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Abstract—The future of main memory appears to lie in the
direction of new technologies that provide strong capacity-to-
performance ratios, but have write operations that are much
more expensive than reads in terms of latency, bandwidth, and
energy. Motivated by this trend, we propose sequential and
parallel algorithms to solve graph connectivity problems using
significantly fewer writes than conventional algorithms. Our
primary algorithmic tool is the construction of an o(n)-sized
implicit decomposition of a bounded-degree graph G on n nodes,
which combined with read-only access to G enables fast answers
to connectivity and biconnectivity queries on G. The construction
breaks the linear-write “barrier”, resulting in costs that are
asymptotically lower than conventional algorithms while adding
only a modest cost to querying time. For general non-sparse
graphs on m edges, we also provide the first parallel algorithms
for connectivity and biconnectivity that require o(m) writes and
O(m) operations. These algorithms provide insight into how
applications can efficiently process computations on large graphs
in systems with read-write asymmetry.

I. INTRODUCTION

Recent trends in computer memory technologies suggest
wide adoption of memory systems in which reading from
memory is significantly cheaper than writing to it, especially
with regards to energy. The reason for this asymmetry, roughly
speaking, is that writing to memory requires a change to the
state of the material, while reading only requires detecting
the current state.1 This trend poses the interesting question
of how to design algorithms that are more efficient in the
number of writes than in the number of reads. To this end
recent works have studied models that account for asymmetric
read-write costs and have analyzed a variety of algorithms in
these models [5], [6], [9]–[11], [13], [18], [19], [24], [30], [36],
[37].

Some of this work has shown an inherent tradeoff between
reads and writes. For example, Blelloch et al. [10] show that
for computations on certain DAGs, any reduction in writes
requires an increase in reads. For FFTs and sorting networks,
for example, the increase in reads is exponential with respect
to the decrease in writes. Intuitively, the tradeoff is because
reducing writes restricts the ability to save partial results
needed in multiple places, and hence requires repeating certain
computations. This is reminiscent of well-studied time-space
tradeoffs [23]—but is not the same, because time-space models
still allow an arbitrary number of writes to the limited space,
with each write costing the same as a read.

The full version of this paper is available at arXiv:1710.02637 [7].
1See Appendix A in [7] for some technical details of the new memories.

In this paper we are interested in graph connectivity
problems, and in particular we are interested in whether it is
possible to build an “oracle” using a sublinear number of writes
that supports fast queries, along with any read-write tradeoffs
this entails. We consider undirected connectivity (connected
components and spanning forests) and biconnectivity (bicon-
nected components, articulation points, and related 1-edge-
connectivity) problems. We do not consider the cost of initially
storing the graph in memory, but note that there are many
scenarios in which the graph is either represented implicitly,
e.g., the Swendsen-Wang algorithm [34], or for which the graph
is sampled and used multiple times, e.g., edges selected based
on different Boolean hash functions or based on properties
(timestamp, weight, relationship, etc.) associated with the edge.

Our results show that if a graph with n vertices and m edges
is sufficiently dense, a sublinear number of writes (o(m)) can
be achieved without asymptotically increasing the number of
reads (no tradeoff is required). For bounded-degree graphs, on
the other hand, our algorithm achieving a sublinear number of
writes (o(n)) involves a linear tradeoff between reads and writes.
The main technical contribution is a new implicit decomposition
of a graph that allows writing out information for only a suitably
small sample of the vertices. We use two models to account for
the read-write asymmetry: (i) the Asymmetric RAM model [10],
in which writes to the asymmetric memory cost ω � 1 and all
other operations are unit cost; and (ii) its parallel variant, the
Asymmetric NP model [6]. Both models have a small symmetric
memory (a cache) that can be used to help minimize the number
of writes to the large asymmetric memory.

Table I summarizes our main results for these models,
showing asymptotic improvements in construction costs over
all prior work (sequential or parallel) for these well-studied
connectivity problems.

