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ABSTRACT
We present a deterministic phase-concurrent hash table in which
operations of the same type are allowed to proceed concurrently,
but operations of different types are not. Phase-concurrency guar-
antees that all concurrent operations commute, giving a determin-
istic hash table state, guaranteeing that the state of the table at any
quiescent point is independent of the ordering of operations. Fur-
thermore, by restricting our hash table to be phase-concurrent, we
show that we can support operations more efficiently than previous
concurrent hash tables. Our hash table is based on linear probing,
and relies on history-independence for determinism.

We experimentally compare our hash table on a modern 40-core
machine to the best existing concurrent hash tables that we are
aware of (hopscotch hashing and chained hashing) and show that
we are 1.3–4.1 times faster on random integer keys when opera-
tions are restricted to be phase-concurrent. We also show that the
cost of insertions and deletions for our deterministic hash table is
only slightly more expensive than for a non-deterministic version
that we implemented. Compared to standard sequential linear prob-
ing, we get up to 52 times speedup on 40 cores with dual hyper-
threading. Furthermore, on 40 cores insertions are only about 1.3×
slower than random writes (scatter). We describe several applica-
tions which have deterministic solutions using our phase-concurrent
hash table, and present experiments showing that using our phase-
concurrent deterministic hash table is only slightly slower than us-
ing our non-deterministic one and faster than using previous con-
current hash tables, so the cost of determinism is small.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

Keywords: Hash Table, Determinism, Applications

1. INTRODUCTION
Many researchers have argued the importance of deterministic re-
sults in developing and debugging parallel programs (see e.g. [32,
6, 8, 25, 3]). Two types of determinism are distinguished—external
determinism and internal determinism. External determinism re-
quires that the program produce the same output when given the
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same input, while internal determinism also requires certain in-
termediate steps of the program to be deterministic (up to some
level of abstraction) [3]. In the context of concurrent access, a data
structure is internally deterministic if even when operations are ap-
plied concurrently the final observable state depends uniquely on
the set of operations applied, but not on their order. This prop-
erty is equivalent to saying the operations commute with respect to
the final observable state of the structure [36, 32]. Deterministic
concurrent data structures are important for developing internally
deterministic parallel algorithms—they allow for the structure to
be updated concurrently while generating a deterministic result in-
dependent of the timing or scheduling of threads. Blelloch et al.
show that internally deterministic algorithms using nested paral-
lelism and commutative operations on shared state can be efficient,
and their algorithms make heavy use concurrent data structures [3].

However, for certain data structures, the operations naturally do
not commute. For example, in a hash table mixing insertions and
deletions in time would inherently depend on ordering since insert-
ing and deleting the same element do not commute, but insertions
commute with each other and deletions commute with each other,
independently of value. The same is true for searching mixed with
either insertion or deletion. For a data structure in which certain
operations commute but others do not, it is useful to group the op-
erations into phases such that the concurrent operations within a
phase commute. We define a data structure to be phase-concurrent
if subsets of operations can proceed (safely) concurrently. If the
operations within a phase also commute, then the data structure
is deterministic. Note that phase-concurrency can have other uses
besides determinism, such as giving more efficient data structures.
It is the programmer’s responsibility to separate concurrent opera-
tions into phases, with synchronization in between, which for most
nested parallel programs is easy and natural to do.

In this paper, we focus on the hash table data structure. We de-
scribe a deterministic phase-concurrent hash table and prove its
correctness. Our data structure builds upon a sequential history-
independent hash table [4] and allows concurrent insertions, con-
current deletions, concurrent searches, and reporting the contents.
It does not allow different types of operations to be mixed in time,
because commutativity (and hence determinism) would be violated
in general. We show that using one type of operation at a time is
still very useful for many applications. The hash table uses open
addressing with a prioritized variant of linear probing and guaran-
tees that in a quiescent state (when there are no operations ongo-
ing) the exact content of the array is independent of the ordering
of previous updates. This allows, for example, quickly returning
the contents of the hash table in a deterministic order simply by
packing out the empty cells, which is useful in many applications.
Returning the contents could be done deterministically by sorting,



but this is more expensive. Our hash table can store key-value pairs
either directly or via a pointer.

We present timings for insertions, deletions, finds, and return-
ing the contents into an array on a 40-core machine. We compare
these timings with the timings of several other implementations of
concurrent and phase-concurrent hash tables, including the fastest
concurrent open addressing [15] and closed addressing [20] hash
tables that we could find, and two of our non-deterministic phase-
concurrent implementations (based on linear probing and cuckoo
hashing). We also compare the implementations to standard se-
quential linear probing, and to the sequential history-independent
hash table. Our experiments show that our deterministic hash table
significantly outperforms the existing concurrent (non-deterministic)
versions on updates by a factor of 1.3–4.1. Furthermore, it gets up
to a 52× speedup over the (standard) non-deterministic sequential
version on 40 cores with two-way hyper-threading. We compare
insertions to simply writing into an array at random locations (a
scatter). On 40 cores, and for a load factor of 1/3, insertions into
our table is only about 1.3× the cost of random writes. This is be-
cause most insertions only involve a single cache miss, as does a
random write, and that is the dominant cost.

Such a deterministic hash table is useful in many applications.
For example, Delaunay refinement iteratively adds triangles to a
triangulation until all triangles satisfy some criteria (see Section 5).
“Bad triangles” which do not satisfy the criteria are broken up into
smaller triangles, possibly creating new bad triangles. The result
of Delaunay refinement depends on the order in which bad trian-
gles are added. Blelloch et al. show that using a technique called
deterministic reservations [3], triangles can be added in parallel in
a deterministic order on each iteration. However, for the algorithm
to be deterministic, the list of new bad triangles returned in each
iteration must also be deterministic. Since each bad triangle does
not know how many new bad triangles will be created, the most
natural and efficient way to accomplish this is to add the bad tri-
angles to a deterministic hash table and return the contents of the
table at the end of each iteration. Without a hash table, one would
either have to first mark the bad triangles and then look through all
the triangles identifying the bad ones, which is inefficient, or use a
fetch-and-add to a vector storing bad triangles (non-deterministic),
leading to high contention, or possibly use a lock-free queue (non-
deterministic), again leading to high contention. By using a deter-
ministic hash table in conjunction with deterministic reservations,
the order of the bad triangles is deterministic, giving a deterministic
implementation of parallel Delaunay refinement.

We present six applications which use hash tables in a phase-
concurrent manner, and show that our deterministic phase-concurrent
hash table can be used both for efficiency and for determinism. For
four of these applications—remove duplicates, Delaunay refine-
ment, suffix trees and edge contraction—we believe the most natu-
ral and/or efficient way to write an implementation is to use a hash
table. We show that for these applications, using our determinis-
tic hash table is only slightly slower than using a non-deterministic
one based on linear probing, and is faster than using cuckoo hash-
ing or chained hashing (which are also non-deterministic). For two
other applications—breadth-first search and spanning tree—we im-
plement simpler implementations using hash tables, compared to
array-based versions directly addressing memory. We show that
the implementations using hash tables are not much slower than
the array-based implementations, and again using our deterministic
hash table is only slightly slower than using our non-deterministic
linear probing hash table and faster than using the other hash tables.

Contributions. The contributions of this paper are as follows.
First, we define the notion of phase-concurrency. Second, we show

that phase-concurrency can be applied to hash tables to obtain both
determinism and efficiency. We prove correctness and termina-
tion of our deterministic phase-concurrent hash table. Third, we
present a comprehensive experimental evaluation of our hash ta-
bles with the fastest existing parallel hash tables. We compare our
deterministic and non-deterministic phase-concurrent linear prob-
ing hash tables, our phase-concurrent implementation of cuckoo
hashing, hopscotch hashing, which is the fastest existing concur-
rent open addressing hash table as far as we know, and an opti-
mized implementation of concurrent chained hashing. Finally, we
describe several applications of our deterministic hash table, and
present experimental results comparing the running times of using
different hash tables in these applications.

2. RELATED WORK
A data structure is defined to be history-independent if its layout
depends only on its current contents, and not the ordering of the
operations that created it [13, 24]. For sequential data structures,
history-independence is motivated by security concerns, and in par-
ticular ensures that examining a structure after its creation does not
reveal anything about its history. In this paper, we extend a sequen-
tial history-independent hash table based on open addressing [4] to
work phase-concurrently. Our motivation is to design a data struc-
ture which is deterministic independent of the order of updates. Al-
though we are not concerned with exact memory layout, we want
to be able to return the contents of the hash table very quickly and
in an order that is independent of when the updates arrived. For a
history-independent open addressing table, this can be done easily
by packing the non-empty elements into a contiguous array, which
just involves a parallel prefix sum and cache-block friendly writes.

