
Practical Parallel Hypergraph Algorithms
Julian Shun
jshun@mit.edu
MIT CSAIL

Abstract
While there has been signi�cant work on parallel graph pro-
cessing, there has been very surprisingly little work on high-
performance hypergraph processing. This paper presents
a collection of e�cient parallel algorithms for hypergraph
processing, including algorithms for betweenness central-
ity, maximal independent set, k-core decomposition, hyper-
trees, hyperpaths, connected components, PageRank, and
single-source shortest paths. For these problems, we either
provide new parallel algorithms or more e�cient implemen-
tations than prior work. Furthermore, our algorithms are
theoretically-e�cient in terms of work and depth. To imple-
ment our algorithms, we extend the Ligra graph processing
framework to support hypergraphs, and our implementa-
tions bene�t from graph optimizations including switching
between sparse and dense traversals based on the frontier
size, edge-aware parallelization, using buckets to prioritize
processing of vertices, and compression. Our experiments
on a 72-core machine and show that our algorithms obtain
excellent parallel speedups, and are signi�cantly faster than
algorithms in existing hypergraph processing frameworks.

CCS Concepts • Computing methodologies → Paral-
lel algorithms; Shared memory algorithms.

1 Introduction
A graph contains vertices and edges, where a vertex repre-
sents an entity of interest, and an edge between two vertices
represents an interaction between the two corresponding
entities. There has been signi�cant work on developing al-
gorithms and programming frameworks for e�cient graph
processing due to their applications in various domains, such
as social network and Web analysis, cyber-security, and sci-
enti�c computations. One limitation of modeling data using
graphs is that only binary relationships can be expressed, and
can lead to loss of information from the original data. Hyper-
graphs are a generalization of graphs where the relationships,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
h�ps://doi.org/10.1145/3332466.3374527

v3v2

v1v0

(a) Hypergraph

v3

v2

v1

v0

e2

e1

e0

(b) Bipartite representation

Figure 1. An example hypergraph representing the groups
{�0,�1,�2}, {�1,�2,�3}, and {�0,�3}, and its bipartite repre-
sentation.

represented as hyperedges, can contain an arbitrary number
of vertices. Hyperedges correspond to group relationships
among vertices (e.g., a community in a social network). An
example of a hypergraph is shown in Figure 1a.
Hypergraphs have been shown to enable richer analy-

sis of structured data in various domains, such as protein
network analysis [76], machine learning [100], and image
processing [15, 27]. Various graph algorithms have been
extended to the hypergraph setting, and we list some ex-
amples of algorithms and their applications here. Between-
ness centrality on hypergraphs has been used for hierarchi-
cal community detection [12] and measuring importance
of hypergraphs vertices [77]. k-core decomposition in hy-
pergraphs can be applied to invertible Bloom lookup tables,
low-density parity-check codes, and set reconciliation [45].
PageRank and randomwalks on hypergraphs have been used
for image segmentation and spectral clustering and shown
to outperform graph-based methods [26, 27, 100]. Shortest
paths, hyperpaths, and hypertrees have been used for solv-
ing optimization problems [30, 70], satis�ability problems
and deriving functional dependencies in databases [30], and
modeling information spread and �nding important actors
in social networks [31]. Independent sets on hypergraphs
have been applied to routing problems [2] and determining
satis�ability of boolean formulas [48].
Although there are many applications of hypergraphs,

there has been little research on parallel hypergraph process-
ing. The main contribution of this paper is a suite of e�cient
parallel hypergraph algorithms, including algorithms for
betweenness centrality, maximal independent set, k-core

232

https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

decomposition, hypertrees, hyperpaths, connected compo-
nents, PageRank, and single-source shortest paths. For these
problems, we provide either new parallel hypergraph algo-
rithms (e.g., betweenness centrality and k-core decomposi-
tion) or more e�cient implementations than prior work. Ad-
ditionally, we show thatmost of our algorithms are theoretically-
e�cient in terms of their work and depth complexities.
We observe that our parallel hypergraph algorithms can

be implemented e�ciently by taking advantage of graph pro-
cessing machinery. To implement our parallel hypergraph
algorithms, wemade relatively simple extensions to the Ligra
graph processing framework [81] and we call the extended
framework Hygra. As with Ligra, Hygra is well-suited for
frontier-based algorithms, where small subsets of elements
(referred to as frontiers) are processed in parallel on each
iteration. We use a bipartite graph representation to store
hypergraphs, and use Ligra’s data structures for represent-
ing subsets of vertices and hyperedges as well as operators
for mapping application-speci�c functions over these ele-
ments. The operators for processing subsets of vertices and
hyperedges are theoretically-e�cient, which enables us to
implement parallel hypergraph algorithms with strong the-
oretical guarantees. Separating the operations on vertices
from operations on hyperedges is crucial for e�ciency and
requires carefully de�ning functions for vertices and hyper-
edges to preserve correctness. Hygra inherits from Ligra vari-
ous optimizations developed for graphs, including switching
between di�erent traversal strategies based on the size of
the frontier (direction optimization), edge-aware paralleliza-
tion, bucketing for prioritizing the processing of vertices,
and compression.

Our experiments on a variety of real-world and synthetic
hypergraphs show that our algorithms implemented in Hy-
gra achieve good parallel speedup and scalability with re-
spect to input size. On 72 cores with hyper-threading, we
achieve a parallel speedup of between 8.5–76.5x. We also
�nd that the direction optimization improves performance
for hypergraphs algorithms compared to using a single tra-
versal strategy. Compared to HyperX [46] and MESH [41],
which are the only existing high-level programming frame-
works for hypergraph processing that we are aware of, our
results are signi�cantly faster. For example, one iteration
of PageRank on the Orkut community hypergraph with 2.3
million vertices and 15.3 million hyperedges [59] takes 0.083s
on 72 cores and 3.31s on one thread in Hygra, while taking
1 minute on eight 12-core machines using MESH [41] and
10s using eight 4-core machines in HyperX [46]. Certain
hypergraph algorithms (hypertrees, connected components,
and single-source shortest paths) can be implemented cor-
rectly by expanding each hyperedge into a clique among
its member vertices and running the corresponding graph
algorithm on the resulting graph. We also compare with this
alternative approach by using the original Ligra framework
to process the clique-expanded graphs, and show the space

usage and performance is signi�cantly worse than that of
Hygra (2.8x–30.6x slower while using 235x more space on
the Friendster hypergraph).

Our work shows that high-performance hypergraph pro-
cessing can be done using just a single multicore machine,
on which we can process all existing publicly-available hy-
pergraphs. Prior work has shown that graph processing
can be done e�ciently on just a single multicore machine
(e.g., [24, 25, 67, 69, 81, 87, 96, 101]), and this work extends
the observation to hypergraphs.
The rest of the paper is organized as follows. Section 2

discusses related work on graph and hypergraph process-
ing. Section 3 describes hypergraph notation as well as the
computational model and parallel primitives that we use in
the paper. Section 4 introduces the Hygra framework. Sec-
tion 5 describes our new parallel hypergraph algorithms
implemented using Hygra. Section 6 presents our experi-
mental evaluation of our algorithms, and comparisons with
alternative approaches. Finally, we conclude in Section 7.

2 Related Work

Graph Processing. There has been signi�cant work on de-
veloping graph libraries and frameworks to reduce program-
ming e�ort by providing high-level operators that capture
common algorithm design patterns (e.g., [19, 21, 22, 28, 33–
35, 38–40, 42, 47, 51, 56, 60, 61, 63–65, 68, 69, 71–73, 75, 78, 81,
84–87, 91, 94, 96, 99, 101], amongmany others; see [66, 79, 93]
for surveys). Many of these frameworks can process large
graphs e�ciently, but none of them directly support hyper-
graph processing.

Hypergraph Processing. As far as we know, HyperX [46]
andMESH [41] are the only existing high-level programming
frameworks for hypergraph processing, and they are built
for distributed memory on top of Spark [95]. Algorithms
are written using hyperedge programs and vertex programs
that are iteratively applied on hyperedges and vertices, re-
spectively. HyperX stores hypergraphs using �xed-length tu-
ples containing vertex and hyperedge identi�ers, and MESH
stores the hypergraph as a bipartite graph. HyperX includes
algorithms for randomwalks, label propagation, and spectral
learning. MESH includes PageRank, PageRank-Entropy (a
variant of PageRank that also computes the entropy of ver-
tex ranks in each hyperedge), label propagation, and single-
source shortest paths. Both HyperX and MESH do work pro-
portional to the entire hypergraph on every iteration, even if
few vertices/hyperedges are active, which makes them ine�-
cient for frontier-based hypergraph algorithms. The Chapel
HyperGraph Library [44] is a library for hypergraph pro-
cessing that provides functions for accessing properties of
hypergraphs, but the interface is much lower-level than the
abstractions in HyperX, MESH, and Hygra. It has recently
been used to analyze DNS data [1].

233

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Hypergraphs are useful in modeling communication costs
in parallel machines, and partitioning can be used to mini-
mize communication. There has been signi�cant work on
both sequential and parallel hypergraph partitioning algo-
rithms (see, e.g., [17, 18, 23, 49, 52, 54, 89]). While we do
not consider the problem of hypergraph partitioning in this
paper, these techniques could potentially be used to improve
the locality of our algorithms.

Algorithms have been designed for a variety of problems
on hypergraphs, including random walks [27], shortest hy-
perpaths [3, 70], betweenness centrality [74], hypertrees [30],
connectivity [30], maximal independent sets [5, 9, 48, 50],
and k-core decomposition [45]. However, there have been
no e�cient parallel implementations of hypergraph algo-
rithms, with the exception of [45], which provides a GPU
implementation for a special case of k-core decomposition.

3 Preliminaries
Hypergraph Notation. We denote an unweighted hyper-
graph by H (V ,E), where V is the set of vertices and E is
the set of hyperedges. A weighted hypergraph is denoted
by H = (V ,E,w), wherew is a function that maps a hyper-
edge to a real value (its weight). The number of vertices in
a hypergraph is n� = |V |, and the number of hyperedges
is ne = |E |. Vertices are assumed to be labeled from 0 to
n� � 1, and hyperedges from 0 to ne � 1. For undirected
hypergraphs, we use deg(e) to denote the number of vertices
a hyperedge e 2 E contains (i.e., its cardinality), and deg(�)
to denote the number of hyperedges that a vertex � 2 V be-
longs to. In directed hypergraphs, hyperedges contain incom-
ing vertices and outgoing vertices. For a hyperedge e 2 E,
we use N �(e) and N +(e) to denote its incoming vertices
and outgoing vertices, respectively, and deg�(e) = |N �(e)|
and deg+(e) = |N +(e)|. We use N �(�) and N +(�) to denote
the hyperedges that � 2 V is an outgoing vertex and in-
coming vertex for, respectively, and deg�(�) = |N �(�)| and
deg+(�) = |N +(�)|. We denote the size |H | of a hypergraph to
be n� +

Õ
e 2E (deg�(e)+ deg+(e)), i.e., the number of vertices

plus the sum of the hyperedge cardinalities.
Computational Model.We use the work-depth model [43]
to analyze the theoretical e�ciency of algorithms. The work
of an algorithm is the number of operations used, and the
depth is the length of the longest sequence dependence. We
assume that concurrent reads and writes are supported.
By Brent’s scheduling theorem [14], an algorithm with

workW and depth D has overall running timeW /P + D,
where P is the number of processors available. A parallel
algorithm iswork-e�cient if its work asymptotically matches
that of the best sequential algorithm for the problem, which
is important since in practice theW /P term in the running
time often dominates.
Parallel Primitives. Scan takes an array A of length n, an
associative binary operator �, and an identity element ?

such that ? � x = x for any x , and returns the array (?,? �
A[0],? �A[0] �A[1], . . . ,? �n�2

i=0 A[i]) as well as the overall
sum, ? �n�1

i=0 A[i]. Filter takes an array A and a predicate f
and returns a new array containing a 2 A for which f (a) is
true, in the same order as inA. Scan and �lter takeO(n)work
and O(logn) depth (assuming � and f take O(1) work) [43].
A compare-and-swap CAS(&x ,o,n) takes a memory loca-

tion x and atomically updates the value at location x to n
if the value is currently o, returning true if it succeeds and
false otherwise. A fetch-and-add FAA(&x ,n) takes a memory
location x , atomically returns the current value at x and then
increments the value at x by n. A �����M��(&x ,n) takes a
memory locationx , and a valuen, and atomically updatesx to
be the minimum of the value at x and n; it returns true if the
update was successful and false otherwise. We assume that
these operations takeO(1) work and depth in our model, but
note that these operations can be simulated work-e�ciently
in logarithmic depth on weaker models [37].

