4 bytes, i.e., arrays of size 4KB to 4GB. As
predicted by the algorithmic analysis, the folklore and fast array algorithms take only
constant time to initialize, while initializing by for-loop and memset take linear time.
As shown in Figure la, initializing an array with memset is 1.2—4.7 times faster than
initializing with a for-loop, however initializing a fast array of length one billion is more
than 14,000 times faster than initializing with memset. As the length of the array gets
smaller, the initialization time advantage of fast arrays reduces. Fast array initialization
and memset initialization become equally fast at an array length between 10* and 10°,
and fast array initialization and for-loop initialization become equally fast at an array
length between 10% and 10%. We consistently observe that initializing a fast array takes
only as much time as initializing a folklore array. As shown in Figure 1b, it takes only
3.3 times more time to initialize a 4GB fast array for 30 processes rather than one for a
single process.

. While fast arrays are much faster to initialize than standard arrays, read and write

operations are slower on these arrays at all levels of concurrency. In order to measure
exactly how much slower fast array reads are, we measure the cumulative time to perform
one million reads using each type of array. Since the fast array READ() algorithm is
different for indices that have been “initialized” — i.e., written to at least once after
initialization — versus those that are “uninitialized”, we measure the two types of reads
separately (see Figure 2).

The main takeaways of the experiment are as follows: (1) the two different types of reads
— initialized and uninitialized — on fast arrays are of comparable speed; (2) fast array reads
are 2.1-4.3 times slower than reads to standard arrays.

. Algorithm 2 suggests that writes to “initialized” indices should be faster than those to

“un-initialized” indices. This is also confirmed by our experiment shown in Figure 3. In
particular, fast array writes to un-initialized indices are 6-21 times slower than standard
writes, but writes to initialized indices are only 2.2-4.9 times slower. It is noteworthy
here that the slower speed only occurs once per index, and all subsequent writes to that
index happen at the faster speed.

S. Jayanti and J. Shun

Time to Finish 1 Million Reads

= standard == fastarray - uninit fast array - init

time in seconds

0.01 v\

0.00

5 10 15 20 25 30

number of processes

Figure 2 This plot compares the time to read from one million indices of a standard array
versus a fast array for various numbers of concurrent processes. For the fast array, both reads from
uninitialized and initialized indices are compared.

Time to Finish 1 Million Writes

= standard = fastarray - uninit fastarray - init

0.10

time in seconds

5 10 15 20 25 30

number of processes

Figure 3 This plot compares the time to write to one million indices of a standard array versus a
fast array for various numbers of concurrent processes. For the fast array, both writes to uninitialized
and initialized indices are compared.

4. Writing to a new index in a fast array is 6-21x slower than writing to a new index in a
naive array. So, fast arrays maintain their initial advantage over standard arrays as long
as only 4-17% of the array indices are written to.

25:19

DISC 2021

	1 Introduction
	1.1 Sequential fast arrays: history and applications
	1.2 Concurrent fast arrays
	1.3 Our contributions

	2 Model
	3 Folklore Sequential Algorithm
	4 Our Concurrent Fast-Array
	4.1 A tricky race condition that must be avoided
	4.2 The pseudo-code and its description

	5 A Concurrent Fast Generalized Array
	5.1 The pseudo-code and its description

	6 Discussion and Future Work
	A Experiments