Algorithms with o(m) writes for non-sparse graphs. The
first contribution of this paper is a group of algorithms that
achieve O(m/ω+n) writes, O(m) other operations, and hence
O(m + ωn) work. While standard sequential BFS- or DFS-
based graph connectivity algorithms require only O(n) writes,
and hence already achieve this bound, the parallel setting is
more challenging. Existing linear-work parallel connectivity
algorithms perform Θ(m) writes [16], [20]–[22], [31]–[33], and
hence are Θ(ωm) work in the asymmetric memory setting. We
show how the algorithm of Shun et al. [33] can be adapted to
use only O(m/ω+n) writes (and O(m) other operations), by
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TABLE I: Summary of main results for constructing connectivity oracles (n nodes, m edges, †=expected), where ω � 1 is the cost of writes
to the asymmetric memory. Compared to prior work, asymmetric memory writes are reduced by up to a factor of ω, yielding improvements
in both sequential time and parallel work. All parallel algorithms have depth polynomial in ω logn. For all algorithms the small symmetric
memory is only O(ω logn) words.

avoiding repeated graph contractions and using a recent write-
efficient BFS [6], yielding the first O(m+ωn) expected work,
low-depth parallel algorithm for connectivity in the asymmetric
setting. (By low-depth we mean depth polynomial in ω log n.)

For biconnectivity, the standard output is an array of size
m indicating to which biconnected component each edge
belongs [17], [25]. Producing this output requires at least
m writes, and as a result, the sequential time (and parallel
work) ends up being Θ(ωm) in the asymmetric memory
setting. We present an equally effective representation of the
output, which we call the BC labeling, which has size only
O(n). This leads to a sequential biconnectivity algorithm
that constructs the oracle in only O(m + ωn) time in the
asymmetric setting. Moreover, we show how to leverage our
new parallel connectivity algorithm to compute the BC labeling
in O(m/ω + n) writes, yielding the first O(m + ωn) work
parallel algorithm for biconnectivity in the asymmetric memory
setting. We show:

Theorem I.1. Graph connectivity and biconnectivity oracles
can be constructed in parallel with O(m+ωn) expected work
and O(ω2 log2 n) depth whp2 on the Asymmetric NP model,
and each query can be answered in O(1) work. Sequentially,
the construction takes O(m + ωn) time on the Asymmetric
RAM model, with O(1) query time. The symmetric memory
used is O(ω log n) words.

Algorithms with o(n) writes for sparse graphs. For sparse
graphs, the work of our connectivity and biconnectivity
algorithms is dominated by the Ω(n) writes they perform.
This led us to explore the following fundamental question: Is
it possible to construct, using o(n) writes to the asymmetric
memory, an oracle for graph connectivity (or biconnectivity)
that can answer queries in time independent of n? Given
that the standard output for these problems (even with BC
labeling) is Θ(n) size even for bounded-degree graphs, one
might conjecture that Ω(n) writes are required. Our main
contribution is a (perhaps surprising) affirmative answer to the
above question for both the connectivity and biconnectivity
problems.

The key technical contribution behind our breaking of the
Ω(n)-write “barrier” is the definition and use of an implicit
k-decomposition of a graph. Informally, a k-decomposition of
a graph G is comprised of a subset S of the vertices, called
centers, and a mapping ρ(·) that partitions the vertices among
the centers, such that (i) |S| = O(n/k), (ii) the number of

2Throughout the paper we use whp to mean with probability 1− n−c for
any constant c that shows up linearly in the cost bound (e.g. O(cω2 log2 n)
in the bound given).

vertices in each partition is at most k, and (iii) for each center,
the induced subgraph on its vertices is connected. However,
explicitly storing the center associated with each vertex would
require Ω(n) writes. Instead, an implicit k-decomposition
defines the mapping implicitly in terms of a procedure that is
given only G and S (and a 1-bit labeling on S).

With the new concept of implicit k-decomposition, we
present three algorithmic subroutines which together construct
connectivity and biconnectivity oracles with O(m/

√
ω) writes,

which is o(n) when m ∈ o(
√
ωn). For clarity of presentation,

we begin by assuming the input graph has bounded degree.
Section VI discusses how to relax this constraint.