4 Hygra Framework
This section presents the interface and implementation of the
Hygra framework, which extends Ligra [81] to hypergraphs.
The Hygra interface is summarized in Table 1.

4.1 Interface
Hygra contains the basic VertexSet and HyperedgeSet data
structures, which are used to represent subsets of vertices
and hyperedges, respectively. V�����M�� takes as input a
boolean function F and a VertexSetU , applies F to all vertices
inU , and returns an output VertexSet containing all elements
from u 2 U such that F (u) = true. H��������M�� is an
analogous function for HyperedgeSets.
V�����P��� takes as input a hypergraph H , a VertexSet

U , and two boolean functions F and C . It applies F to all
pairs (�, e) such that � 2 U , e 2 N+(�), and C(e) = true
(call this subset of pairs P), and returns a HyperedgeSet
U 0 where e 2 U 0 if and only if (�, e) 2 P and F (�, e) =
true. H��������P��� takes as input a hypergraph H , a
HyperedgeSet U , and two boolean functions F and C . It
applies F to all pairs (e,�) such that e 2 U , � 2 N +(e),
and C(�) = true (call this subset of pairs P), and returns
a VertexSet U 0 where � 2 U 0 if and only if (e,�) 2 P and
F (e,�) = true. For weighted hypergraphs, the F function
takes the weight as the third argument.

We provide a functionH��������F�����N�� that takes
as input a hypergraph H , a HyperedgeSet U , and a boolean
function C , and �lters out the incident vertices � for each
hyperedge e 2 U such thatC(�) = false. This mutates the hy-
pergraph, so that future computations will not inspect these
vertices. H��������P���C���� takes as input a hyper-
graph H , a HyperedgeSetU , and a function F , and applies F
to each neighbor of U in parallel. The function F takes two
arguments, a vertex � and the number of hyperedges in U

234

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Interface Description
VertexSet Represents a subset of vertices V 0 ✓ V .
HyperedgeSet Represents a subset of hyperedges E 0 ✓ E.

V�����M��(U : VertexSet, F : vertex ! bool) : Applies F (u) for each u 2 U ; returns a VertexSet {u 2 U | F (u) = true}.
VertexSet

H��������M��(U : HyperedgeSet, Applies F (u) for each u 2 U ; returns a HyperedgeSet {u 2 U | F (u) = true}.
F : hyperedge ! bool) : HyperedgeSet

V�����P���(H : hypergraph, U : VertexSet, Applies F (�, e) for each � 2 U , e 2 N+(�) where C(e) = true;
F : (vertex ⇥ hyperedge) ! bool, returns a HyperedgeSet {e | � 2 U , e 2 N+(�),C(e) = true, F (�, e) = true}.
C : hyperedge ! bool) : HyperedgeSet

H��������P���(H : hypergraph, U : HyperedgeSet, Applies F (e,�) for each e 2 U , � 2 N+(e) where C(�) = true;
F : (hyperedge ⇥ vertex) ! bool, returns a VertexSet {� | e 2 U ,� 2 N+(e),C(�) = true, F (e,�) = true}.
C : vertex ! bool) : VertexSet

H��������F�����N��(H : hypergraph, For each e 2 U , removes all � 2 N+(e) where C(�) = false
U : HyperedgeSet, C : vertex ! bool) from the hypergraph.

H��������P���C����(H : hypergraph, Applies F to pairs (�, cnt), where � 2 N+(U) and cnt is the number of
U : HyperedgeSet, F : vertex ⇥ int ! vertex ⇥ int) : hyperedges inU that � is an outgoing vertex for; returns an array of
(vertex ⇥ int) array (vertex ⇥ int) pairs containing the non-null return values of applications of F .

M���B������(n : int, A : int array, I : ordering) : Creates and returns a bucketing structure that iterates in order I storing
buckets n vertices, where vertex � is stored in bucket A[�].

N���B�����(B : buckets) : (int, VertexSet) Returns the bucket number of the next bucket in B

and a VertexSet containing the vertices in that bucket.
U�����B������(B : buckets, A : (vertex ⇥ int) array) For each (�, bkt) 2 A, moves vertex � to bucket bkt in B.

Table 1. Summary of the Hygra interface.

that � is an outgoing vertex for, and returns a pair contain-
ing a vertex and an integer, either of which can be null (?).
The output of H��������P���C���� is an array of pairs
containing the non-null return values from applications of
F .

Hygra also supports the bucketing interface developed in
the Julienne framework [24]. Vertices are stored in buckets as-
sociated with bucket IDs, and algorithms can process buckets
in increasing or decreasing order. Vertices can be moved to
di�erent buckets during the computation. The M���B����
��� function takes a size, an integer arrayA, and an ordering,
and creates a bucketing structure B that stores each vertex
� in bucket A[�]. The N���B����� function takes a buck-
eting structure B and returns the next non-empty bucket in
the speci�ed ordering. TheU�����B������ function takes
a bucketing structure B and an array of pairs (�, bkt), and
moves each vertex � from its original bucket to the bucket
with ID bkt. Julienne actually groups multiple buckets to-
gether into an over�ow bucket and thus has a G��B�����
function determines the physical bucket from a logical bucket
ID, but for simplicity we will not use it in our discussion.

4.2 Implementation
A method for representing hypergraphs is to create a clique
among all pairs of vertices in each hyperedge and store the
result as a graph [41, 46]. However, this leads to a loss of

information compared to the original hypergraph as the
groups of vertices in hyperedges are no longer distinguished.
Furthermore, the space required to store the resulting graph
can be signi�cantly higher than that of the original hyper-
graph [41, 46]. Another approach is to use a bipartite graph
representation with vertices in one partition and hyperedges
in the other, where each hyperedge connects to all vertices
belonging to it [41] (an example is shown in Figure 1b). This
is the approach that we adopt in this paper.
In the bipartite representation, there is an edge (u, ngh)

if u 2 V and ngh 2 N +(u), or u 2 E and ngh 2 N +(u). The
edges for each element are stored in an adjacency array. We
also store the incoming edges for each vertex and hyperedge
to enable the direction optimization that we discuss in Sec-
tion 4.3. For weighted hypergraphs, we store the weights
interleaved with the edges in the bipartite representation for
cache locality. The hypergraph can be transposed using the
T�������� function, which swaps the roles of the incoming
and outgoing edges for all elements.
One implementation choice that we considered was to

directly pass bipartite graphs to the Ligra framework. How-
ever, this would either require hyperedges to have distinct
identi�ers from vertices, making it unnatural to index arrays
in the application code, or require mapping the hyperedge
identi�ers to the range [0, . . . ,ne � 1] on every array access,
leading to additional overhead on hyperedge accesses and

235

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

more complicated application code. Instead, we modi�ed
the Ligra code to distinguish between vertices and hyper-
edges and represent them using identi�ers in the ranges
[0, . . . ,n� � 1] and [0, . . . ,ne � 1], respectively. We borrow
existing data structures and functions from Ligra, which we
describe here for completeness.
VertexSets (HyperedgeSets) have two underlying imple-

mentations: a sparse integer array storing the IDs of the
elements in the set, and a dense boolean array of length |V |
(|E |) storing 1’s in the locations corresponding to the IDs of
the elements in the set, and 0’s everywhere else.
Implementing V�����M�� and H��������M�� simply

requires mapping the function over the input VertexSet or
HyperedgeSet, and applying a parallel �lter on the result.
Assuming that the function takesO(1)work (which is true in
all of our applications), the overall work isO(|U |) and depth
is O(log |U |) for an input setU .
V�����P��� and H��������P��� map the C function

over the outgoing edges of the input set and for the edges
that return true, applies the F function in parallel. A parallel
scan is applied over the degrees of elements in the input
to determine o�sets into an array storing the neighbors. A
parallel �lter is applied over the neighbors of F to obtain the
output set. For an input set U , and functions F and C that
takeO(1) work (which is true in all of our applications), this
takesO(|U |+Õu 2U deg+(u))work andO(log |H |) depth. We
can remove duplicates from the output in the same bounds.

H��������F�����N�� can be implemented by inspecting
all neighbors of each hyperedge in the input HyperedgeSet
in parallel and using a parallel �lter to remove the vertices
not satisfying C . This takes the same work and depth as
H��������P���. H��������P���C���� requires the same
work and depth bounds as H��������P��� as the counts
can be implemented using fetch-and-adds or a semisort [36].
We refer the reader to [24] for implementation details of

the bucketing structure. For the complexity of bucketing, we
will use the following lemma from [24]:

Lemma 1 ([24]). For n identi�ers, T total buckets, K calls
to U�����B������, each of which updates a set Si of identi-
�ers, and L calls to N���B�����, bucketing takes O(n +T +ÕK

i=0 |Si |) expected work andO((K +L) logn) depth with high
probability.

4.3 Optimizations
V�����P��� and H��������P��� uses the direction opti-
mization [6, 81] to switch between a sparse traversal (de-
scribed in Section 4.2) and a dense traversal based on the
size of the input VertexSet or HyperedgeSet and the sum of
its out-degrees. For V�����P���, the dense traversal loops
over all hyperedges e in parallel, checking if they satisfy
the C function, and if so applying F on its incoming edges
serially, stopping once C(e) returns false. We use the dense
traversal when the input set and sum of its out-degrees is

a constant fraction (1/20 in our experiments) of the sum of
in-degrees of hyperedges (which preserves work-e�ciency),
and the sparse traversal otherwise. The sum of out-degrees
is computed using a parallel scan. We have an analogous
implementation for H��������P���. The sparse traversals
use the sparse set representation, and the dense traversals
uses the dense set representation. The input set is converted
between the representations based on the traversal type.
For the dense traversals, instead of simply mapping over

the vertices with a parallel-for loop, we added an edge-
aware parallelization scheme that creates tasks containing
a roughly equal number of edges that are managed by the
work-stealing scheduler [98]. We found this optimization to
signi�cantly improve load balancing for hypergraphs with
highly-skewed degree distributions.