Several concurrent hash tables have been developed over the
years. There has been significant work on concurrent closed ad-
dressing hash tables using separate chaining [16, 9, 19, 23, 28, 12,
33, 20, 14]. It would not be hard to make one of these deterministic
when reporting the contents of the buckets since each list could be
sorted by a priority at that time. However, such hash tables are ex-
pensive relative to open address hashing because they involve more
cache misses, and also because they need memory management to
allocate and de-allocate the cells for the links. The fastest closed
addressing hash we know of is Lea’s ConcurrentHashMap from
the Java Concurrency Package [20], and we compare with a C++
implementation of it, obtained from Herlihy et al. [15], in Section 6.

Martin and Davis [22], Purcell and Harris [27] and Gao et al. [11]
describe lock-free hash tables with open addressing. For deletions,
Gao et al.’s version marks the locations with a special “deleted”
value, commonly known as tombstones, and insertions and finds
simply skip over the tombstones (an insertion is not allowed to fill
a tombstone). This means that the only way to remove deleted
elements is to copy the whole hash table. All of these hash tables
are non-deterministic and quite complex. In our experiments, we
use an implementation of non-deterministic linear probing similar
to that of Gao et al. (see Section 6).

Herlihy et al. [15] describe and implement an open addressing
concurrent hash table called hopscotch hashing, which is based on
cuckoo hashing [26] and linear probing. Their hash table guaran-
tees that an element is within K locations of the location it hashed
to (where K could be set to the machine word size), so that finds
will touch few cache lines. To maintain this property, insertions
which find an empty location more thanK locations away from the
location h that it hashed to will repeatedly displace elements closer
to h until it finds an empty slot within K locations of h (or resizes
if no empty slot is found). A deletion will recursively bring in ele-
ments later in the probe sequence to the empty slot created. Their



hash table requires locks and its layout is non-deterministic even if
only one type of operation is performed concurrently. Hopscotch
hashing is the fastest concurrent hash table available as far as we
know, and we use it for comparison in Section 6.

Kim and Kim [18] recently present several implementations of
parallel hash tables, though we found our code and the hopscotch
hashing code of [15] to be much faster. Van der Vegt and Laarman
describe a concurrent hash table using a variant of linear probing
called bidirectional linear probing [34, 35], however it requires a
monotonic hash function, which may be too restrictive for many
applications. Their hash table is non-deterministic and requires
locks. Alcantara et al. describe a parallel hashing algorithm us-
ing GPUs [1], which involves a synchronized form of cuckoo hash-
ing, and is non-deterministic because collisions are resolved non-
deterministically. Concurrent cuckoo hashing has also been dis-
cussed by Fan et al. [10], and very recently by Li et al. [21]. The
hash table of Fan et al. supports concurrent access by multiple read-
ers and a single writer, but do not support concurrent writers. Li et
al. extends this work by supporting concurrent writers as well.

Phase-concurrency has been previously explored in the work on
room synchronizations by Blelloch et al. [2]. They describe phase-
concurrent implementations of stacks and queues. However, they
were concerned only about efficiency, and their data structures are
not deterministic even within a single phase. We believe our hash
table is the first deterministic phase-concurrent hash table.

3. PRELIMINARIES
We review the sequential history-independent hash table of Blel-
loch and Golovin [4]. The algorithm is similar to that of standard
linear probing. It assumes a total order on the keys used as prior-
ities. For insertion, the only difference is that if during the probe
sequence a key currently in the location has lower priority than the
key being inserted, then the two keys are swapped. An insertion
probes the exact same number of elements as in standard linear
probing. For finds, the only difference is that since the keys are or-
dered by priority, it means that a find for a key k can stop once
it finds a location i with a lower priority key. This means that
searching for keys not in the table can actually be faster than in
standard linear probing. One common method for handling dele-
tions in linear probing is to simply mark the location as “deleted”
(a tombstone), and modify the insert and search accordingly. How-
ever, this would not be history-independent. Instead, for deletions
in the history-independent hash table, the location where the key is
deleted is filled with the next lower priority element in the probe
sequence that hashed to or after that location (or the empty element
if it is at the end of the probe sequence). This process is done recur-
sively until the element that gets swapped in is the empty element.

Our code uses the atomic compare-and-swap (CAS) instruction.
The instruction takes three arguments—a memory location (loc), an
old value (oldV) and a new value (newV); if the value stored at loc
is equal to oldV it atomically stores newV at loc and returns true,
and otherwise it does not modify loc and returns false. We use &x
to refer to the memory location of variable x.

We define phase-concurrency as follows:

DEFINITION 1 (PHASE-CONCURRENCY). A data structure
with operations O and operation subsets S is phase-concurrent if
∀s ∈ S, s ⊆ O and all operations in s can proceed concurrently
and are linearizable.

4. DETERMINISTIC PHASE-CONCURRENT
HASH TABLE

Our deterministic phase-concurrent hash table extends the sequen-
tial history-independent hash table to allow for concurrent inserts,
concurrent deletes, and concurrent finds. The contents can also be
extracted (referred to as the elements operation) easily by simply
packing the non-empty cells. Using the notation of Definition 1,
our hash table is phase-concurrent with:
• O = {insert, delete, find, elements}, and
• S =

{
{insert}, {delete}, {find, elements}

}
The code for insertion, deletion and find is shown in Figure 1,

and assumes that the table is not full and that different keys have
different priorities (total ordering). For simplicity, the code as-
sumes there is no data associated with the key, although it could
easily be modified for key-value pairs. Note that the code works
for arbitrary key-value sizes as for structure sizes larger that what a
compare-and-swap can operate on, a pointer (which fits in a word)
to the structure can be stored in the hash table instead. The code as-
sumes a hash function h that maps keys into the range [0, . . . , |M |−
1], and that the keys have a total priority ordering that can be com-
pared with the function <p. By convention, we assume that the
empty element (⊥) has lower priority than all other elements. The
code uses NEXTINDEX(i) and PREVINDEX(i) to increment and
decrement the index modulo the table size. Note that both INSERT
and DELETE do not have return values, so we only need to ensure
that a set of inserts (or deletes) are commutative with respect to the
resulting configuration of the table.

For a given element v, INSERT loops until it finds a location with
⊥ (Line 3) or it finds that v is already in the hash table (Line 5),
at which point it terminates. If during the insert, it finds a location
that stores a lower priority value (Line 8), it attempts to replace
the value there with v with a CAS, and if successful the lower
priority key is temporarily removed from the table and INSERT is
now responsible for inserting the replaced element later in the probe
sequence, i.e. the replaced element is set to v (Line 9).

For a given element v, DELETE first finds v or an element after
v in the probe sequence at location k (Lines 27–29) since v may
either not be in the table or its position has been shifted back due to
concurrent deletions. If v is not at location k, then DELETE decre-
ments the location (Lines 30–32) until either v is found (Line 33)
or the location becomes less than h(v) (Line 30), in which case v
is not in the table. After finding v, DELETE finds the replacement
element for v by calling FINDREPLACEMENT (Line 34). FIND-
REPLACEMENT first increments the location until finding a replace-
ment element that is either⊥ or a lower priority element that hashes
after v (Lines 13–16). The resulting location will be one past the
replacement element, so it is decremented on Line 17. Then be-
cause the replacement element could have shifted, it decrements
the the location until finding the replacement element (Lines 18–
23). DELETE then attempts to swap in the replacement element v′

on Line 35, and if successful, and v′ 6= ⊥ (Line 36), there is now
an additional copy of v′ in the table so DELETE is responsible for
deleting v′ (Lines 37–39). Otherwise, if the CAS was unsuccess-
ful, either v has already been deleted or used as a replacement ele-
ment so possibly appears at some earlier location. DELETE decre-
ments the location and continues looping (Line 41).

To FIND an element v, the algorithm starts at h(v) and loops
upward until finding either an empty location or a location with a
key with equal or lower priority (Lines 43–45). Then it returns the
result of the comparison of v with that key (Line 46). Since there
is a total priority ordering on the keys, M [i] will contain v if and
only if v is in the table.