We first present an algorithm to compute an implicit k-
decomposition that can be constructed in only O(n/k) writes,
O(kn) reads, and low depth, and can compute ρ(v) in only
O(k) expected reads and no asymmetric memory writes. The
intuition behind our construction is first to pick a random
subset of the vertices and then map each unpicked vertex
to the closest center by performing a BFS on the graph G.
Unfortunately, this does not satisfy the constraint on partition
size, so a more sophisticated approach is needed. The unique
challenge that arises again and again in the asymmetric context
is that the sublinear limitation on the number of writes rules
out the approaches used by prior work.

We then show how the implicit k-decomposition can be
used to solve graph connectivity and biconnectivity. We define
the concept of a clusters graph, which contains vertices each
representing a cluster and edges between clusters. The key
idea is that after precomputing on the clusters graph and
storing a constant amount of information about connectivity
and biconnectivity on each vertex (corresponding to a cluster
in the original graph), a connectivity or biconnectivity query
can be answered from only the local structure and prepro-
cessed information on a constant number of clusters. This is
straightforward for connectivity queries because we need only
compare the labels of the clusters that contain the respective
query points. However, this becomes much more challenging in
graph biconnectivity because the correspondence between the
clusters and biconnected components is non-trivial: a cluster
may contain the vertices in many biconnected components
while the vertices in a certain biconnected components can
belong to different clusters. Therefore, biconnectivity queries
require considerable subtleties in the design, to store the
appropriate information on the clusters graph to enable each
query to access only a constant number of clusters. More
specifically, we define the concept of the local graph of each
cluster (it maintains the relationship of biconnectivity of the



cluster and its neighboring clusters and can be computed with
cost proportional to the size of the cluster), such that the
biconnectivity queries discussed in Section V can be answered
from a constant number of local graphs and the information
stored in the clusters graph.

Our sequential algorithms have significant algorithmic merits
on their own, but we also show that all the algorithms can be
made to run in parallel with low depth. We show:

Theorem I.2. Graph connectivity and biconnectivity oracles
can be constructed in O(m/

√
ω) expected writes and O(m

√
ω)

expected time (parallel work) on the Asymmetric RAM model
(Asymmetric NP model, respectively). The depth on the Asym-
metric NP is O(ω3/2 log3 n) whp. Each connectivity query can
be answered in O(ω1/2) expected time (work) (O(ω1/2 log n)
whp) and each biconnectivity query can be answered in O(ω)
expected time (work) (O(ω log n) whp). The symmetric memory
used is O(ω log n) words.

II. PRELIMINARIES AND RELATED WORK

Let G = (V,E) be an undirected, unweighted graph with
n = |V | vertices and m = |E| edges. G can contain self-
loops and parallel (duplicate) edges, and is not necessarily
connected. We assume a global ordering of the vertices to
break ties when necessary. If the degree of every vertex is
bounded by a constant, we say the graph is bounded-degree.
We use standard definitions of spanning tree, spanning forest,
connected component, biconnected component, articulation
points, bridge, and k-edge-connectivity on a graph, and lowest-
common-ancestor (LCA) query on a tree (which can be found
in [17] and are summarized in Appendix B in [7]). Let [n] =
{1, 2, · · · , n} where n is a positive integer.

Computation models. Sequential algorithms are analyzed
using the Asymmetric RAM model [10], comprised of an
infinitely large asymmetric memory and a small symmetric
memory. The cost of writing to the large memory is ω, and
all other operations (instructions) have unit cost. This models
practical settings in which there is a small amount of standard
symmetric memory (e.g., a cache) in addition to the asymmetric
memory.