As in Ligra, we also provide a push-based dense traversal
that densely represents the input set but loops over their out-
going edges, instead of over incoming edges of all vertices.

For V�����P��� and H��������P���, we use optimized
versions that do not remove duplicates that can be used if
the program guarantees that no duplicates will be gener-
ated in the output. When the output of V�����M��, H�����
����M��, V�����P���, and H��������P��� is not needed,
we use optimized implementations that do not call �lter.

To reduce memory usage, Hygra supports compression of
the underlying bipartite graph using the compression code
from Ligra [83]. The neighbors of vertices and hyperedges
are compressed using variable-length codes, and decoded on-
the-�y when accessed in V�����P��� and H��������P���.

5 Parallel Hypergraph Algorithms
We have designed a collection of parallel hypergraph algo-
rithms using Hygra: betweenness centrality (BC), maximal
independent set (MIS), k-core decomposition, hypertrees, hy-
perpaths, connected components (CC), PageRank, and single-
source shortest paths (SSSP). Our algorithms for betweenness
centrality and k-core decomposition are new, while the con-
nected components, PageRank, and single-source shortest
paths algorithms are more e�cient variants of previously
described hypergraph algorithms [41, 46] and are similar
to the corresponding graph algorithms in Ligra. The hy-
pertrees and hyperpaths algorithms are similar to parallel
breadth-�rst search on graphs. The maximal independent
set algorithm is the �rst practical implementation for �nding
maximal independent sets in hypergraphs. We provide pseu-
docode for several of the algorithms and the pseudocode uses
partially evaluated functions, i.e., invoking a function with
fewer than all of its arguments gives a function that takes
the remaining arguments as input. The reader may skip any
of the algorithms in this section without loss of continuity.

236

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

5.1 Betweenness Centrality
The betweenness centrality (BC) [29] of a vertex � measures
the fraction of shortest paths between all pairs of vertices
that pass through � . In this paper, we consider BC on un-
weighted hypergraphs, although the de�nition extends to
weighted hypergraphs. More formally, let �s,t be the num-
ber of shortest paths between vertices s and t , �s,t (�) be the
number of shortest paths between s and t that pass through
� , and �s,t (�) = �s,t (�)/�s,t . The betweenness centrality
of vertex � is de�ned to be

Õ
s,�,t 2V �s,t (�). Brandes [13]

presents a sequential algorithm for computing BC on graphs
that takes O(|V | |E |) work, where each vertex � does a for-
ward traversal to compute the number of shortest paths from
� to every other vertex, and a backward traversal to com-
pute the betweenness centrality contributions for all vertices
from shortest paths starting at � . Each traversal takesO(|E |)
work. Brandes de�nes the dependency of a vertex s on � as
�s•(�) =

Õ
t 2V �s,t (�), and the traversals from s compute �s•

values for all other vertices. The betweenness centrality of a
vertex � will then be

Õ
s 2V �s•(�). This algorithm has been

parallelized in the literature (see, e.g., [69, 81, 88, 90]).
Puzis et al. [74] present a sequential algorithm for comput-

ing betweenness centrality in hypergraphs based on Bran-
des’ algorithm. In the forward phase, a breadth-�rst search-
like procedure is run, generating a predecessor set for each
vertex and hyperedge containing all elements in the pre-
vious level of the search. Let PV (�) be the predecessor hy-
peredges of vertex � and PE (e) be the predecessor vertices
of hyperedge e for the search from source s . �s,� will be
computed as

Õ
u 2PE (e) : e 2PV (�) �s,u . This phase takesO(n� +Õ

e 2E (deg+(e) · deg�(e)))work as each hyperedge is expanded
once per incoming vertex. Note that this work complexity
can be super-linear in the size of the hypergraph. The back-
ward phase computes the dependency scores by iteratively
propagating values from vertices to their predecessor hy-
peredges, and from hyperedges to their predecessor vertices
starting from the furthest elements from the source. The
update equation for a hyperedge e is shown in Equation 1
and for a vertex � is shown in Equation 2.

�̂s (e) =
’

� : e 2PV (�)

�s•(�)
�s,�

(1)

�s•(�) = 1 +
’

e : � 2PE (e)
(�s,� · �̂s (e)) (2)

By separating the vertex and hyperedge updates, each
hyperedge and vertex only needs to be processed once, and
the total work of the backward phase is O(|H |). Puzis et
al. [74] also propose a heuristic for merging vertices belong-
ing to only a single hyperedge together, but the theoretical
complexity remains the same.

In this section, we present a new parallel BC algorithm on
hypergraphs that takes linear work per source vertex. We

represent vertices and hyperedges at equal distance from
the source as frontiers using VertexSets and HyperedgeSets,
and process each frontier in parallel. We split the updates
in the forward phase into separate update steps for vertices
and hyperedges, so that each hyperedge only needs to be
expanded once, giving linear work. The backward phase pro-
cesses the frontiers in decreasing distance from the source,
using fetch-and-adds to update the �̂s and �s• values. Com-
puting exact BC scores would require running the algorithm
from all sources, although in practice a subset of sources are
used to compute approximate BC scores [4, 32]. As far as we
know, this is the �rst parallel BC algorithm on hypergraphs.
Our algorithm also uses direction optimization, in contrast
to the original sequential algorithm of Puzis et al. [74].

The pseudocode for our BC algorithm from a single source
is shown in Algorithm 1. We initialize auxiliary arrays as
well as theDependenciesV array storing the �nal dependency
scores on Lines 1–6. The forward phase of the algorithm is
shown on Lines 22–37. We �rst set the number of paths
for the source vertex to 1, mark it as visited, and place it
on the initial frontier, represented as a VertexSet (Lines 22–
23). While there are still reachable hyperedges and vertices,
we repeatedly propagate the number of paths from vertices
to hyperedges via V�����P��� on Line 27 and from hy-
peredges to vertices via H��������P��� on Line 31. The
function P���U����� (Lines 8–9) passed to V�����P���
and H��������P��� increments the number of paths of a
successor element using a fetch-and-add. In contrast to [74],
we �rst gather the number of paths at a hyperedge from all
of its predecessor vertices before passing it to its successor
vertices. In this way, a hyperedge only needs to visit each of
its successor vertices once, passing the sum of all contribu-
tions from predecessor vertices. Duplicates in the output do
not need to be removed as P���U����� returns true only for
the �rst update on the target. The C���� function (Lines 10–
11) passed to V�����P��� and H��������P��� guarantees
that only unexplored vertices and hyperedges are visited.
We mark visited hyperedges and vertices on Lines 29 and 33,
respectively, to ensure that each hyperedge and vertex is vis-
ited at most once. Each frontier that is explored is placed in
the Levels array, so that we can explore them in a backward
fashion in the second phase of the algorithm.

The backward phase of the algorithm is shown on Lines 35–
44. We reuse the arrays VisitedV and VisitedE (Line 35). We
transpose the hypergraph (Line 36) and explore the frontiers
from the �rst phase in a backward fashion. Line 40 uses a
V�����M�� with the V����V�����B��� function (Lines 14–
16) to mark vertices on the frontier as visited and add 1 to
their dependency score, as required in Equation 2. Line 41
uses a V�����P��� with the V��E function (Lines 17–18)
on predecessors (obtained by considering unexplored ver-
tices via the C���� function), which implements Equation 1.
Line 43 marks hyperedges on the frontier as visited with

237

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 1 Pseudocode for BC in Hygra
1: NumPathsV = {0, . . . , 0}
2: NumPathsE = {0, . . . , 0}
3: VisitedV = {0, . . . , 0}
4: VisitedE = {0, . . . , 0}
5: DependenciesV = {0, . . . , 0}
6: DependenciesE = {0, . . . , 0}
7: Levels = []
8: procedure P���U�����(NumPathsSrc, NumPathsDst, s , d)
9: return (FAA(&NumPathsDst[d], NumPathsSrc[s]) == 0)

10: procedure C����(Visited, i)
11: return (Visited[i] == 0)
12: procedure V����(Visited, i)
13: Visited[i] = 1
14: procedure V����V�����B���(�)
15: Visited[�] = 1
16: DependenciesV [�]+=1
17: procedure V��E(� , e)
18: FAA(&DependenciesE[e], DependenciesV [�]/NumPathsV [�])
19: procedure E��V(e , �)
20: FAA(&DependenciesV [�], DependenciesE[e] ⇥ NumPathsV [�])
21: procedure BC(H , src) . src is the source vertex
22: NumPathsV [src] = 1, VisitedV [src] = 1
23: VertexSet FrontierV = {src}
24: HyperedgeSet FrontierE = {}
25: currLevel = 0
26: while (true) do
27: FrontierE = V�����P���(H, FrontierV,

P���U�����(NumPathsV, NumPathsE), C����(VisitedE))
28: if |FrontierE | == 0 then break
29: H��������M��(FrontierE, V����(VisitedE))
30: Levels[currLevel++] = FrontierE
31: FrontierV = H��������P���(H, FrontierE,

P���U�����(NumPathsE, NumPathsV), C����(VisitedV))
32: if |FrontierV | == 0 then break
33: V�����M��(FrontierV, V����(VisitedV))
34: Levels[currLevel++] = FrontierV
35: VisitedV = {0, . . . , 0}, VisitedE = {0, . . . , 0}
36: T��������(H)
37: currLevel = currLevel � 1
38: while currLevel � 0 do
39: FrontierV = Levels[currLevel--]
40: V�����M��(FrontierV, V����V�����B���)
41: V�����P���(H, FrontierV, V��E, C����(VisitedE))
42: FrontierE = Levels[currLevel--]
43: H��������M��(FrontierE, V����(VisitedE))
44: H��������P���(H, FrontierE, E��V, C����(VisitedV))
45: return DependenciesV

a H��������M��. Finally, Line 44 implements the sum in
Equation 2 with the E��V function (Lines 19–20) on prede-
cessors.
Analysis.We analyze the complexity for a single source ver-
tex. In the forward phase of BC, each vertex and hyperedge
will appear in at most one frontier because once a vertex
or hyperedge has been visited, its VisitedV or VisitedE en-
try will be marked, and it will fail the check by the C����
function in subsequent iterations. Therefore the sum of the

sizes of all frontiers plus their out-degrees will beO(|H |). As
V�����P��� and H��������P��� do work proportional to
the size of the input set plus the sum of its out-degrees, the
overall work performed by the algorithm is O(|H |), which
is work-e�cient. Each call to V�����P��� and H���������
P��� takes O(log |H |) depth, and so the overall depth is
O(D log |H |)where D is the diameter of the hypergraph. The
backward phase processes each frontier exactly once, giving
the same work and depth bounds. Thus, the overall work is
O(|H |) and depth is O(D log |H |).

5.2 Maximal Independent Set
Given an undirected, unweighted hypergraph, an indepen-
dent set is a subset of verticesU ✓ V such that no hyperedge
has all of its incident vertices in U . In a graph, this de�ni-
tion is equivalent to the condition that no two vertices in an
independent set are neighbors, although this does not hold
for hypergraphs (a hyperedge may have multiple incident
vertices included in an independent set as long as not all of
its incident vertices are included). A maximal independent
set (MIS) is an independent set that is not contained in a
larger independent set. Finding maximal independent sets
in parallel has been widely studied for graphs, and there ex-
ists linear-work parallel algorithms for the problem [10, 62].
However, the problem is much harder to solve on hyper-
graphs, and the total work of known parallel algorithms is
super-linear [5, 9, 48, 50]. These algorithms have only been
described in theory, and as far as we know, there have been
no implementations of parallel MIS algorithms on hyper-
graphs.