1 procedure INSERT(v)
2 i = h(v)
3 while (v 6= ⊥)
4 c = M [i]
5 if (c = v) return
6 elseif (c >p v) then
7 i = NEXTINDEX(i)
8 elseif (CAS(&M [i], c, v)) then
9 v = c

10 i = NEXTINDEX(i)

11 procedure FINDREPLACEMENT(i)
12 j = i
13 do
14 j = NEXTINDEX(j)
15 v = M [j]
16 while (v 6= ⊥ and h(v) > i)
17 k = PREVINDEX(j)
18 while (k > i)
19 v′ = M [k]
20 if (v′ = ⊥ or h(v′) ≤ i) then
21 v = v′

22 j = k
23 k = PREVINDEX(k)
24 return (j, v)

25 procedure DELETE(v)
26 i = h(v)
27 k = i
28 while (M [k] 6= ⊥ and v <p M [k])
29 k = NEXTINDEX(k)
30 while (k ≥ i)
31 if (v = ⊥ or v 6=p M [k])
32 k = PREVINDEX(k)
33 else
34 (j, v′) = FINDREPLACEMENT(k)
35 if (CAS(&M [k], v, v′)) then
36 if (v′ 6= ⊥) then
37 v = v′

38 k = j
39 i = h(v)
40 else return
41 else k = PREVINDEX(k)

42 procedure FIND(v)
43 i = h(v)
44 while (M [i] 6= ⊥ and v <p M [i])
45 i = NEXTINDEX(i)
46 return (M [i] = v)

Figure 1. Phase-concurrent deterministic hashing with linear prob-
ing.

Note that for INSERT, DELETE and FIND, it is crucial that the
hash table is not full, otherwise the operations may not terminate.
Throughout our discussion, we assume wraparound with modulo
arithmetic. Since the table is not full, every cluster has a beginning,
and when comparing the positions of two elements within a cluster,
the “higher” position is the one further from the beginning of the
cluster in the forward direction with wraparound. We want to show
that when starting with an empty hash table, our phase-concurrent
hash table maintains the following invariant:

DEFINITION 2 (ORDERING INVARIANT). If a key v hashes
to location i and is stored in location j in the hash table, then for
all k, i ≤ k < j it must be that M [k] ≥p v.

As long as the keys are totally ordered by their priorities, the or-
dering invariant guarantees a unique representation for a given set
of keys [4]. This invariant was shown to hold in the sequential
history-independent hash table [4].

The concurrent versions of insert and delete work similarly to the
sequential versions, but need to be careful about concurrent modi-
fications. What we show is that the union of the keys being inserted

and the current content always equals the union of all initial keys
and all insertions that started. A key property to make it work is
that since only insertions are occurring, the priority of the keys at
a given location can only increase. We note that this implementa-
tion should make clear that is not safe to run inserts concurrently
with finds, since an unrelated key can be temporarily removed and
invisible to a find.

The deletion routine is somewhat trickier. It allows for multiple
copies of a key to appear in the table during deletions. In fact, with
p concurrent threads it is possible that up to p+1 copies of a single
key appear in the table at a given time. This might seem counter-
intuitive since we are deleting keys. Recall, however, that when a
key v is deleted, a replacement v′ needs to be found to fill its slot.
When v′ is copied into the slot occupied by v, there will temporar-
ily be two copies of v′, but the delete operation is now responsible
for deleting one of them. The sequential code deletes the second
copy, but in the concurrent version since there might be concurrent
deletes aimed at the same key, the delete might end up deleting
the version it copied into, another thread’s copy, or it might end
up not finding a copy and quitting. The important invariant is that
for a value v the number of copies minus the number of outstand-
ing deletes does not change (when a copy is made, the number of
copies is increased but so is the number of outstanding deletes). A
key property that makes deletions work is that since only deletions
are occurring, the priority of the keys at a given location can only
decrease, and hence a key can only move to locations with a lower
index.

We now prove important properties of our hash table. We use
Mv to indicate the set of (non-empty) values contained in the hash
table, Iv to indicate the set of values in a collection of insertion
operations I , and |M | to indicate the size of the table.

THEOREM 1. Starting with a table M that satisfies the order-
ing invariant and with no operations in progress, after any collec-
tion of concurrent insertions I complete (and none are in progress)
with |Mv ∪ Iv| < |M |, M will satisfy the following properties:

• M contains the union of the keys initially in the table and all
values in I , and
• M satisfies the ordering invariant.

Furthermore, all insertion operations are non-blocking and termi-
nate in a finite number of steps.

PROOF. We assume all instructions are linearizable and con-
sider the linearized sequential ordering of operations. We use step
to refer to a position in this sequential ordering. At a given step, we
use Iv to indicate the set of values for which an INSERT has started.
Between when an INSERT starts and finishes, we say that it is ac-
tive with some value. At its start, an INSERT(v) is active with the
value v, but whenever it performs a successful CAS(&M [i], v, c)
on Line 8, the INSERT becomes active with the value c on the next
step (Line 9)—it is now responsible for inserting c instead of v.
When it does a successful CAS(&M [i], v,⊥) an INSERT is no
longer active—it will terminate as soon as it gets to the next start of
the while loop and do nothing to the shared state in the meantime.
We also say that an INSERT is no longer active when it reads a value
c on Line 4 that is equal to v—it will terminate on Line 5.

We use Av to indicate the union of values of all INSERT’s that
are active. We use Mv to indicate the values contained in M on a
given step, andMs to be the initial values contained inM . We will
prove that the following invariants are maintained on every step:

1. Mv ∪Av =Ms ∪ Iv , and
2. the table M satisfies the ordering invariant.



Since at the end Av = ∅, these invariants imply properties 1 and
2 of the theorem.

Invariant 1 is true at the start since Av and Iv are both empty
and Ms = Mv by definition. The invariant is maintained since (1)
when an INSERT starts, its value is added to both Av and Iv and
therefore the invariant is unchanged, (2) when an INSERT termi-
nates it reads aM [i] = v, so a v is removed fromAv but it exists in
Mv so the union is unaffected, (3) every CAS with c = ⊥ removes
a v from Av but inserts it into Mv , maintaining the union, and (4)
every CAS with c 6= ⊥ swaps an element in Mv with an element
in Av , again maintaining the union. In the code, whenever a CAS
succeeds, c is placed in the location where v was (by the definition
of CAS) and immediately afterward v is set to c (Line 9).

Invariant 2 is true at the start by assumption. The invariant is
maintained since whenever a CAS(&M [i], v, c) succeeds it must
be the case after the CAS that (1) all locations from h(v) up to
i have equal or higher priority than v, and (2) all keys that hash
to or before i but appear after i have lower priority than v. These
properties imply that the ordering invariant is maintained. The first
case is true since the only time i is incremented for v is when c =
M [i] has a equal or higher priority (Lines 6–7) and since we only
swap higher priority values with lower priority ones (v >p c for
all CAS’s), once a cell has an equal or larger priority than v, it
always will. Also when we have a successful CAS, swap v and c,
and increment i, it must be the case that all locations in the probe
sequence for the new v and before the new i have priority higher
than the new v. This is because it was true before the swap and the
only thing changed by the swap was putting the old v into the table,
which we know has a higher priority than the new v. The second
case of invariant 2 is true since whenever we perform a CAS we
are only increasing the priority of the value at that location.

The termination condition is true since when the hash table of
size |M | is not full, an INSERT can call NEXTINDEX at most |M |
times before finding an empty location. Therefore for p parallel
INSERT’s, there can be at most p|M | calls to NEXTINDEX. Fur-
thermore, any CAS failure of an INSERT is associated with a CAS
success of another INSERT. A CAS success corresponds to either a
call to NEXTINDEX (Line 7) or termination of the insertion. There-
fore, for a set of p parallel INSERT’s, there can be at most p − 1
CAS failures for any one CAS success and call to NEXTINDEX.
So after p2|M | CAS attempts, all INSERT’s have terminated. It is
non-blocking because an INSERT can only fail on a CAS attempt if
another INSERT succeeds and thus makes progress.

THEOREM 2. Starting with a table M with |Mv| < |M | that
satisfies the ordering invariant and with no operations in progress,
after any collection of concurrent deletes D complete (and none
are in progress), the table will satisfy the following properties:

• M contains the difference of the keys initially in the table and
all values in D, and
• M satisfies the ordering invariant.