For parallel algorithms, we use the Asymmetric Nested-
Parallel (NP) model [6], which is designed to characterize both
parallelism and memory read-write asymmetry. In the model,
a computation is represented as a (dynamically unfolding)
directed acyclic graph (DAG) of tasks that begins and ends
with a single task called the root. A task consists of a sequence
of instructions that must be executed in order. Tasks can also
call the Fork instruction, which creates child tasks that can be
run in parallel with each other. The memory in the Asymmetric
NP Model consists of (i) an infinitely large asymmetric memory
accessible to all tasks and (ii) a small task-specific symmetric
memory accessible only to a task and its children. The cost of
writing to large memory is ω, and all other operations have
unit cost. The work W of a computation is the sum of the
costs of the operations in its DAG and the depth D is the cost
of the DAG’s most expensive path. Under mild assumptions,

Ben-David et al. [6] show that a work-stealing scheduler can
execute an algorithm whose Asymmetric NP complexity is
W work and D depth in O(W/P + ωD) expected time on P
processors.

In both models, the number of writes refers only to the writes
to the asymmetric memory, ignoring writes to symmetric mem-
ory. In general we use operations to include all instructions
other than a write to asymmetric memory. All reads and writes
are to words of size Θ(log n) for an input size of n. The size
of the symmetric memory is measured in words. For queries
we do not include the cost of writing the result to asymmetric
memory because the query might be part of a larger query
done in symmetric memory.

Related Work. Read-write asymmetries have been studied in
the context of NAND Flash chips [5], [18], [19], [30], focusing
on how to balance the writes across the chip to avoid uneven
wear-out of locations. Targeting instead the new memory
technologies, read-write asymmetries have been an active area
of research in the systems/database/architecture communities
(e.g., [2], [4], [13]–[15], [26], [29], [36]–[42]). In the algorithms
community, Blelloch et al. [9] define several sequential and
parallel computation models that take asymmetric read-write
costs into account, and design efficient sorting algorithms under
these models. Their follow-up paper [10] presents sequential
algorithms for various problems that perform better than their
classic counterparts under asymmetric read-write costs, as well
as several lower bounds. Carson et al. [11] present write-
efficient sequential algorithms for a similar model, as well
as write-efficient parallel algorithms (and lower bounds) on a
distributed memory model with asymmetric read-write costs,
focusing on linear algebra problems and direct N-body methods.
Ben-David et al. [6] propose the Asymmetric NP model and
present write-efficient, work-efficient, low depth (span) parallel
algorithms for reduce, list contraction, tree contraction, breadth-
first search, ordered filter, and planar convex hull, as well as
a write-efficient, low-depth minimum spanning tree algorithm
that is nearly work-efficient. Jacob and Sitchinava [24] prove
lower bounds for an asymmetric external memory model. In
each of these models, there is a small amount of symmetric
memory that can be used to help minimize the number of
writes to the large asymmetric memory.

Although graph decompositions with various properties
have been shown to be quite useful in a large variety of
applications (e.g., [3], [27], [28]), to our knowledge none
of the prior algorithms provide the necessary conditions for
processing graphs with a sublinear number of writes to answer
connectivity/biconnectivity queries (targeting instead other
decomposition properties that are unnecessary in our setting,
such as having few edges between clusters). For example, Miller
et al.’s [28] parallel low-diameter decomposition algorithm
requires at least Ω(n) writes (even if a write-efficient BFS [6]
is used), and provides no guarantees on the partition sizes.
Similarly, algorithms for size-balanced graph partitioning
(e.g., [1]) require Ω(n) writes. Our implicit k-decomposition
construction is reminiscient of sublinear time algorithms for
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Fig. 1: An example implicit k-decomposition for k = 4 consisting of
clusters {d, h, l}, {i, j, b}, {e, f}, and {a, c, g, k}. In the graph, j′s
primary center is e (i.e., ρ0(j) = e) and its secondary center is b
(i.e., ρ(j) = b). Note b is on the shortest path from j to e. Also note
that c is closer to the secondary center b than to g, but picks g as
its actual center, because b is not on the shortest path to its primary
center. In breaking ties we assume lexicographically smaller letters
have higher priorities. The solid lines are on shortest paths from a
vertex to its secondary center.

estimating the number of connected components [8], [12] in
its use of BFS from a sample of the vertices. However, their
BFS is used for a completely different purpose (approximate
counting of 1/nu, the inverse of the size of the connected
component containing a sampled node u), does not provide a
partitioning of the nodes into clusters (two BFS’s from different
nodes can overlap), and cannot be used for connectivity or
biconnectivity queries (two BFS’s from the same connected
component may be truncated before intersecting).