This paper implements a variant of the Beame-Luby MIS
algorithm [5], which is a core component of a more recent
algorithm by Bercea et al. [9]. The algorithm is iterative and
performs the following steps in each iteration:
(1) Generate a sample of vertices I , each sampled with prob-

ability p = 1/(2d+1�), where d = maxe 2E de�(e) and � is
the normalized degree as de�ned in [5, 9].

(2) For any hyperedge e that has all of its vertices in I , re-
move all vertices in e from I .

(3) Add the remaining vertices in I to the MIS and delete
them from V .

(4) Remove the vertices in I from all remaining hyperedges.
(5) Remove hyperedges whose vertices is a subset of another

hyperedge’s vertices.
(6) Remove hyperedges that contain only one vertex, and

remove those vertices from V .
Our implementation picks vertices with a constant proba-

bility p = 1/3 as we found that it performs better in practice,
and does not perform Step (5), which is not needed for cor-
rectness. The pseudocode is shown in Algorithm 2.
Our implementation uses a Flags array to represent the

status of vertices, with a value of Flags[�] = 0 meaning
that � is undecided, Flags[v] = 1 indicating that � is not

238

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Algorithm 2 Pseudocode for MIS in Hygra
1: Flags = {0, . . . , 0}
2: Counts = {0, . . . , 0}
3: procedure S�����(round, �)
4: With probability p , set Flags[�] = round

5: procedure C����(e , �)
6: FAA(&Counts[e], 1)
7: procedure R����N��(e , �)
8: Flags[�] = 0

9: procedure F�����V(�)
10: return (Flags[�] == 0)
11: procedure F�����E(e)
12: if (deg(e) == 1 and Flags[ngh0(e)] == 0) then
13: Flags[ngh0(e)] = 1
14: return (deg(e) > 1)
15: procedure I��(e)
16: return (Counts[e] == deg(e))
17: procedure R����(e)
18: Counts[e] = 0

19: procedure C����F(round , �)
20: return (Flags[�] == round)
21: procedureMIS(H)
22: VertexSet FrontierV = {0, . . . , n� � 1} . all vertices
23: HyperedgeSet FrontierE = {0, . . . , ne � 1} . all hyperedges
24: round = 1
25: while (|FrontierV | > 0) do
26: round++
27: V�����M��(FrontierV, S�����(round))
28: H��������M��(FrontierE, R����)
29: H��������P���(H, FrontierE, C����, C����F(round))
30: HyperedgeSet FullEdges = H��������M��(FrontierE, I��)
31: H��������P���(H, FullEdges, R����N��, C����F(round))
32: H��������F�����N��(H, FrontierE, F�����V)
33: FrontierE = H��������M��(FrontierE, F�����E)
34: FrontierV = V�����M��(FrontierV, F�����V)
35: return Flags

in the MIS, and any other value indicating that � is in the
MIS. Flags is initialized to all 0’s on Line 1. We also initial-
ize an auxiliary array Counts, which will be used to count
the number of incident vertices of hyperedges selected in
the random sample (Line 2). We create initial frontiers con-
taining all vertices and hyperedges (FrontierV and FrontierE
on Lines 22–23). We also keep track of the round number
(Lines 24 and 26). Line 27 uses a V�����M�� with the func-
tion S����� (Lines 3–4) to sample vertices by marking their
Flags value with the round number with probability p. We
reset the Counts values for hyperedges on the frontier on
Line 28. On Line 29, we count for each hyperedge the num-
ber of its vertices that were selected in the sample for this
round using H��������P��� with the C���� (Lines 5–6)
and C����F (Lines 19–20) functions. We then check which
hyperedges had all of their vertices selected in the sample
on Line 30 with a H��������M�� with the I�� function
that checks if the count is equal to the hyperedge’s cardi-
nality (Lines 15–16). The HyperedgeSet FullEdges contains

the hyperedges where this is true, and we unmark the Flags
values of their vertices on Line 31 using H��������P���
with the R����N�� function (Lines 7–8). On Line 32, we
remove vertices that have been selected in the MIS from the
hyperedges using H��������F�����N�� with the F�����V
function (Lines 9–10), so that we do not need to process them
in future rounds. Line 33 updates the hyperedge frontier by
�ltering out hyperedges with cardinality 0 and 1 using the
F�����E function (Lines 11–14). For hyperedges with cardi-
nality 1 we mark their only vertex (ngh0) as not being in the
MIS. Line 34 updates the vertex frontier with the F�����V
function by �ltering out vertices whose status has already
been decided. The algorithm terminates when the status of
all vertices have been decided, at which point FrontierV will
be empty.

5.3 k-core Decomposition
For an undirected, unweighted hypergraph, a k-core is a
maximal connected sub-hypergraph where every vertex has
induced degree at least k . The coreness problem is to compute
for each vertex the largest value ofk for which it is part of the
k-core. A simple parallel algorithm for coreness iteratively
removes all vertices with degree at most k along with their
incident hyperedges starting with k = 0, assigning removed
vertices a coreness value of k , and incrementing k when all
remaining vertices have induced degree greater than k [45].
Since each iteration requires scanning over all remaining
vertices, this algorithm requires a total ofO(|H |+� |V |)work,
where � is the number of iterations required by the algorithm,
also known as the peeling complexity [24].
This section presents a new linear-work algorithm for

computing coreness on hypergraphs based on the linear-
work algorithm for graphs by Dhulipala et al. [24]. We have
also implemented theO(|H |+� |V |)work coreness algorithm
in Hygra, and compare the performance of theO(� |H |)work
algorithm and the work-e�cient algorithm in Section 6. To
obtain work-e�ciency, our algorithm uses the bucketing
data structure described in Section 4. The pseudocode of our
algorithm is shown in Algorithm 3.
An array D is initialized with the degrees of the vertices

(Line 1). This array will keep track of the induced degrees of
the vertices, and also store the �nal coreness value of the ver-
tices. An array Flags (Line 2) is used to keep track of whether
a hyperedge has been deleted (0 means not deleted and 1
means deleted). Line 13 initializes the bucketing structure,
specifying that they should be processed in increasing order.
Line 15 gets the next non-empty bucket in increasing order,
and returns k , which corresponds to the current k-core be-
ing processed, as well as vertices with degree at most k in a
VertexSet FrontierV . Line 17 marks the neighboring vertices
of FrontierV as deleted using V�����P��� with the func-
tions R�����H�������� (Lines 3–4) and C����R������
(Lines 5–6). Hyperedges that are deleted will be returned in
the HyperedgeSet FrontierE, and duplicates do not need to

239

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 3 Pseudocode for Coreness in Hygra
1: D = {deg(�0), . . . , deg(�n��1)} . initialized to vertex degrees
2: Flags = {0, . . . , 0} . initialized to all 0
3: procedure R�����H��������(� , e)
4: return CAS(&Flags[e], 0, 1)
5: procedure C����R������(e)
6: return (Flags[e] == 0)
7: procedure U�����D(k , � , numNghs)
8: if D[�] > k then
9: D[�] = max (D[�] � numNghs, k)
10: return (�, D[�])
11: else return (?, ?)
12: procedure C�������(H)
13: B = M���B������(n� , D, I���������), �nished = 0
14: while (�nished < n�) do
15: (k, VertexSet FrontierV) = N���B�����(B)
16: �nished+= |FrontierV |
17: HyperedgeSet FrontierE = V�����P���(H, FrontierV,

R�����H��������, C����R������)
18: Moved = H��������P���C����(H, FrontierE, U�����D(k))
19: U�����B������(B, Moved)
20: return D

be removed, since the CAS on Line 4 will return true exactly
once per hyperedge. On Line 18, we update the induced de-
grees of the vertices due to the removal of hyperedges using
a H��������P���C����. The U�����D function (Lines 7–
11) will decrement the induced degree of each vertex � by
its number of neighbors in FrontierE (numNghs), and set it
to k if it falls below k , since this means � will have a core-
ness value of k . U�����D returns a pair indicating the target
bucket of the vertex � , which is its new induced degree D[�]
(Line 10). For vertices whose coreness value have already
been determined, the null pair (?,?) is returned (Line 11).
The non-null pairs are stored in the Moved array output by
H��������P���C����. Line 19 moves the vertices to new
buckets using U�����B������ with the Moved array as in-
put. The algorithm terminates when all vertices have been
extracted from the bucket structure and processed.
Analysis. Each hyperedge will place each of its incident
vertices in the Moved array only when it is deleted. There-
fore the total size of the sets passed to U�����B������
is O(Õe 2E deg(e)). The number of identi�ers in the bucket
structure is n� and the number of buckets is at most the
maximum vertex degree, which is O(ne). The total number
of calls to U�����B������ and N���B����� is the peeling
complexity �. Using Lemma 1, we obtain an expected work
of O(|H |) and depth of O(� log |H |) with high probability.

5.4 Hypertrees
Given an unweighted hypergraph and a source vertex src,
a hypertree contains all vertices and hyperedges reachable
from src [30]. An algorithm that computes a hypertree out-
puts predecessor arrays for vertices and hyperedges, which
specify one of its predecessors in a shortest path from src.

The predecessor of a hyperedge is a vertex, and vice versa.
The sequential algorithm for generating hypertrees is similar
to a breadth-�rst search, and takes linear work in the size
of the hypergraph [30]. Vertices are visited in order of their
distance from the source, and each hyperedge is processed
only the �rst time that a vertex visits it.

A parallel algorithm can be obtained by processing all ver-
tices or hyperedges at the same distance from the source in
parallel. This algorithm can be naturally implemented in Hy-
gra using the V�����P��� and H��������P��� functions.
The frontier of vertices or hyperedges at the same distance
from src are maintained using VertexSets and Hyperedge-
Sets. The algorithm is similar to Ligra’s parallel breadth-�rst
search implementation.
Each vertex and hyperedge will appear in at most one

frontier and therefore the sum of the sizes of all frontiers
plus their out-degrees isO(|H |). As V�����P��� and H�����
����P��� do work proportional to the size of the input set
plus the sum of its out-degrees, the overall work performed
by the algorithm is O(|H |), which is work-e�cient. Each
call to V�����P��� and H��������P��� takes O(log |H |)
depth, and so the overall depth is O(D log |H |) where D is
the diameter of the hypergraph.

5.5 Hyperpaths
Given an unweighted hypergraph and a source vertex src, a
hyperpath tree is a maximal hypergraph containing all ver-
tices reachable from src via cycle-free paths (i.e., no vertex
appears in more than one hyperedge along any particular
path) [30]. The sequential algorithm for computing hyper-
path trees [30] visits a hyperedge only when all incoming
vertices of the hyperedge have visited it (instead of the �rst
time an incoming vertex visits it). The algorithm takes linear
work in the size of the hypergraph.