Furthermore, all delete operations are non-blocking and terminate
in a finite number of steps.

PROOF. Similar to insertions, from when a DELETE starts until
it ends, it is active with some value: initially it is active with the v it
was called with and after a successful CAS(&M [k], v, v′) for v′ 6=
⊥ it becomes active with v′ (Lines 35–37). A DELETE finishes on
CAS(&M [k], v,⊥) or when the condition of the while loop on
Line 30 no longer holds (in this case, it finishes because v is not in
the table).

During deletions, the table M can contain multiple copies of a
key. The definition of the ordering invariant is still valid with mul-
tiple copies of a key, and for a fixed multiplicity the layout remains
unique. Unlike insertions, to analyze deletions we need to keep
track of multiplicities.

We use Dv to indicate the set of values in D, and Ms the ini-
tial contents of M . We use A(v) to indicate the number of active
DELETE’s with value v, andM(v) to indicate the number of copies
of v in M . We will prove that the following invariants are main-
tained at every step:

1. ∀v ∈ Ms, if v ∈ Ms \ Dv then M(v) − A(v) = 1 , and
otherwise M(v)−A(v) < 1,

2. the table M satisfies the ordering invariant allowing for re-
peated keys, and

3. on Line 30, the index k of a DELETE of v must point to or
past the last copy of v (“rightmost” copy with respect to the
cluster).

Since at the end A(v) = 0 for all v, these invariants prove the
properties of the theorem.

Invariant 1 is true at the start since Dv is empty and ∀v ∈ Ms,
A(v) = 0. To show that the invariant is maintained we con-
sider all events that can change M(v), A(v) or Dv . These are:
(1) when a DELETE on v starts, then A(v) is incremented mak-
ing M(v) − A(v) less than 1 (since it can be at most 1 before
the start) and v is added to Dv so v is not in Ms \ Dv , (2) when
a CAS(&M [k], v,⊥) succeeds, A(v) and M(v) are both decre-
mented, therefore canceling out, (3) when a CAS(&M [k], v, v′)
for v′ 6= ⊥ succeeds, then by Lines 35–37, A(v) and M(v) are
both decremented, canceling out, and A(v′) and M(v′) are both
incremented, again canceling out, and (4) when a DELETE finishes
due to the condition not holding on Line 30, the value v cannot
be in the table because of invariant 3, so A(v) is decremented, but
M(v)−A(v) is less than 1 both before and after since M(v) = 0.

Invariant 2 is true at the start by assumption. The only way it
could become violated is if as a result of a CAS(&M [k], v, v′),
the value v′ falls out of order with respect to values after location
j (i.e. there is some key that hashes at or before j, is located after
j, and has a higher priority than v′). This cannot happen since the
replacement element found is the closest key to j that hashes after
j and has lower priority than v. The loop in Lines 13–16 scans up-
ward to find an element that hashes after v in the probe sequence,
and the while loop at Lines 18–23 scans downward in case the de-
sired replacement element was shifted down in the meantime by
another thread. It is important that this loop runs backwards and is
the reason that there are two redundant looking loops, one going up
and one going back down.

Invariant 3 is true is since the initial find (Lines 27–29) locates
an index of an element with priority lower that v, which must be
past v, and FINDREPLACEMENT returns an index at or past the
replacement v′. k is only decremented on a failed CAS, which in
this case means that v can only be at an index lower than k.

To prove termination, we bound the number of index increments
and decrements a single DELETE operation can perform while ex-
ecuting in parallel with other deletes. For a hash table of size |M |,
the while loop on Lines 30–41 can execute at most |M | times be-
fore i changes, and i will only increase since the replacement el-
ement must have a higher index than the deleted element. i can
increase at most |M | times before v′ = ⊥, so the number of calls
to FINDREPLACEMENT is at most |M |2. The number of decre-
ments and assignments to k in the while loop on Lines 30–41 is
at most |M | per iteration of the while loop (for a total of |M |2).



FINDREPLACEMENT contains a loop incrementing j, which even-
tually finishes because the condition on Line 16 will be true for a
location containing ⊥, and a loop decrementing j, which eventu-
ally finishes due to the condition on Line 18. So the total number
of increments and decrements is at most 2|M | per call to FIND-
REPLACEMENT. The initial find on Lines 27–29 involves at most
|M | increments. Therefore, a DELETE operation terminates after
at most |M |+ |M |2 +2|M |3 increments/decrements, independent
of the result of the CAS on Line 35. A collection of p DELETE’s
terminates in at most p(|M | + |M |2 + 2|M |3) increments/decre-
ments. Increments, decrements and all instructions in between are
non-blocking and thus finish in a finite amount of time. Therefore,
concurrent deletions are non-blocking.

Combining. For a deterministic hash table that stores key-value
pairs, if there are duplicate keys, we must decide how to combine
the values of these keys deterministically. This can be done by
passing a commutative combining function that is applied to the
values of pairs with equal keys and updating the location (using a
double-word CAS) with a pair containing the key with the com-
bined values. Our experiments in Section 6 use min or + as the
combining function.

Resizing. Using well-known techniques it is relatively easy to ex-
tend our hash table with resizing [14]. Here we outline an approach
for growing a table based on incrementally copying the old contents
to a new table when the load factor in the table is too high. An IN-
SERT can detect that a table is overfull when a probe sequence is
too long. In particular, theoretically a probe sequence should not be
longer than k logn with high probability for some constant k that
depends on the allowable load factor. Once a process detects that
the table is overfull, it allocates a new table of twice the size and
(atomically) places a link to the new table accessible to all users. A
lock can be used to avoid multiple processes allocating simultane-
ously. This would mean that an insertion will have to wait between
when the lock is taken and the new table is available, but this should
be a short time, and only on rare occasions.

Once the link is set, new INSERTs are placed in the new table.
Furthermore, as long as the old table is not empty, every INSERT
is responsible for copying at least two elements from the old table
to the new one. The thread responsible for creating the new table
allocates the elements to copy to other threads, and thereafter some
form of work-stealing [5] is used to guarantee that a thread has
elements to copy when there are still uncopied elements. As long as
a constant number of keys are copied for every one that is inserted,
the old table will be emptied before the new one is filled. This way
only two tables are active at any time. There is an extra cost of
indirection on every INSERT since the table has to be checked to
find if it has been relocated. However, most of the time this pointer
will be in a local cache in shared mode (loaded by any previous
table access) and therefore the cost is very cheap. When there are
two active tables, finds and deletes would look in both tables.

5. APPLICATIONS
In this section, we describe applications which use our determinis-
tic hash table. For these applications, using a hash table is either
the most natural and/or efficient way to implement an algorithm,
or it simplifies the implementation compared to directly addressing
the memory locations. Our hash table implementation contains a
function ELEMENTS() which packs the contents of the table into an
array and returns it. It is important that ELEMENTS() is determinis-
tic to guarantee determinism for the algorithms that use it.

Delaunay refinement and breadth-first search use the WRITEMIN
function for determinism, which takes two arguments–a memory
location loc and a value val and stores val at loc if and only if val is
less than the value at loc. It returns true if it updates the value at loc
and false otherwise. WRITEMIN is implemented with a compare-
and-swap [29].

Remove Duplicates. The remove duplicates problem takes as in-
put a sequence of elements, a hash function on the elements and
a comparison function, and returns a sequence in which duplicate
elements are removed. This is a simple application which can be
implemented using a hash table by simply inserting all of the ele-
ments into the table and returning the result of ELEMENTS(). For
determinism, the sequence returned by ELEMENTS() should con-
tain the elements in the same order every time, which is guaranteed
by a deterministic hash table. This is an example of an application
where the most natural and efficient implementation uses hashing
(one could remove duplicates by sorting and removing consecutive
equal-valued elements, but it would be less efficient).

Delaunay Refinement. A Delaunay triangulation of n points is a
triangulation such that no point is contained in the circumcircle of
any triangle in the triangulation. The Delaunay refinement prob-
lem takes as input a Delaunay triangulation and an angle α, and
adds new points to the triangulation such that no triangle has an
angle less than α. We refer to a triangle with an angle less than α
as a bad triangle.