III. IMPLICIT DECOMPOSITION

In this paper we introduce the concept of an implicit
decomposition. The idea is to partition an undirected graph into
connected clusters such that all we need to store to represent
the cluster is one representative, which we call the center of the
cluster, and some small amount of information on that center
(1 bit in our case). The goal is to quickly answer queries on
the cluster. The queries we consider are: given a vertex find
its center, and given a center find all its vertices. To reduce
the amount of symmetric-memory needed, we need all clusters
to be roughly the same size. We start with some definitions,
which consider an undirected graph G.

For graph G = (V,E) we refer to the subgraph induced
by a subset of vertices as a cluster. A decomposition of a
connected graph G = (V,E) is a vertex subset S ⊂ V , called
centers, and a function ρ(v) : V → S, such that the cluster
C(s) = {v ∈ V | ρ(v) = s} for each center s ∈ S is connected.
A decomposition is a k-decomposition if the size of each
cluster is upper bounded by k, and |S| = O(n/k). We are
often interested in the graph induced by the decomposition,
and in particular:
Definition 1. Given the decomposition (S, ρ) of a graph
G = (V,E), the clusters graph is the multigraph G′ =
(S, 〈 {ρ(u), ρ(v)} : {u, v} ∈ E, ρ(u) 6= ρ(v) 〉 ).

Definition 2. An implicit decomposition of a connected graph
G = (V,E) is a decomposition (S, ρ, `) such that ρ(·) is
defined implicitly in terms of an algorithm given only G, S,
and a (short) labeling `(s) on s ∈ S.

In this paper, we use implicit k-decompositions. Our goal is
to construct and query the decomposition quickly, while using
short labels. Our main result is the following.

Theorem III.1. An implicit k-decomposition (S, ρ, `) can be
constructed on an undirected bounded-degree graph G =
(V,E) with |V | = n such that:

• the construction takes O(kn) operations and O(n/k)
writes, both in expectation;

• ρ(v) query: finding ρ(v) for any given v ∈ V takes O(k)
operations in expectation and O(k log n) whp, and no
writes;

• C(s) query: finding C(s) for any given s ∈ S takes O(k2)
operations in expectation, and O(k2 log n) whp and no
writes;

• the labels `(s), s ∈ S are 1-bit each; and,
• construction and queries take O(k log n) symmetric mem-

ory whp.

Note that this theorem indicates a tradeoff between reads
(operations) and writes for the construction controlled by k.

At a high level, the construction algorithm works by
identifying a subset of centers such that every vertex can
quickly find its nearest center without having to keep a pointer
to it (which would require too many writes). It first selects a
random subset of the vertices where each vertex is selected with
probability 1/k. We call these the primary centers and denote
them as S0. All other vertices are then assigned to the nearest
such center. Unfortunately, a cluster defined in this way can be
significantly larger than k (super-polynomial in k). To handle
this, the algorithm identifies an additional O(n/k) secondary
centers, S1. Every vertex v is associated with a primary center
ρ0(v) ∈ S0, and an actual center ρ(v) ∈ S = S0 ∪ S1. The
only values the algorithm stores are the set S and the bits
`(s), s ∈ S indicating whether it is primary or secondary. An
example is given in Figure 1.