We implement a parallel algorithm for computing a hy-
perpath tree in Hygra, which requires minor changes to our
hypertree algorithm so that a hyperedge is added to a fron-
tier only when all of its incoming vertices have visited it.
The overall work of the algorithm is O(|H |) and depth is
O(L log |H |), where L is the length of the longest simple path
in the resulting hyperpath tree.

5.6 Connected Components
Given an undirected, unweighted hypergraph, a connected
component is a maximal set of vertices that can all reach
one another via incident hyperedges. The label propagation
technique can be used to compute the connected components
of a hypergraph [41, 46]. The idea is to initialize vertices with
unique IDs and iteratively propagate IDs of vertices to their
neighbors, having each vertex store the minimum ID among
the IDs that it receives and its own. At convergence, the IDs
on the vertices partition them into connected components.

We implement the label propagation algorithm in Hygra,
but we note that there are more e�cient parallel algorithms

240

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

for connected components for graphs (e.g., [80, 82]) that
could be applied to hypergraphs. Our implementation itera-
tively propagates vertex IDs to hyperedges and hyperedge
IDs to vertices using V�����P��� and H��������P���, re-
spectively, with the �����M�� function until the frontier
becomes empty. The output frontier of V�����P��� and
H��������P��� contain only the elements whose IDs have
changed. The vertex IDs are initialized to be unique integers,
and the hyperedge IDs are initialized to 1. Each iteration of
the algorithm takesO(|H |) work andO(log |H |) depth as the
calls to V�����P��� and H��������P��� could potentially
process all vertices and hyperedges. For a hypergraph with
diameter D, the overall work is O(D |H |) and overall depth
is O(D log |H |).

5.7 PageRank
PageRank is an algorithm for computing the importance
of vertices in a graph [16], and can be extended to hyper-
graphs [8, 41, 46]. We consider PageRank on unweighted,
connected hypergraphs. The following update equations de-
�nes the algorithm for a damping factor 0  �  1:

PR[�] = 1 � �

n�
+ �

’
e 2N �(�)

PR[e]
de�+(e) (3)

PR[e] =
’

� 2N �(e)

PR[�]
de�+(�) (4)

Vertices spread their ranks equally to hyperedges forwhich
they are incoming vertices for in Equation 4, and hyperedges
spread their ranks equally to outgoing vertices in Equation 3.
The update equations are applied iteratively until some con-
vergence criterion is met (e.g., a maximum number of itera-
tions is reached or the error falls below some threshold).
We implement PageRank in Hygra by iteratively calling

V�����P��� to pass PageRank values from vertices to hy-
peredges and H��������P��� to pass PageRank values from
hyperedges to vertices.We also use V�����M�� to normalize
the PageRank scores as required in Equation 3, and use V���
���M�� and H��������M�� to reset arrays. We can also im-
plement the PageRank-Entropy algorithm from MESH [41],
which computes the entropy of the ranks of vertices in each
hyperedge. This can be done with a V�����P��� call that
passes the entropy contribution of each vertex’s rank to each
hyperedge that it is an incoming vertex for.

Each iteration of PageRank (and PageRank-Entropy) pro-
cesses all vertices and hyperedges using V�����P��� and
H��������P���. Therefore, the per-iteration work isO(|H |)
and depth is O(log |H |).

5.8 Single-Source Shortest Paths
Given a weighted hypergraph and a source vertex src, the
goal of single-source shortest paths (SSSP) is to compute the
distance of the shortest path from src to every other reachable
vertex in the hypergraph. We implement a parallel SSSP

algorithm for hypergraphs in Hygra based on the Bellman-
Ford algorithm for SSSP on graphs [20].

The algorithm initializes tentative shortest path distances
(SP) of all vertices and hyperedges to1, except for the source
vertex which has a distance of 0. Each iteration processes
the active vertices, which are the vertices whose SP value
changed in the previous iteration. Initially, only the source
vertex is active. On each iteration, the algorithm calls V���
���P��� with a R���� function, which uses �����M�� to
update the SP values of all hyperedges with active incoming
vertices to the minimum of their original SP value and the SP
value of the incoming vertex plus the weight of the hyper-
edge. It then calls H��������P��� to update the SP values
of outgoing vertices of hyperedges that were just updated
using the same R���� procedure. If no SP values change
in an iteration then the shortest path distances have been
found, and the algorithm terminates. If the algorithm hasn’t
terminated after n� � 1 iterations, then that means there is
a negative weight cycle, and the algorithm reports this and
terminates. The work of this algorithm is O(n� |H |) as each
iteration can process all vertices and hyperedges, and the
depth is O(n� log |H |).

6 Experiments
Experimental Setup.We run all of our experiments on a 72-
core Dell PowerEdge R930 (with two-way hyper-threading)
with four 2.4GHz 18-core E7-8867 v4 Xeon processors, each
with a 45MB cache. The machine has a total of 1TB of RAM.
Our programs use Cilk Plus [58] for parallelism and are com-
piled with the g++ compiler (version 5.5.0) with the -O3 �ag.
By using Cilk’s work-stealing scheduler we are able obtain
an expected running time ofW /P +O(D) for an algorithm
withW work and D depth on P processors [11]. Hygra also
supports compilation with OpenMP.

For the parallel experiments, we use the command numactl
-i all to balance the memory allocations across the sock-
ets. All of the parallel speedup numbers that we report are
based on the running time on 72-cores with hyper-threading
compared to the running time on a single thread.
Data Sets.Our input hypergraphs are shown in Table 2. com-
Orkut and Friendster are constructed using the community
data from the Stanford Large Network Dataset Collection
(SNAP) [59], where each community is a hyperedge con-
taining its members as vertices. These are the largest real-
world datasets used by prior work on hypergraph process-
ing [41, 46]. We also include three larger real-world datasets,
orkut-groups,Web, and LiveJournal, which are constructed
from bipartite graphs from the Koblenz Network Collec-
tion (KONECT) [55]. To test on larger inputs, we also con-
structed synthetic random hypergraphs. Rand1 and Rand2
have 108 and 109 vertices/hyperedges, respectively, where
the cardinality of each hyperedge is 10 and its member
vertices are chosen uniformly at random. Rand3 has 107

241

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Hypergraph |V | |E | Õ
e2E

deg(e) max
�2V

deg(�) max
e2E

deg(e) Num. peeling rounds (�) Num. clique-expanded edges

com-Orkut 2.32 ⇥106 1.53 ⇥107 1.07 ⇥108 2958 9120 1698 3.87 ⇥1010
Friendster 7.94 ⇥106 1.62 ⇥106 2.35 ⇥107 1700 9299 351 5.53 ⇥109

Orkut-group 2.78 ⇥106 8.73 ⇥106 3.27 ⇥108 40425 3.18⇥105 2923 2.45 ⇥1012
Web 2.77 ⇥107 1.28 ⇥107 1.41 ⇥108 1.1 ⇥106 1.16⇥107 3.18 ⇥105 1.06 ⇥1014

LiveJournal 3.20 ⇥106 7.49 ⇥106 1.12 ⇥108 300 1.05⇥106 820 2.7 ⇥1012
Rand1 108 108 109 34 10 30 4.45 ⇥109
Rand2 109 109 1010 35 10 33 4.5 ⇥1010
Rand3 107 107 109 153 100 109 4.95 ⇥1010

Table 2. Hypergraph inputs.

vertices/hyperedges, and the cardinality of each hyperedge
is 100 with its member vertices chosen uniformly at ran-
dom. For input size scalability experiments, we also gen-
erated random hypergraphs with varying sizes and hyper-
edge cardinalities. For SSSP, we use weighted versions of
the hypergraphs with random hyperedge weights from 1 to
blog2(max (n� ,nh))c. The inputs are all undirected.

Results. Table 3 shows the sequential and parallel running
times of our algorithms, as well as their parallel speedup. The
BC times are for a single source, and PageRank times are for
1 iteration. For k-core, we include times for both the work-
e�cient (WE) version and the work-ine�cient (WI) version.
We did not include hyperpaths in our experiments because
the hyperpaths found in the inputs are too small to give
meaningful running times. For the Orkut-group, Web, and
LiveJournal inputs, we used the edge-aware parallelization
scheme due to their highly skewed degree distributions.
Overall, the algorithms get good parallel speedup, rang-

ing from 8.5–76.5x, and the parallel times on the real-world
inputs are usually under 1 second. The random hypergraphs
are larger than hypergraphs used in prior work, and we are
able to achieve parallel running times on the order of seconds
for Rand1 and Rand3 and tens of seconds for Rand2. The
lower speedups for k-core on the real-world inputs are due
to the large number of peeling rounds (see Table 2), many of
which have few active vertices and hyperedges.

We see that our work-e�cient k-core algorithm is usually
much faster than the work-ine�cient version, by a factor
of up to 733x in parallel, as it does less work. The bene�t
is higher for the inputs with more peeling rounds (e.g., the
Web hypergraph).

Figure 2 shows the running time vs. number of threads
for all of the algorithms on Rand1. We see good parallel
scalability for all of the algorithms, with speedups ranging
from 31–53x on 72 cores with hyper-threading.
Figure 3 shows the running time vs. hyperedge count

for all of the algorithms on random hypergraphs with 107
vertices and cardinality-10 hyperedges (we also tried �xing
the vertex and hyperedge count and varying the cardinality,
and found similar trends). We see a near-linear increase in
running time on all of the algorithms except hypertree and
k-core, which have a sub-linear increase. For hypertree, the

0.1

1

10

100

1000

1 2 4 8 16 24 32 48 72 72h
R
un
ni
ng

tim
e
(s
ec
on
ds
)

Number of threads

Hypertree
BC
CC

PageRank
SSSP
MIS

WE k-core

Figure 2. Running time vs. number of threads on Rand1.
“72h” refers to 144 hyper-threads.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

10 20 30 40 50 60 70 80 90 100

R
un
ni
ng

tim
e
(s
ec
on
ds
)

Millions of hyperedges

Hypertree
BC
CC

PageRank
SSSP
MIS

WE k-core

Figure 3. Running time vs. number of hyperedges on 72
cores with hyper-threading.

number of edges traversed increases sub-linearly due to the
direction optimization that avoids many edge traversals. For
k-core, the peeling complexity, and hence running time, does
not increase linearly with the number of hyperedges.