Initially all of the bad triangles of the input triangulation are
computed and stored into a hash table. On each iteration of De-
launay refinement, the contents of the hash table are obtained via a
call to ELEMENTS() and the bad triangles mark (using a WRITEMIN
with their index in the sequence) all of the triangles that would be
affected if they were to be inserted. Bad triangles whose affected
triangles all contain their mark are “active” and can proceed to
modify the triangulation by adding their center point. This method
guarantees there are no conflicts, as any triangle in the triangula-
tion is affected by at most one active bad triangle. During each
iteration of the refinement, new triangles with angles less than α
are generated and they are inserted into the hash table as they are
discovered. This process is repeated until either a specified num-
ber of new points are added or the triangulation contains no more
bad triangles. For determinism, it is important that the call to ELE-
MENTS() is deterministic, as this makes the indices/priorities of the
bad triangles, and hence the resulting triangulation deterministic.

This is an example of an application where using a hash table sig-
nificantly simplifies the implementation. Prior to inserting a point,
it is hard to efficiently determine how many new bad triangles it
will create, and pre-allocate an array of the correct size to allow for
storing the new bad triangles in parallel.

Suffix Tree. A suffix tree stores all suffixes of a string S in a trie
where internal nodes with a single child are contracted. A suffix
tree allows for efficient searches for patterns in S, and also has
many other applications in string analysis and computational biol-
ogy. To allow for expected constant time look-ups, a hash table
is used to store the children of each internal node. Our phase-
concurrent hash table allows for parallel insertions of nodes into
a suffix tree and parallel searches on the suffix tree. This is an ex-
ample of an application where hash tables are used for efficiency,
and where the inserts and finds are naturally split into two phases.

Edge Contraction. The edge contraction problem takes as input
a sequence of edges (possibly with weights) and a label array R,
which specifies that vertex v should be relabeled with the value



R[v]. It returns a sequence of unique edges relabeled according to
R. Edge contraction is used in recursive graph algorithms where
certain vertices are merged into “supervertices” and the endpoints
of edges need to be relabeled to the IDs of these supervertices. Du-
plicate edges are processed differently depending on the algorithm.

To implement edge contraction, we can insert the edges into a
hash table using the two new vertex IDs as the key, and any data on
the edge as the value. A commutative combining function can be
supplied for combining data on duplicate edges. For example, we
might keep the edge with minimum weight for a minimum span-
ning tree algorithm, or add the edge weights together for a graph
partitioning algorithm [17]. To obtain the relabeled edges for the
next iteration, we make a call to ELEMENTS(). To guarantee deter-
minism in the algorithm, the hash table must be deterministic. This
idea is used to remove duplicate edges on contraction in a recent
connected components implementation [31].

Breadth-First Search. The breadth-first search (BFS) problem
takes a graph G and a starting vertex r, and returns a breadth-first
search tree rooted at r containing all nodes reachable from r. Ver-
tices in each level of the BFS can be visited in parallel. A parallel
algorithm stores the current level of the search in a Frontier array,
and finds all unvisited neighbors of the Frontier array that belong to
the next level in parallel. During this process, it also chooses a par-
ent vertex for each unvisited neighbor in the next level. However,
if multiple vertices on the frontier share an unvisited neighbor, one
must decide which vertex becomes the parent of the neighbor. This
can be done deterministically with the WRITEMIN function.

Another issue is how to generate the new Frontier array for the
next level. One option is to have all parents copy all of its unvis-
ited neighbors of the current Frontier array into a temporary array.
To do this in parallel, one must first create an array large enough
to contain all unvisited neighbors of all vertices in the Frontier ar-
ray (since at this point we have not assigned parents yet), assign
segments of the array to each vertex in Frontier, and have each ver-
tex in Frontier copy unvisited neighbors that it is a parent of into
the array. This array is then packed down with a prefix sums and
assigned to Frontier.

An alternative solution is to use a concurrent hash table and in-
sert unvisited neighbors into the table. Obtaining the next Frontier
array simply involves a call to ELEMENTS(). With this method, du-
plicates are removed automatically, and the packing is hidden from
the user. This leads to a much cleaner solution. If one wants to
look at or store the frontiers or simply generate a level ordering of
the vertices, then it is important that ELEMENTS() is determinis-
tic. The pseudo-code for this algorithm is shown in Figure 2. This
method gives a deterministic BFS tree. In Section 6 we show that
using our deterministic phase-concurrent hash table does not slow
down the code by much compared to the best previous determinis-
tic BFS code [30], which uses memory directly as described in the
first method above.

Spanning Forest. A spanning forest for an undirected graph G,
is a subset of the edges that forms a forest (collection of trees) and
spans all vertices in G. One way to implement a deterministic par-
allel spanning forest algorithm is to use the technique of determin-
istic reservations described by Blelloch et al. [3]. In this technique,
the edges are assigned unique priorities at the beginning. Each
iteration contains a reservation phase and a commit phase. The
reservation phase involves the edges finding the components they
connect (using a union-find data structure) and then reserving their
components if they are different. The commit phase involves the
edges checking if they made successful reservations on at least one

1: procedure BFS(G, r) . r is the root
2: Parents = {∞, . . . ,∞} . initialized to all∞ (unvisited)
3: Parents[r] = r
4: Frontier = {r}
5: while (Frontier 6= {}) do
6: Create hash table T
7: parfor v ∈ Frontier do . loop over frontier vertices
8: parfor ngh ∈ N(v) do . loop over neighbors
9: if (WRITEMIN(&Parents[ngh], v)) then

10: T.INSERT(ngh)
11: Frontier = T.ELEMENTS() . get contents of T
12: parfor v ∈ Frontier do
13: Parents[v] = −Parents[v] . negative indicates visited
14: return Parents

Figure 2. Hash Table-Based Breadth-First Search

component, and if so linking the components together. The unsuc-
cessful edges connecting different components are kept for the next
iteration and the process is repeated until no edges remain.

If the vertex IDs are integers from the range [1, . . . , n], then an
array of size n can be used to store the reservations. However, if
the IDs are much larger integers or strings, it may be more conve-
nient to use a hash table to perform the reservations to avoid vertex
relabeling. Determinism is maintained if the hash table is deter-
ministic. For the reservation phase, edges insert into a hash table
each of its vertices (as the key), with value equal to the edge prior-
ity. For a deterministic hash table, if duplicate vertices are inserted,
the one with the value with the highest priority remains in the hash
table. In the commit phase, each edge performs a hash table find on
the vertex it inserted and if it contain the edge’s priority value, then
it proceeds with linking its two components together. We show in
Section 6 that the implementation of spanning forest using a hash
table is only slightly slower than the array-based version.

6. EXPERIMENTS
In this section, we analyze the performance of our concurrent de-
terministic history-independent hash table (linearHash-D) on its
own, and also when used in the applications described in Section 5.

We compare it with two non-deterministic phase-concurrent hash
tables that we implement, and with the best existing concurrent
hash tables that we know of (hopscotchHash and chainedHash).
linearHash-ND is a concurrent version of linear probing that we
implement, which places values in the first empty location and
hence depends on history (non-deterministic). It is based on the
implementation of Gao et al. [11], except that for deletions it shifts
elements back instead of using tombstones, and does not support
resizing. We note that in linearHash-ND, insertions and finds can
proceed concurrently (although we still separate them in our exper-
iments), since inserted elements are not displaced. cuckooHash is
a concurrent version of cuckoo hashing that we implement, which
locks two locations for an element insertion, places the element in
one of the locations, and recursively inserts any evicted elements.
To prevent deadlocks, it acquires the locks in increasing order of
location. It is non-deterministic because an element can be placed
in either of its two locations based on the order of insertions. For
key-value pairs, on encountering duplicate keys linearHash-D uses
a priority function [29] on the values to deterministically decide
which pair to keep, while the non-deterministic hash tables do not
replace on duplicate keys.

hopscotchHash is a fully-concurrent open-addressing hash ta-
ble by Herlihy et al. [15], which is based on a combination of lin-
ear probing and cuckoo hashing. It uses locks on segments of the
hash table during insertions and deletions. We noticed that there



is a time-stamp field in the code which is not needed if opera-
tions of different types are not performed concurrently. We mod-
ified the code accordingly and call this phase-concurrent version
hopscotchHash-PC. chainedHash is a widely-used fully-concurrent
closed-addressing hash table by Lea [20] which places elements in
linked lists. It was originally implemented in Java, but we were
able to obtain a C++ version from the authors of [15]. We also tried
the chained hash map (concurrent_hash_map) implemented
as part of Intel Threading Building Blocks, but found it to be slower
than chainedHash. We implement the ELEMENTS() routine for both
hopscotch hashing and chained hashing, as the implementations did
not come with this routine. For hopscotch hashing, we simply pack
out the empty locations. For chained hashing, we first count the
number of elements per bucket by traversing the linked lists, com-
pute each bucket’s offset into an array using a parallel prefix sum,
and then traverse the linked lists per bucket copying elements into
the array (each bucket can proceed in parallel). The original im-
plementation of chainedHash acquires a lock at the beginning of
an insertion and deletion. This leads to high lock contention for
distributions with many repeated keys. We optimized the chained
hash table such that insertion only acquires a lock after an initial
find operation does not find the key, and deletion only acquires a
lock after an initial find operation successfully finds the key. This
contention-reducing version is referred to as chainedHash-CR.