Figures 4 and 5 show the impact of the direction optimiza-
tion on com-Orkut and LiveJournal. We plot the running
time using all sparse traversals, all dense traversals, and hy-
brid traversals with the default threshold of 1/20 fraction of
the sum of in-degrees of the hyperedges for V�����P���
and sum of in-degrees of vertices for H��������P���. For

242

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

com-Orkut Friendster Rand1 Rand2 Rand3 Orkut-group Web LiveJournal
Algorithm T1 T72h SU T1 T72h SU T1 T72h SU T1 T72h SU T1 T72h SU T1 T72h SU T1 T72h SU T1 T72h SU
Hypertree 1.04 0.031 33.5 0.803 0.022 36.5 24.3 0.676 35.9 321 8.97 35.8 2.18 0.047 46.4 0.551 0.021 26.2 2.71 0.068 39.9 0.754 0.022 34.3

BC 5.31 0.12 44.3 2.7 0.07 38.6 131.0 3.72 35.2 1890 39.4 48.0 40.8 0.82 49.8 7.58 0.141 53.8 10.7 0.517 20.7 3.66 0.099 37.0
CC 7.87 0.162 48.6 3.34 0.082 40.5 330.0 9.88 33.4 4190 121 34.6 70.5 1.07 65.9 11.6 0.18 64.4 11.0 0.478 23.0 4.01 0.081 49.5

PageRank 3.31 0.083 39.9 0.941 0.026 36.2 84.1 2.61 32.2 955 28.6 33.4 57.3 1.6 35.8 6.88 0.119 57.8 5.27 0.27 19.5 2.66 0.062 42.9
SSSP 8.81 0.157 56.1 3.54 0.107 76.5 290.0 6.76 43.3 5730 79.8 71.8 54.0 1.0 54.0 14.7 0.261 56.3 7.04 0.245 28.7 5.56 0.118 47.1
MIS 7.73 0.227 34.1 3.26 0.11 29.6 154.0 4.19 36.8 1680 44.5 37.8 68.0 1.09 62.4 9.86 0.411 24.0 17.8 2.09 8.52 4.92 0.434 11.3

WE k-core 7.09 0.738 9.61 2.09 0.081 25.8 116.0 2.17 53.5 2210 31.8 69.5 41.0 0.866 47.3 13.7 0.831 16.5 12.5 0.965 13.0 6.13 0.325 18.9
WI k-core 33.9 1.88 18.0 9.72 0.421 23.1 133.0 3.4 39.1 1150 33.6 34.2 87.3 1.18 74.0 96.6 3.34 28.9 23500 707.0 33.2 16.9 0.905 18.7

Table 3. Sequential times (T1) and 72-core with hyper-threading (T72h) times (seconds), as well as the parallel speedup (SU).

0

0.2

0.4

0.6

0.8

1

Hypertree

BC CC PageRank

SSSP
MIS

WE k-core

11.4

R
un
ni
ng

tim
e
(s
ec
on
ds
) Dense

Sparse
Hybrid

Figure 4. Running times of dense, sparse, and hybrid traver-
sals on com-Orkut using 72 cores with hyper-threading.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hypertree

BC CC PageRank

SSSP
MIS

WE k-core

3.09

R
un
ni
ng

tim
e
(s
ec
on
ds
) Dense

Sparse
Hybrid

Figure 5. Running times of dense, sparse, and hybrid traver-
sals on LiveJournal using 72 cores with hyper-threading.

all of the algorithms, we see that the hybrid traversal is the
the fastest or tied for the fastest among the three cases.
We found the default threshold to work reasonably well

across all our applications and inputs. We show the running
time as a function of threshold for several applications on
com-Orkut and LiveJournal in Figures 6 and 7. We see that
the performance is similar across a wide range of thresholds.
In Table 4, we report the memory, percentage of cycles

stalled due to memory accesses, and LLC local miss rate for
several algorithms on com-Orkut, Rand1, and LiveJournal.
We see that the cache miss rate andmemory bandwidth is the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1
R
un
ni
ng

tim
e

Threshold (fraction of sum of in-degrees)

Hypertree
BC
CC

SSSP

Figure 6. Running times as a function of threshold on com-
Orkut using 72 cores with hyper-threading.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1

R
un
ni
ng

tim
e

Threshold (fraction of sum of in-degrees)

Hypertree
BC
CC

SSSP

Figure 7. Running times as a function of threshold on Live-
Journal using 72 cores with hyper-threading.

highest for the random hypergraph, Rand1, as the edges have
very little locality. The memory bandwidth is close to the
peak bandwidth of the machine, and the algorithms on Rand1
are memory bandwidth-bound. com-Orkut and LiveJournal
exhibit locality in their structure, and thus have lower cache
miss rates, and require fewer requests to DRAM, thereby
lowering the memory bandwidth. However, a decent fraction
of the cycles are still stalled waiting for memory accesses,
making the algorithms memory latency-bound. All of the
algorithms bene�t from spatial locality when traversing the
adjacency list in the bipartite representation.

243

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

com-Orkut Rand1 LiveJournal
Fraction of LLC Memory Fraction of LLC Memory Fraction of LLC Memory

Algorithm Cycles Stalled Miss Rate Bandwidth Cycles Stalled Miss Rate Bandwidth Cycles Stalled Miss Rate Bandwidth
Hypertree 0.364 0.122 144.7 0.726 0.551 161.7 0.28 0.161 135.5

BC 0.462 0.111 131.1 0.804 0.808 161.8 0.35 0.097 120.1
CC 0.444 0.089 134.4 0.837 0.833 147.5 0.40 0.044 126.1

PageRank 0.79 0.24 123.1 0.927 0.933 146.6 0.69 0.163 104.0
SSSP 0.5 0.098 132.1 0.842 0.781 146.2 0.49 0.057 123.2

WE k-core 0.367 0.358 53.86 0.573 0.422 140.1 0.39 0.286 72.5
Table 4. Fraction of cycles stalled on memory requests, LLC local miss rate, and memory bandwidth (GB/s). All experiments
use 72 cores with hyper-threading.

Comparison with Alternatives. While it is di�cult to di-
rectly compare with HyperX and MESH as they are designed
for distributed memory, we �rst perform a rough comparison
in terms of the running times reported in their papers [41, 46].
MESH reports a running time of about 1 minute per itera-
tion on com-Orkut using a cluster of eight 12-core machines,
and HyperX reports a running time of about 10s using a
cluster of eight 4-core machines (HyperX’s algorithm is for
random walks, which does less work than PageRank per
iteration). In contrast, one iteration of Hygra’s PageRank on
com-Orkut takes 0.083s on 72 cores and 3.31s on one thread.
Even adjusting for di�erences in processor speci�cations, we
are signi�cantly faster than their reported parallel numbers
using just a single thread, and orders of magnitude faster
in parallel. The large di�erence in performance of MESH
and HyperX compared to Hygra is due to the higher com-
munication costs of distributed memory and overheads of
Spark.
We also ran MESH on our 72-core machine, and did a

sweep of the parameter space (partition strategy and num-
ber of partitions), and the best running time we obtained for
one iteration of PageRank on com-Orkut was over 2 min-
utes, which is much slower than Hygra’s time. MESH reports
competitive performance with HyperX [41], and so we ex-
pect the performance of HyperX to be in the same ballpark.
For frontier-based algorithms our speedups would be even
higher as HyperX and MESH require work proportional to
the hypergraph size on every iteration whereas we only do
work proportional to the frontier size plus the sum of its
out-degrees. We ran the single-source shortest paths algo-
rithm from MESH (which works on unit weights and so is
similar to our hypertree algorithm) on our 72-core machine
and observed that for com-Orkut just the �rst iteration takes
over 1 minute. This is much slower than the Hygra time for
running the algorithm to convergence.
As mentioned in Section 4.2, another method for repre-

senting a hypergraph is to create a clique among all vertices
for each hyperedge, store the result as a graph (known as
the clique-expanded graph), and apply graph algorithms on
it. This approach would work for algorithms that do not
treat hyperedges di�erently from vertices, such as hypertree,

connected components, and single-source shortest paths (for
algorithms that treat the hyperedges specially, this approach
would generate incorrect results).We show the number edges
in the clique-expanded graph for each of our inputs in Table 2.
We see that the sizes are several orders of magnitude greater
than the corresponding hypergraph using the bipartite graph
representation. As a baseline, we ran Ligra’s breadth-�rst
search, connected components, and SSSP implementations
on the clique-expanded graph for Friendster (which is 235x
larger than the bipartite representation) on 72 cores. Breadth-
�rst search took 0.061s, which is 2.8x slower than Hygra’s
hypertree implementation (see Table 3). Connected compo-
nents took 2.35s, which is 28.7x slower than Hygra. SSSP
took 3.27s, which is 30.6x slower than Hygra. The overhead
is due to additional edge traversals in the clique-expanded
graph. However, the running time overhead is not as high as
the space overhead, since the clique-expanded graph is much
denser and has better locality. The overhead is only 2.8x for
breadth-�rst search since the dense traversal optimization
allows many edges to be skipped.

7 Conclusion
We have presented a suite of parallel hypergraph algorithms
with strong theoretical guarantees. We implemented the
algorithms by extending the Ligra graph processing frame-
work to handle hypergraphs. Our experiments show that the
algorithms achieve good parallel scalability and signi�cantly
better performance than prior work. Future work includes
extending graph optimizations for locality and scalability
(e.g., [7, 53, 57, 85, 92, 96, 97, 101]) to hypergraphs.

Acknowledgements
We thank the anonymous reviewers for their helpful feed-
back. This research was supported by DOE Early Career
Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,
MIT Research Support Committee Award, DARPA SDHAward
#HR0011-18-3-0007, and Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC
and DARPA.

244

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

References
[1] Sinan Aksoy, Dustin Arendt, Louis S Jenkins, Brenda Praggastis,

Emilie Purvine, and Marcin Zalewski. 2019. High Performance Hy-
pergraph Analytics of Domain Name System Relationships. In HICSS
Symposium on Cybersecurity Big Data Analytics.

[2] Noga Alon, Uri Arad, and Yossi Azar. 1999. Independent Sets in
Hypergraphs with Applications to Routing via Fixed Paths. In Inter-
national Workshop on Approximation Algorithms for Combinatorial
Optimization Problems: Randomization, Approximation, and Combina-
torial Algorithms and Techniques (RANDOM-APPROX). 16–27.

[3] Giorgio Ausiello, Giuseppe F. Italiano, and Umberto Nanni. 1998. Hy-
pergraph traversal revisited: Cost measures and dynamic algorithms.
In Mathematical Foundations of Computer Science. 1–16.

[4] David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail.
2007. Approximating betweenness centrality. InWorkshop on Algo-
rithms and Models for the Web-Graph (WAW). 124–137.

[5] Paul Beame and Michael Luby. 1990. Parallel Search for Maximal
Independence Given Minimal Dependence. In ACM-SIAM Symposium
on Discrete Algorithms (SODA). 212–218.

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-
optimizing breadth-�rst search. InACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC). Article 12, 12:1–12:10 pages.

[7] S. Beamer, K. Asanovic, and D. Patterson. 2017. Reducing Pager-
ank Communication via Propagation Blocking. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 820–831.

[8] Abdelghani Bellaachia and Mohammed Al-Dhelaan. 2013. Random
Walks in Hypergraph. In International Conference on Applied Mathe-
matics and Computational Methods. 187–194.

[9] Ioana O. Bercea, Navin Goyal, David G. Harris, and Aravind Srini-
vasan. 2017. On Computing Maximal Independent Sets of Hyper-
graphs in Parallel. ACM Trans. Parallel Comput. 3, 1, Article 5 (Jan.
2017), 5:1–5:13 pages.

[10] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy
sequential maximal independent set and matching are parallel on
average. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA). 308–317.

[11] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multi-
threaded Computations by Work Stealing. J. ACM 46, 5 (Sept. 1999),
720–748.

[12] Cecile Bothorel and Mohamed Bouklit. 2011. An Algorithm for De-
tecting Communities in Folksonomy Hypergraphs. In International
Conference on Innovative Internet Community Services. 159–168.

[13] Ulrik Brandes. 2001. A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25 (2001), 163–177.

[14] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic
Expressions. J. ACM 21, 2 (April 1974), 201–206.

[15] Alain Bretto, Hocine Cheri�, and Driss Aboutajdine. 2002. Hyper-
graph imaging: an overview. Pattern Recognition 35, 3 (2002), 651–658.

[16] S. Brin and L. Page. 1998. The Anatomy of a Large-Scale Hypertextual
Web Search Engine. In Computer Networks and ISDN Systems. 107–
117.

[17] U. V. Catalyurek and C. Aykanat. 1999. Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector multiplication.
IEEE Transactions on Parallel and Distributed Systems 10, 7 (Jul 1999),
673–693.

[18] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdaag,
Robert T. Heaphy, and Lee Ann Riesen. 2009. A repartitioning hy-
pergraph model for dynamic load balancing. J. Parallel and Distrib.
Comput. 69, 8 (2009), 711–724.

[19] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal. 2015. E�cient and
Simpli�ed Parallel Graph Processing over CPU and MIC. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
819–828.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. 2009. Introduction to Algorithms (3. ed.). MIT Press.

[21] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex
Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon:
A Communication-optimizing Substrate for Distributed Heteroge-
neous Graph Analytics. InACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). 752–768.

[22] Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
2019. Phoenix: A Substrate for Resilient Distributed Graph Analytics.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 615–630.

[23] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling,
and Umit V. Catalyurek. 2006. Parallel Hypergraph Partitioning
for Scienti�c Computing. In International Conference on Parallel and
Distributed Processing (IPDPS). 124–124.

[24] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne:
A Framework for Parallel Graph Algorithms Using Work-e�cient
Bucketing. In ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA). 293–304.

[25] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoreti-
cally E�cient Parallel Graph Algorithms Can Be Fast and Scalable.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 393–404.

[26] L. Ding and A. Yilmaz. 2008. Image Segmentation as Learning on
Hypergraphs. In International Conference on Machine Learning and
Applications. 247–252.

[27] Aurelien Ducournau and Alain Bretto. 2014. Random walks in di-
rected hypergraphs and application to semi-supervised image seg-
mentation. Computer Vision and Image Understanding 120 (2014),
91–102.

[28] D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High
performance data structure for streaming graphs. In IEEE Conference
on High Performance Extreme Computing (HPEC). 1–5.

[29] Linton Freeman. 1977. A set of measures of centrality based upon
betweenness. Sociometry 40 (1977), 35–41.

[30] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen.
1993. Directed hypergraphs and applications. Discrete Applied Math-
ematics 42, 2 (1993), 177 – 201.

[31] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-
Noy. 2012. Dynamic shortest path algorithms for hypergraphs. In
International Symposium on Modeling and Optimization in Mobile, Ad
Hoc and Wireless Networks (WiOpt). 238–245.

[32] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better
Approximation of Betweenness Centrality. In Algorithms Engineering
and Experiments (ALENEX). 90–100.

[33] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and
Keshav Pingali. 2018. Abelian: A Compiler for Graph Analytics on
Distributed, Heterogeneous Platforms. In Euro-Par. 249–264.

[34] Joseph Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computa-
tion on Natural Graphs. In USENIX Symposium on Operating System
Design and Implementation (OSDI). 17–30.

[35] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. 2018. Making
Pull-based Graph Processing Performant. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
246–260.

[36] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-
Down Parallel Semisort. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA). 24–34.

[37] Torben Hagerup. 1992. Fast and optimal simulations between CRCW
PRAMs. In Annual Symposium on Theoretical Aspects of Computer
Science (STACS). 45–56.

[38] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-
werger. 2012. The STAPL Parallel Graph Library. In Languages and

245

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Compilers for Parallel Computing (LCPC). 46–60.
[39] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauch-

werger. 2014. KLA: a new algorithmic paradigm for parallel graph
computations. In International Conference on Parallel Architectures
and Compilation (PACT). 27–38.

[40] Harshvardhan, Adam Fidel, Nancy M. Amato, and Lawrence Rauchw-
erger. 2015. An Algorithmic Approach to Communication Reduction
in Parallel Graph Algorithms. In International Conference on Parallel
Architecture and Compilation (PACT). 201–212.

[41] Benjamin Heintz, Rankyung Hong, Shivangi Singh, Gaurav Khandel-
wal, Corey Tesdahl, and Abhishek Chandra. 2019. MESH: A Flexible
Distributed Hypergraph Processing System. In IEEE International
Conference on Cloud Engineering (IC2E). 12–22.

[42] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan. 2017.
MultiGraph: E�cient Graph Processing on GPUs. In International
Conference on Parallel Architectures and Compilation Techniques
(PACT). 27–40.

[43] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley
Professional.

[44] Louis Jenkins, Tanveer Hossain Bhuiyan, Sarah Harun, Christopher
Lightsey, DavidMentgen, Sinan G. Aksoy, Timothy Stavcnger, Marcin
Zalewski, Hugh R. Medal, and Cli� Joslyn. 2018. Chapel HyperGraph
Library (CHGL). In IEEE High Performance Extreme Computing Con-
ference (HPEC). 1–6.

[45] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. 2017. Parallel
Peeling Algorithms. ACM Trans. Parallel Comput. 3, 1, Article 7 (Jan.
2017), 7:1–7:27 pages.

[46] W. Jiang, J. Qi, J. X. Yu, J. Huang, and R. Zhang. 2019. HyperX: A
Scalable Hypergraph Framework. IEEE Transactions on Knowledge
and Data Engineering 31, 5, 909–922.

[47] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. 2011.
PEGASUS: mining peta-scale graphs. Knowl. Inf. Syst. 27, 2 (2011),
303–325.

[48] Richard M. Karp, Eli Upfal, and Avi Wigderson. 1988. The Complexity
of Parallel Search. J. Comput. Syst. Sci. 36, 2 (April 1988), 225–253.

[49] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. 1999. Multilevel
hypergraph partitioning: applications in VLSI domain. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems 7, 1 (March 1999),
69–79.

[50] Pierre Kelsen. 1992. On the Parallel Complexity of Computing a
Maximal Independent Set in a Hypergraph. In ACM Symposium on
Theory of Computing (STOC). 339–350.

[51] Jeremy Kepner, Peter Aaltonen, David A. Bader, Aydin Buluç, Franz
Franchetti, John R. Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, Scott McMillan, Carl Yang, John D.
Owens, Marcin Zalewski, Timothy G. Mattson, and José E. Moreira.
2016. Mathematical foundations of the GraphBLAS. In IEEE High
Performance Extreme Computing Conference (HPEC). 1–9.

[52] Gaurav Khanna, Nagavijayalakshmi Vydyanathan, T. Kurc, U.
Catalyurek, P. Wycko�, J. Saltz, and P. Sadayappan. 2005. A hy-
pergraph partitioning based approach for scheduling of tasks with
batch-shared I/O. In IEEE International Symposium on Cluster Com-
puting and the Grid (CCGRID). 792–799.

[53] Vladimir Kiriansky, Yunming Zhang, and Saman P. Amarasinghe.
2016. Optimizing Indirect Memory References with milk. In Interna-
tional Conference on Parallel Architectures and Compilation (PACT).
299–312.

[54] Sriram Krishnamoorthy, Umit Catalyurek, Jarek Nieplocha, Atanas
Rountev, and P. Sadayappan. 2006. Hypergraph Partitioning for
Automatic Memory Hierarchy Management. In ACM/IEEE Conference
on Supercomputing (SC).

[55] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection.
In International Conference on World Wide Web (WWW). 1343–1350.

[56] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-Scale Graph computation on Just a PC. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 31–46.

[57] Kartik Lakhotia, Rajgopal Kannan, and Viktor Prasanna. 2018. Ac-
celerating PageRank using Partition-Centric Processing. In USENIX
Annual Technical Conference (ATC). 427–440.

[58] Charles E. Leiserson. 2010. The Cilk++ concurrency platform. J.
Supercomputing 51, 3 (2010).

[59] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large
Network Dataset Collection. h�p://snap.stanford.edu/data.

[60] Heng Lin, Xiaowei Zhu, Bowen Yu, Xiongchao Tang, Wei Xue, Wen-
guang Chen, Lufei Zhang, Torsten Hoe�er, Xiaosong Ma, Xin Liu,
Weimin Zheng, and Jingfang Xu. 2018. ShenTu: Processing Multi-
trillion Edge Graphs on Millions of Cores in Seconds. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage, and Analysis (SC). 56:1–56:11.

[61] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. 2010. GraphLab: A New Parallel
Framework for Machine Learning. In Conference on Uncertainty in
Arti�cial Intelligence (UAI). 340–349.

[62] Michael Luby. 1986. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput. 15, 4 (November 1986),
1036–1055.

[63] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. 2015. LLAMA:
E�cient graph analytics using Large Multiversioned Arrays. In IEEE
International Conference on Data Engineering (ICDE). 363–374.

[64] Saeed Maleki, G. Carl Evans, and David A. Padua. 2015. Tiled Linear
Algebra a System for Parallel Graph Algorithms. In Languages and
Compilers for Parallel Computing. 116–130.

[65] Grzegorz Malewicz, MatthewH. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for large-scale graph processing. In ACM Conference on
Management of Data (SIGMOD). 135–146.

[66] Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Think-
ing Like a Vertex: A Survey of Vertex-Centric Frameworks for Large-
Scale Distributed Graph Processing. ACM Comput. Surv. 48, 2, Article
25 (Oct. 2015), 39 pages.

[67] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scala-
bility! But at What COST?. In USENIX Conference on Hot Topics in
Operating Systems (HotOS).

[68] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A pattern
based algorithmic autotuner for graph processing on GPUs. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP). 201–213.

[69] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A
Lightweight Infrastructure for Graph Analytics. In ACM Symposium
on Operating Systems Principles (SOSP). 456–471.

[70] Lars Relund Nielsen, Kim Allan Andersen, and Daniele Pretolani.
2005. Finding the K Shortest Hyperpaths. Comput. Oper. Res. 32, 6
(June 2005), 1477–1497.

[71] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr:
Transforming Irregular Graphs for GPU-Friendly Graph Processing.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 622–636.

[72] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Through-
put Optimization of Graph Algorithms on GPUs. In ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 1–19.

[73] Zhen Peng, Alexander Powell, Bo Wu, Tekin Bicer, and Bin Ren.
2018. Graphphi: e�cient parallel graph processing on emerging
throughput-oriented architectures. In International Conference on
Parallel Architectures and Compilation Techniques (PACT). 9:1–9:14.

[74] Rami Puzis, Manish Purohit, and V. S. Subrahmanian. 2013. Between-
ness computation in the single graph representation of hypergraphs.

246

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

Social Networks 35, 4 (2013), 561–572.
[75] S. Riazi and B. Norris. 2016. GraphFlow: Work�ow-based big graph

processing. In IEEE International Conference on Big Data (Big Data).
3336–3343.

[76] A. Ritz, B. Avent, and T. M. Murali. 2017. Pathway Analysis with
Signaling Hypergraphs. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 14, 5 (Sept 2017), 1042–1055.

[77] Sanjukta Roy and Balaraman Ravindran. 2015. Measuring Network
Centrality Using Hypergraphs. In ACM IKDD Conference on Data
Sciences. 59–68.

[78] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. 2015. GraphRe-
duce: processing large-scale graphs on accelerator-based systems.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). 1–12.