We also include timings for a serial implementation of the history-
independent hash table using linear probing (serialHash-HI) and a
serial implementation using standard linear probing (serialHash-
HD).

For the applications, we compare their performance using the
phase-concurrent hash tables that we implement and the chained
hash table1. For breadth-first search and spanning tree we also com-
pare with implementations that directly address memory and show
that the additional cost of using hash tables is small.

We run our experiments on a 40-core (with hyper-threading) ma-
chine with 4 × 2.4GHz Intel 10-core E7-8870 Xeon processors
(with a 1066MHz bus and 30MB L3 cache) and 256GB of main
memory. We run all parallel experiments with two-way hyper-
threading enabled, for a total of 80 threads. We compiled all of
our code with g++ version 4.8.0 with the -O2 flag. The parallel
codes were compiled with Cilk Plus, which is included in g++.

For our experiments, we use six input distributions from the
Problem Based Benchmark Suite (PBBS) [30]. randomSeq-int is
a sequence of n random integer keys in the range [1, . . . , n] drawn
from a uniform distribution. randomSeq-pairInt is a sequence of
n key-value pairs of random integers in the range [1, . . . , n] drawn
from a uniform distribution. trigramSeq is a sequence of n string
keys generated from trigram probabilities of English text (there are
many duplicate keys in this input). trigramSeq-pairInt has the
same keys as trigramSeq, but each key maintains a corresponding
random integer value. For this input, the key-value pairs are stored
as a pointer to a structure with a pointer to a string, and therefore
involves an extra level of indirection. exptSeq-int is a sequence of
n random integer keys drawn from an exponential distribution—
this input is also used to test high collision rates in the hash table.
exptSeq-pairInt contains keys from the same distribution, but with
an additional integer value per key. For all distributions, we used
n = 108. For the open addressing hash tables, we initialized a table
of size 228.

Figures 3(a) and 3(b) compare the hash tables for several oper-
ations on randomSeq-int and trigramSeq-pairInt, respectively. For
1The source code for hopscotch hashing that we obtained online sometimes
does not work correctly on our Intel machine (it was originally designed for
a Sun UltraSPARC machine), so we do not use it in our applications.
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Figure 3. Times (seconds) for 108 operations for the hash tables on
40 cores (with hyper-threading). (PC) indicates a phase-concurrent
implementation and (C) indicates a concurrent implementation.

Insert, we insert a random set of keys from the distribution starting
from an empty table. For Find Random and Delete Random we
first insert n elements (not included in the time) and then perform
the operations for a random set of keys from the distribution. El-
ements is the time for returning the contents of the hash table in
a packed array. Table 1 lists the parallel and serial running times
(seconds) for insertions, finds, deletions and returning the elements
for the various hash tables on different input sequences. For Find
and Delete we first insert n elements (not included in the time) and
then perform the operations either on the same keys (Inserted) or
for a random set of keys from the distribution (Random).

As Figure 3 and Table 1 indicate, insertion, finds and deletions
into the deterministic (history-independent) hash table are slightly
more expensive than into the history-dependent linear probing ver-
sion. This is due to the overhead of swapping and checking priori-
ties. Elements just involves packing the contents of the hash table
into a contiguous array, and since for a given input, the locations
occupied in the hash table are the same in the linear probing tables,
the times are roughly the same (within noise) between the two se-
rial versions and the two parallel version. On a single thread, the
serial versions are cheaper since they do not use a prefix sum.

Overall, linearHash-D and linearHash-ND are faster than cuck-
ooHash, since cuckooHash involves more cache misses on average
(it has to check two random locations). Elements is also slower for
cuckooHash because each hash table entry includes a lock, which
increases the memory footprint. For random integer keys, our lin-
ear probing hash tables are 2.3–4.1× faster than chainedHash and
chainedHash-CR, as chained hashing incurs more cache misses. As
expected, in parallel chainedHash performs very poorly under the
sequences with many duplicates (trigramSeq, trigramSeq-pairInt,
exptSeq and exptSeq-pairInt) due to high lock contention, while
chainedHash-CR performs better.



(a) Insert randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 3.94 – 4.76 – 5.42 – 8.58 – 3.01 – 3.58 –
serialHash-HD 3.89 – 4.43 – 4.99 – 7.71 – 2.91 – 3.04 –
linearHash-D 4.53 0.171 5.45 0.216 5.53 0.115 8.66 0.204 3.08 0.119 3.71 0.141

linearHash-ND 4.52 0.17 4.77 0.213 5.02 0.108 8.2 0.174 2.96 0.109 3.12 0.119
cuckooHash 7.91 0.364 14.0 0.43 8.3 0.177 12.0 0.242 4.7 0.184 7.23 0.208
chainedHash 13.3 0.774 15.3 0.784 9.54 9.78 14.0 18.4 7.9 2.57 8.48 5.25

chainedHash-CR 14.4 0.708 16.8 0.71 9.1 0.324 13.7 0.438 7.19 0.35 7.56 0.401
hopscotchHash 9.19 0.349 9.21 0.363 7.04 1.54 9.63 2.36 6.15 1.97 6.0 2.02

hopscotchHash-PC 9.18 0.345 9.21 0.365 7.03 1.55 9.59 2.45 6.16 1.94 5.99 2.09

(b) Find Random randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 3.97 – 4.17 – 6.11 – 10.9 – 3.38 – 3.12 –
serialHash-HD 4.03 – 4.36 – 5.95 – 9.42 – 2.77 – 2.91 –
linearHash-D 4.23 0.114 4.19 0.149 6.17 0.12 10.6 0.219 3.16 0.069 3.11 0.07

linearHash-ND 4.02 0.119 4.35 0.144 5.89 0.117 10.1 0.19 2.79 0.067 2.91 0.078
cuckooHash 6.64 0.21 8.13 0.255 7.7 0.174 12.4 0.24 5.1 0.127 6.1 0.14
chainedHash 9.04 0.356 9.06 0.3 9.84 0.247 15.0 0.364 5.0 0.189 6.01 0.17

chainedHash-CR 9.06 0.359 9.05 0.301 9.74 0.245 15.0 0.365 5.9 0.188 5.99 0.168
hopscotchHash 5.2 0.173 5.02 0.169 6.8 0.167 10.2 0.236 3.51 0.094 3.49 0.091

hopscotchHash-PC 4.76 0.151 4.72 0.15 6.84 0.167 9.7 0.241 3.42 0.088 3.43 0.088

(c) Find Inserted randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 3.36 – 3.59 – 5.78 – 10.3 – 2.8 – 2.78 –
serialHash-HD 3.22 – 3.45 – 5.6 – 8.66 – 2.48 – 2.62 –
linearHash-D 3.36 0.109 3.6 0.142 5.73 0.114 9.94 0.204 2.6 0.067 2.6 0.068

linearHash-ND 3.22 0.106 3.44 0.125 5.5 0.11 9.55 0.195 2.48 0.064 2.61 0.073
cuckooHash 6.03 0.205 7.34 0.228 7.88 0.165 11.6 0.222 4.66 0.12 5.59 0.13
chainedHash 7.83 0.403 7.91 0.327 9.47 0.253 14.5 0.367 5.68 0.214 5.73 0.191

chainedHash-CR 7.87 0.406 7.89 0.327 9.36 0.249 14.5 0.366 5.69 0.213 5.7 0.188
hopscotchHash 4.67 0.168 4.67 0.166 6.44 0.157 9.31 0.22 3.22 0.09 3.22 0.09

hopscotchHash-PC 4.45 0.154 4.46 0.15 6.48 0.157 9.25 0.24 3.14 0.083 3.16 0.084

(d) Delete Random randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 4.89 – 5.8 – 3.69 – 4.17 – 2.82 – 3.13 –
serialHash-HD 4.87 – 5.85 – 3.09 – 3.77 – 2.83 – 3.14 –
linearHash-D 5.84 0.211 7.27 0.229 3.79 0.071 4.6 0.109 2.95 0.0968 3.7 0.099

linearHash-ND 5.9 0.213 7.43 0.235 3.85 0.071 4.64 0.109 3.02 0.0936 3.76 0.107
cuckooHash 6.16 0.21 7.16 0.266 5.57 0.15 8.01 0.166 4.25 0.109 4.69 0.142
chainedHash 16.2 0.63 16.4 0.597 4.79 2.38 6.02 2.7 7.16 2.79 7.28 7.01

chainedHash-CR 15.0 0.571 14.9 0.512 4.33 0.11 5.19 0.137 6.04 0.204 6.03 0.358
hopscotchHash 7.19 0.302 7.1 0.316 4.16 1.32 4.89 1.29 4.36 1.32 4.31 1.25

hopscotchHash-PC 7.07 0.301 7.06 0.32 4.15 1.33 4.95 1.34 4.36 1.31 4.28 1.24

(e) Delete Inserted randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 5.05 – 6.1 – 3.51 – 4.36 – 3.11 – 3.5 –
serialHash-HD 5.15 – 6.37 – 3.48 – 4.01 – 3.13 – 3.5 –
linearHash-D 6.13 0.24 7.98 0.264 3.73 0.068 4.59 0.102 3.33 0.115 4.18 0.126

linearHash-ND 6.36 0.242 8.38 0.269 3.8 0.07 4.34 0.102 3.35 0.11 4.23 0.119
cuckooHash 6.16 0.217 7.41 0.272 5.74 0.143 7.72 0.16 4.41 0.114 4.99 0.147
chainedHash 15.7 0.737 16.6 0.69 4.22 2.2 5.15 2.65 6.8 2.59 6.92 4.58

chainedHash-CR 14.9 0.714 14.9 0.624 3.77 0.126 4.62 0.153 5.64 0.372 5.65 0.45
hopscotchHash 7.2 0.33 7.8 0.343 3.96 1.32 4.89 1.28 4.69 1.38 4.54 1.29

hopscotchHash-PC 7.06 0.319 7.75 0.347 3.93 1.31 4.85 1.36 4.68 1.38 4.52 1.27

(f) Elements randomSeq-int randomSeq-pairInt trigramSeq trigramSeq-pairInt exptSeq-int exptSeq-pairInt
(1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h) (1) (40h)

serialHash-HI 0.974 – 1.1 – 0.758 – 0.753 – 0.603 – 0.821 –
serialHash-HD 0.986 – 1.08 – 0.759 – 0.761 – 0.554 – 0.814 –
linearHash-D 1.55 0.0511 2.25 0.0875 1.41 0.0575 1.43 0.056 1.05 0.0468 1.7 0.0514

linearHash-ND 1.55 0.0504 2.21 0.0857 1.42 0.0576 1.46 0.0554 1.06 0.0477 1.69 0.0794
cuckooHash 1.91 0.0791 2.54 0.115 2.45 0.0856 2.4 0.0866 1.64 0.0733 2.23 0.101
chainedHash 6.3 0.159 6.47 0.132 1.96 0.0782 1.97 0.0789 3.36 0.0934 3.38 0.0963

chainedHash-CR 6.33 0.165 6.44 0.131 1.97 0.0784 1.96 0.0785 3.38 0.091 3.37 0.0938
hopscotchHash 2.25 0.114 2.7 0.15 2.1 0.228 2.16 0.275 2.14 0.103 2.6 0.127

hopscotchHash-PC 2.26 0.112 2.73 0.147 2.09 0.229 2.16 0.274 2.14 0.1 2.61 0.128

Table 1. Times (seconds) for hash table operations with n = 108. (40h) indicates 40 cores with hyper-threading, and (1) indicates one thread.

Compared to hopscotch hashing, which is the fastest concurrent
open addressing hash table that we are aware of, both of our phase-
concurrent versions of linear probing are faster. For random integer
keys, the deterministic version is about 2× faster than hopscotch
hashing for inserts, and 1.3× faster for finds and deletes. For ele-
ments, we are also faster because we store less information per hash
table entry. Hopscotch hashing does not get good speedup for in-
sertions and deletions for the sequences with many repeats (i.e. the

trigram and exponential sequences) due to lock contention. Com-
pared to cuckooHash, on the lower-contention random integer se-
quence, hopscotch hashing is faster for finds and inserts but slower
for deletes and elements (it stores more data).

Figures 4(a) and 4(b) show the speedup of linearHash-D relative
to serialHash-HI on varying number of threads on randomSeq-int
and trigramSeq-pairInt, respectively. We use a hash table of size



228 and applied 108 operations of each type. We see that all of the
operations get good speedup as we increase the number of threads.
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Figure 4. Speedup relative to serialHash-HI for linearHash-D ver-
sus number of threads. (40h) indicates 80 hyper-threads.
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Figure 5. Times (nanoseconds) per operation with varying loads
for linearHash-D on 40 cores (with hyper-threading). Values on the
x-axis indicate the load factor (fraction of the table that is full).

Figure 5 shows the per operation running times on linearHash-
D with varying loads. For this experiment, we used a hash table
of size 227, and the table is first filled to the specified load before
timing the operations. We note that inserts and deletes become
more expensive as load increases, with a rapid increase as the load
approaches 1.

We also compare the performance of hash table inserts to doing
random writes (times for 108 writes are shown in Table 2). For
a uniformly random sequence (randomSeq-int), parallel insertion
into the deterministic hash table with a load of 1/3 is 1.3× slower
than parallel random writes. We also compare with a conditional
random write, which only writes to the location if it is empty, and
the parallel running time is about the same as for random writes.

Very recently, Li et al. [21] describe a concurrent cuckoo hash
table that achieves up to 40 million inserts per second for filling up
a hash table to 95% load using 16 cores and integer key-value pairs,
where the integers are 8 bytes each. On 16 cores, our linearHash-

Memory Operation (1) (40h)
Random write 1.62 0.129

Conditional random write 1.82 0.131
Hash table insertion 4.53 0.171

Table 2. Times (seconds) for 108 random writes (scatter)

ND performs 75 million inserts per second and linearHash-D per-
forms 65 million inserts per second filling the table up to 95% load
and using integer key-value pairs with 8-byte integers. As the per-
formance of linear probing degrades significantly at high loads, for
smaller loads we are faster than their hash table by a larger factor.
However, the hash table of Li et al. is fully-concurrent, and opti-
mizations can probably be made for a phase-concurrent setting.

Applications. For the applications, we compare implementations
using different versions of the hash tables. For the open addressing
hash tables, a larger table size decreases the load and usually leads
to faster insertions, deletions and finds, but our algorithms require
either returning the elements of the hash table or mapping over the
elements, which takes time proportional to the size of the hash ta-
ble. Due to this trade-off, we chose table sizes which gave the best
overall performance per application. For chained hashing, we only
present the times for chainedHash-CR, as we tried both chained-
Hash and chainedHash-CR and found that the timings were within
5% of each other as the inputs do not exhibit high contention. We
did not use hopscotch hashing in our applications as the implemen-
tation we obtained did not always work correctly (see Footnote 2).

For remove duplicates, we use the same input distributions as
in the previous experiments (n = 108), though we only report a
subset of them due to space constraints. Removing duplicates in-
volves a phase of insertions, which is more efficient with a larger
table in open addressing, and a call to ELEMENTS(), which is more
efficient with a smaller table in open addressing. We found that
setting the table size to 227 for the open addressing hash tables
gave the best overall performance. The times for using linearHash-
D, linearHash-ND, cuckooHash and chainedHash to remove dupli-
cates are shown in Table 3. We see that our deterministic version of
linear probing is 7–23% slower than our non-deterministic version
on the key-value inputs with many duplicates because the determin-
istic version may perform a swap on duplicate keys. Both linear
probing tables outperform the cuckoo and chained hash tables.