[79] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He,
Bo Liu, and Qiang-Sheng Hua. 2018. Graph Processing on GPUs:
A Survey. ACM Comput. Surv. 50, 6, Article 81 (Jan. 2018), 81:1–
81:35 pages.

[80] Yossi Shiloach and Uzi Vishkin. 1982. An O (logn) Parallel Connec-
tivity Algorithm. J. Algorithms 3, 1 (1982), 57–67.

[81] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
135–146.

[82] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A Sim-
ple and Practical Linear-Work Parallel Algorithm for Connectivity.
In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 143–153.

[83] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller
and Faster: Parallel Processing of Compressed Graphs with Ligra+.
In IEEE Data Compression Conference (DCC). 403–412.

[84] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and
Lizy K. John. 2018. Start Late or Finish Early: A Distributed Graph
Processing System with Redundancy Reduction. PVLDB 12, 2 (2018),
154–168.

[85] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2017. GraphGrind: Addressing Load Imbalance of Graph Partitioning.
In International Conference on Supercomputing (ICS). Article 16, 16:1–
16:10 pages.

[86] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos.
2019. VEBO: a vertex- and edge-balanced ordering heuristic to load
balance parallel graph processing. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP). 391–392.

[87] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary,
Subramanya R. Dulloor, Michael J. Anderson, Satya Gautam Vad-
lamudi, Dipankar Das, and Pradeep Dubey. 2015. GraphMat: High
Performance Graph Analytics Made Productive. Proc. VLDB Endow.
8, 11 (July 2015), 1214–1225.

[88] Guangming Tan, Dengbiao Tu, and Ninghui Sun. 2009. A Parallel
Algorithm for Computing Betweenness Centrality. In International
Conference on Parallel Processing (ICPP). 340–347.

[89] Aleksandar Trifunovic and William J. Knottenbelt. 2008. Parallel
multilevel algorithms for hypergraph partitioning. J. Parallel and
Distrib. Comput. 68, 5 (2008), 563–581.

[90] Dengbiao Tu and Guangming Tan. 2009. Characterizing Between-
ness Centrality Algorithm on Multi-core Architectures. In IEEE In-
ternational Symposium on Parallel and Distributed Processing with
Applications (ISPA). 182–189.

[91] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying
Liu, and Xiaobing Feng. 2018. Lazygraph: lazy data coherency for
replicas in distributed graph-parallel computation. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).
276–289.

[92] Hao Wei, Je�rey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup
Graph Processing by Graph Ordering. In ACM International Confer-
ence on Management of Data (SIGMOD). 1813–1828.

[93] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. 2017. Big
Graph Analytics Platforms. Foundations and Trends in Databases 7,
1-2 (2017), 1–195.

[94] Jie Yan, Guangming Tan, ZeyaoMo, and Ninghui Sun. 2016. Graphine:
Programming Graph-Parallel Computation of Large Natural Graphs
for Multicore Clusters. IEEE Trans. Parallel Distrib. Syst. 27, 6 (2016),
1647–1659.

[95] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aramVenkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Uni�ed Engine
for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56–65.

[96] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware
Graph-structured Analytics. In ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP). 183–193.

[97] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Matei Zaharia,
and Saman P. Amarasinghe. 2017. Making Caches Work for Graph
Analytics. In IEEE International Conference on Big Data (BigData).
293–302.

[98] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. 2018. GraphIt: A High-
performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA,
Article 121 (Oct. 2018), 121:1–121:30 pages.

[99] Peng Zhao, Chen Ding, Lei Liu, Jiping Yu,Wentao Han, and Xiao-Bing
Feng. 2019. Cacheap: Portable and Collaborative I/O Optimization
for Graph Processing. Journal of Computer Science and Technology
34, 3 (01 May 2019), 690–706.

[100] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006.
Learning with Hypergraphs: Clustering, Classi�cation, and Embed-
ding. In International Conference on Neural Information Processing
Systems (NIPS). 1601–1608.

[101] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.
2016. Gemini: A Computation-Centric Distributed Graph Processing
System. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 301–316.

A Artifact Description
A.1 Abstract
The artifact contains the code for the Hygra framework and
implementations of the parallel hypergraph algorithms using
Hygra. We provide instructions for obtaining or generating
the datasets used in this paper as well as scripts for running
the experiments in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information)

• Algorithms: The artifact includes parallel hypergr-
pah algorithms for betweenness centrality, maximal
independent set, k-core decomposition, hypertrees,
connected components, PageRank, and single-source
shortest paths.

• Compilation:A compiler with support for Cilk Plus is
used to compile the code. The experiments in the paper
used g++ version 5.5.0, which has support for Cilk Plus.
(While Hygra can also be compiled with OpenMP, the

247

Practical Parallel Hypergraph Algorithms PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

numbers reported in the paper are obtained using Cilk
Plus.)

• Datasets: The datasets consist of real-world hyper-
graphs from the Stanford Large Network Dataset Col-
lection (SNAP) [59] and the Koblenz Network Col-
lection (KONECT) [55], as well as synthetic random
hypergraphs that we generated.

• Run-time environment: A Linux operating system
should be used and numactl should be installed. The
experiments in the paper used Ubuntu 16.04. Python
2.7 is used for running the scripts.

• Hardware: An x86-based multicore machine should
be used. The experiments in the paper used a Dell
PowerEdge R930 with four 2.4GHz 18-core E7-8867 v4
Xeon processors and a total of 1TB of RAM.

• Output: Running times of the algorithms are output
to the console.

• Experiment Work�ow: Clone the repository and
use the provided scripts to run the experiments.

• Publicly available? Yes.

A.2.2 How Delivered
The artifact is available on Github at h�ps://github.com/
jshun/ppopp20-ae.

A.2.3 Hardware Dependencies
An x86-based multicore machine should be used for the ex-
periments. To run all experiments, 1TB of RAM is needed.
However, 200GB of RAM is su�cient to run all of the experi-
ments except for the ones on Rand2 and the clique-expanded
graph for Friendster. The total storage required for all of
the datasets is 1TB. Excluding the large datasets (Rand2 and
the clique-expanded graph for Friendster), the total storage
required is 313GB.

A.2.4 Software Dependencies
A Linux operating system with numactl should be used to
run the experiments. The artifact uses Cilk Plus for paral-
lelism, and so a compiler with support for Cilk Plus should
be installed. Python 2.7 is used for running the scripts.

A.2.5 Datasets
The real-world hypergraphs were downloaded from the Stan-
ford Large Network Dataset Collection (SNAP) [59] and
the Koblenz Network Collection (KONECT) [55], and con-
verted to Hygra format using the communityToHyperAdj
and KONECTtoHyperAdj programs, respectively, provided in
the utils/ directory. The synthetic hypergraphs were gen-
erated using the randHypergraph program in the utils/
directory.
For the weighted versions of the hypergraphs, weights

were added using the adjHypergraphAddWeights program
in the utils/ directory.

A.3 Installation
After cloning the repository and installing the software de-
pendencies, the provided scripts can be used to compile and
execute the programs. The code for the hypergraph algo-
rithms is in the apps/hyper/ directory and can be compiled
manually by navigating to that directory and typing “export
CILK=1; make -j”. The programs in the utils/ directory
can be compiled in the same way.

For inputs where the total number of neighbors of vertices
and hyperedges exceeds 232 � 1, the LONG environment vari-
able should be de�ned prior to compilation. For inputs where
the total number of vertices and hyperedges exceeds 232 � 1,
the EDGELONG environment variable should be de�ned prior
to compilation.

A.4 Experiment Work�ow
The runall script at the top-level directory will run all ex-
periments without the large Rand2 input and the clique-
expanded Friendster graph. The runall-quick script at the
top-level directory will skip the scalability tests for all of the
inputs except for a small dataset, and will also skip the exper-
iment on varying thread counts on Rand1. These two scripts
will download the necessary datasets for the experiments.
Individual experiments may be run as described below.
To download all of the datasets, navigate to the inputs/

directory and type “./download_datasets”. This will take
a few hours. The following command line arguments may be
passed to the download_datasets script to download only
a subset of the datasets: LARGE will download only the large
datasets (Rand2 and the clique-expanded Friendster graph);
RAND1 will only download the Rand1 dataset for testing per-
formance on varying thread counts; SIZES will only down-
load the random hypergraphs of varying sizes for testing
performance as a function of input size; and DIRECTION will
only download the com-Orkut and LiveJournal datasets for
testing the performance of sparse, dense, and hybrid traver-
sals as well as the performance of using di�erent thresholds
in the direction optimization.

The run_scalability script provided in the apps/hyper/
directory will run all of the hypergraph algorithms both on
a single thread and on all available cores of the machine. By
default, all datasets except Rand2 will be used. This script
will take several days to complete. To include Rand2 in the
experiments, type “./run_scalability LARGE”. To run the
experiments on only a small dataset, which will terminate
quickly, type “./run_scalability QUICK”.

The run_varying_threads script in the apps/hyper/ di-
rectory will run all of the algorithms on a varying number
of threads on the Rand1 dataset.

The run_varying_hyperedges script in the apps/hyper/
directory will run all of the algorithms using all available
cores on random hypergraphs with a varying number of
hyperedges.

248

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Julian Shun

The run_directions script in the apps/hyper/ directory
will test the parallel performance of sparse, dense, and hybrid
traversals for all of the algorithms on the com-Orkut and
LiveJournal datasets.

The run_thresholds script in the apps/hyper/ directory
will test the parallel performance of all of the algorithms
on the com-Orkut and LiveJournal datasets using di�erent
thresholds for the direction optimization.
The run_clique script in the apps/ directory will test

the parallel performance of breadth-�rst search, connected
components, and SSSP in Ligra on the clique-expanded graph
for Friendster.

A.5 Evaluation and Expected Result
The results of the scalability experiments correspond to the
numbers reported in Table 3 and Figure 2. The results of
the experiments on random hypergraphs of di�erent sizes
correspond to the numbers reported in Figure 3. The results
of the experiments on di�erent traversal modes correspond
to the numbers reported in Figures 4 and 5. The results of
the experiments on di�erent thresholds for the direction
optimization correspond to the numbers reported in Figures 6
and 7.

The running times obtained in the experiments may di�er
from the numbers reported in the paper if a di�erent machine
and/or compiler is used.

A.6 Experiment Customization
If numactl is not installed, the scripts can be modi�ed to
run without numactl by deleting the “numactl -i all”
statements (potentially with some performance degradation
on multi-socket machines).
Individual hypergraph algorithms can be tested by run-

ning the executables in apps/hyper/with the desired dataset
as input. The “-s” �ag should be passed if the hypergraph is
symmetric. For traversal algorithms, one can pass the “-r”
�ag followed by an integer to indicate the ID of the source
vertex (by default, vertex 0 is used as the source). The pro-
grams are run for three trials by default, but one can change
the number of trials by passing the “-rounds” �ag followed
by an integer indicating the desired number of trials.

To test on other hypergraphs, datasets with communities
can be downloaded from the Stanford Large Network Dataset
Collection (SNAP) [59] and bipartite graphs can be down-
loaded from the Koblenz Network Collection (KONECT) [55].
SNAP datasets can be converted to Hygra format using
the communityToHyperAdj program in the utils/ directory.
KONECT datasets can be converted to Hygra format using
the KONECTtoHyperAdj program in the utils/ directory.

249