Remove Duplicates randomSeq-int trigramSeq-pairInt exptSeq-int
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.36 0.212 10.4 0.242 3.72 0.139
linearHash-ND 6.33 0.212 9.64 0.213 3.63 0.116

cuckooHash 11.0 0.417 12.9 0.3 5.76 0.185
chainedHash-CR 19.9 1.32 15.6 0.586 9.67 0.541

Table 3. Times (seconds) for Remove Duplicates

For Delaunay refinement, we use as input the Delaunay trian-
gulation of the 2D-cube and 2D-kuzmin geometry data from the
PBBS [30], each of which contain 5 million points. The times
for the hash table portion of one iteration of Delaunay refinement,
which involves a call to ELEMENTS() and hash table insertions, are
shown in Table 4. For the open addressing hash tables, we use a
table size of twice the number of bad triangles rounded up to the
nearest power of 2. LinearHash-D performs slightly slower than
linearHash-ND, but allows for a deterministic implementation of
Delaunay refinement. Both of our linear probing hash tables out-
perform the cuckoo hash table and chained hash tables for this ap-
plication.

For suffix trees, we use three real-world texts (from http://
people.unipmn.it/manzini/lightweight/corpus/):
etext99 (105 MB) and rctail96 (115 MB) are taken from real En-
glish texts, and sprot34.dat (110 MB) is taken from a protein se-
quence. We measure the times for the portion of the code which



Delaunay Refinement 2DinCube 2Dkuzmin
(1) (40h) (1) (40h)

linearHash-D 1.01 0.033 0.986 0.033
linearHash-ND 0.95 0.031 0.956 0.032

cuckooHash 1.62 0.051 1.56 0.054
chainedHash-CR 1.89 0.079 1.95 0.099

Table 4. Times (seconds) for Delaunay Refinement

inserts the nodes into the suffix tree (represented with a hash ta-
ble), and also the times for searching one million random strings in
the suffix tree (which uses hash table finds). For the searches, we
use strings with lengths distributed uniformly between 1 and 50.
Half of the search strings are random sub-strings of the text, which
should all be found, and the other half are random strings, most of
which will not be found. For the open addressing hash tables, we
use a size of twice the number of nodes in the suffix tree rounded
up to the nearest power of 2. The times are shown in Table 5. Again
our deterministic linear probing hash table is only slightly slower
than our non-deterministic one, and both of them outperform the
cuckoo hash table and chained hash tables.

(a) Suffix Tree Insert etext99 rctial96 sprot34.dat
(Size) (105 MB) (115 MB) (110 MB)

(1) (40h) (1) (40h) (1) (40h)
linearHash-D 4.84 0.12 4.96 0.117 4.77 0.115

linearHash-ND 4.6 0.114 4.74 0.112 4.57 0.109
cuckooHash 9.11 0.184 8.85 0.177 8.6 0.172

chainedHash-CR 7.72 0.256 7.65 0.238 7.39 0.235

(b) Suffix Tree Search etext99 rctial96 sprot34.dat
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 1.08 0.023 0.728 0.015 0.803 0.017
linearHash-ND 1.07 0.023 0.713 0.015 0.787 0.017

cuckooHash 1.22 0.026 0.826 0.017 0.911 0.019
chainedHash-CR 1.35 0.03 0.91 0.02 1.01 0.023

Table 5. Times (seconds) for Suffix Tree operations

For edge contraction, breadth-first search and spanning forest,
we use use three undirected graphs from PBBS. 3D-grid is a grid
graph in 3-dimensional space where every vertex has six edges,
each connecting it to its 2 neighbors in each dimension. It has a
total of 107 vertices and 3× 107 edges. random is a random graph
where every vertex has five edges to neighbors chosen randomly. It
has a total of 107 vertices and 5 × 107 edges. The rMat graph [7]
has a power-law degree distribution. It has a total of 224 vertices
and 5× 107 edges.

We time one round of edge contraction when used as a part of a
graph separator program. A maximal matching is first computed on
the input graph to generate the vertex relabelings (not timed) and
then edges with their relabeled endpoints are inserted into a hash
table if the endpoints are different (timed). Duplicate edges be-
tween the same vertices after relabeling have their weights added
together using a fetch-and-add. Since in linearHash-D, the edges
may shift around during insertions, it requires using compare-and-
swap on the entire edge. On the other hand, in linearHash-ND,
once an element is inserted it no longer moves, so when encounter-
ing duplicate edges, it only needs to add the weight of the duplicate
edge to the inserted edge and can use the faster xadd atomic hard-
ware primitive to do this. The linear probing hash table sizes are set
to 4/3 times the number of edges, rounded up to the nearest power
of 2. The times are shown in Table 6. Our deterministic version
of linear probing is about 15% slower than the non-deterministic
version, but guarantees a a deterministic ordering of the edges and
hence a deterministic graph partition when used in a graph parti-
tioning algorithm. Again, both of our linear probing hash tables
outperform cuckoo hashing and chained hashing.

For each iteration of BFS, we use a hash table with size equal
to the sum of the degrees of the frontier vertices rounded up to
the nearest power of 2 for linear probing and twice that size for

Edge Contraction 3D-grid random rMat
(1) (40h) (1) (40h) (1) (40h)

linearHash-D 6.03 0.154 10.9 0.265 10.8 0.272
linearHash-ND 5.4 0.136 9.09 0.229 9.18 0.235

cuckooHash 9.31 0.269 16.8 0.447 16.7 0.455
chainedHash-CR 11.6 0.55 20.1 0.907 20.0 0.917

Table 6. Times (seconds) for Edge Contraction

cuckoo hashing. Table 7 gives the running times for various BFS
implementations where serial is the serial implementation, array
is the implementation which uses a temporary array to compute
new frontiers as described in Section 5. LinearHash-D is slightly
slower than linearHash-ND, and both linear probing tables outper-
form cuckooHash and chainedHash-CR. In parallel, the determin-
istic hash table-based BFS is 16–35% slower than the array-based
BFS. On a single thread, linearHash-D is faster on two of the in-
puts, however it does not get as good speedup. We observed that
in parallel, the linear probing hash table-based BFS implementa-
tions spend 70-80% of the time performing hash table insertions,
and sequentially they spend 80-90% of the time on insertions.

Breadth-First 3D-grid random rMat
Search (1) (40h) (1) (40h) (1) (40h)
serial 2.3 – 2.89 – 3.33 –
array 3.57 0.271 4.89 0.169 6.81 0.225

linearHash-D 3.2 0.367 5.44 0.211 6.25 0.262
linearHash-ND 3.21 0.362 5.43 0.204 6.24 0.256

cuckooHash 4.56 0.454 7.3 0.292 9.1 0.373
chainedHash-CR 5.08 1.14 8.11 0.343 9.78 0.439

Table 7. Times (seconds) for Breadth-First Search
For spanning forest, we compare versions using hash tables with

a serial version and an array-based version. For the versions us-
ing open addressing tables, we use a table of size twice the number
of vertices rounded up to the nearest power of 2. The timings are
shown in Table 8. LinearHash-D and linearHash-ND perform simi-
larly, and they both outperform the cuckoo and chained hash tables.
The deterministic hash table-based version is 14–26% slower than
the array-based version, but avoids vertex relabeling when the ver-
tex IDs are integers from a large range or are not integers.

Spanning Forest 3D-grid random rMat
(1) (40h) (1) (40h) (1) (40h)

serial 1.42 – 1.87 – 2.35 –
array 3.54 0.186 4.68 0.226 6.13 0.289

linearHash-D 4.73 0.212 5.87 0.286 7.31 0.346
linearHash-ND 4.8 0.215 5.86 0.282 7.36 0.344

cuckooHash 5.86 0.251 7.08 0.341 9.08 0.387
chainedHash-CR 6.04 0.408 7.46 0.544 9.73 0.662

Table 8. Times (seconds) for Spanning Forest
For BFS and spanning forest, our experiments show that hash

tables can replace directly addressing memory, while incurring only
a small performance penalty.

7. CONCLUSION
We have described a phase-concurrent deterministic hash table based
on linear probing and proved its correctness. We have shown exper-
imentally that the performance of various operations on the deter-
ministic hash table is competitive with those of a phase-concurrent
history-dependent one based on linear probing, and achieves good
speedup. Our deterministic hash table outperforms the best existing
concurrent hash tables. We have described six applications which
use phase-concurrent hash tables that we are aware of. We show
that using our deterministic hash table within these applications
gives performance that is competitive with or only slightly slower
than using our non-deterministic linear probing hash table, and is
faster than using the existing concurrent tables. Future work in-
cludes implementing automatic resizing in our hash table and ex-
ploring ways to automatically separate operations into phases effi-
ciently, e.g. by using room synchronizations [2].
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