In our construction it is important to break ties among equal-
length paths in a consistent way, such that subpaths of a shortest
path are themselves a unique shortest path. For this purpose
we assume the vertices have a total ordering (and comparing
two vertices takes constant time). Among two equal hop-length
paths from a vertex u, consider the first vertex where the paths
diverge. We say that the path with the higher priority vertex
at that position is shorter. Let SP(u, v) be the shortest path
between u and v under this definition for breaking ties, and
L(SP(u, v)) be its length such that comparing L(SP(u, v))
and L(SP(u,w)) breaks ties as defined. By our definition all
subpaths of a shortest path are also unique shortest paths for a
fixed vertex ordering. Based on these definitions we specify
ρ0(v) and ρ as follows:

ρ0(v) = argmin
u∈S0

L(v, u)

ρ(v) = argmin
u∈S∧u∈SP(v,ρ0(v))

L(v, u)

The definitions indicate that a vertex’s center is the first
center encountered on the shortest path to the nearest primary
center. This could either be a primary or secondary center (see
Figure 1). ρ(v) is defined in this manner to prevent vertices



from being reassigned to secondary centers created in other
primary clusters, which could result in oversized clusters.

We now describe how to find ρ(v) for any vertex v ∈ V .
First, we find v’s closest primary center by running a BFS
from v until we hit a vertex in S0. The BFS orders the vertices
by L(SP(v, ·)). To find ρ(v) we first search for the primary
center of v (ρ0(v)) and then identify the first center on the
path from v to ρ0(v), possibly ρ0(v) itself.

Lemma III.2. ρ(v) can be found in O(k) operations in expec-
tation, and O(k log n) operations whp, and using O(k log n)
symmetric memory whp.

Proof. Note that the search order from a vertex is deterministic
and independent of the sampling used to select S0. Therefore,
the expected number of vertices visited before hitting a vertex in
S0 is k. By tail bounds, the probability of visiting O(ck log n)
vertices before hitting one in S0 is at most 1/nc. The search is
a BFS, so it takes time linear in the number of vertices visited.
Because the vertices are of bounded degree, placing them in
priority order in the queue is easy. Once the primary center is
found, a search back on the path gives the actual center. We
assume that symmetric memory is used for the search so that
no writes to the asymmetric memory are required. The memory
used is proportional to the search size, which is proportional to
the number of operations; O(k) in expectation and O(k log n)
whp.

The space requirement for the symmetric memory is
O(k log n), which we believe is realistic as we set k =

√
ω

when using this decomposition later in this paper.
We use the following lemma to help find C(s) for a center

s.

Lemma III.3. The union of the shortest paths SP(v, ρ(v)) for
v ∈ V define a rooted spanning tree on each cluster, with the
center as the root (when path edges are viewed as directed
towards ρ(v)).

Proof. We first show that this is true for the clusters defined
by the primary centers S (i.e., ρ0(v)). We use the notation
SP(v, u) + SP(u,w) to indicate joining the two shortest paths
at u. Consider a vertex v with ρ0(v) = s, and consider all of
the vertices P on the shortest path from v to s. The claim
is that for each u ∈ P, ρ(u) = s and SP(u, s) is a subpath
of P . This implies a rooted tree. To see that ρ(u) = s note
that the shortest path from u to a primary vertex t has length
L(SP(u, t)). We can write the length of the shortest path from
v to t as L(SP(v, t)) ≤ L(SP(v, u) + SP(u, t)) and the length
of the shortest path from v to s as L(SP(v, s)) = L(SP(v, u)+
SP(u, s)). Because ρ0(v) = s, we know that L(SP(v, s)) <
L(SP(v, t)) ∀t 6= s. Through substitution and subtraction, we
see that L(SP(u, s)) < L(SP(u, t)) ∀t 6= s. This means that
ρ0(u) = s. We know that SP(u, s) cannot contain the edge b
that v takes to reach u in SP(v, s) because u ∈ SP(v, s). Since
the search from u excluding b will have the same priorities as
the search from v when it reaches u, SP(u, s) is a subpath of
P .

Algorithm 1: Constructing Implicit k-Decomposition
Input: Connected bounded-degree graph G = (V,E), parameter

k
Output: A set of cluster centers S0 and S1 (S = S0

⋃
S1)

1 Sample each vertex with probability 1/k, and place in S0

2 S1 = ∅
3 foreach vertex v ∈ S0 do
4 SECONDARYCENTERS(v, G, S0)
5 return S0 and S1

6 function SECONDARYCENTERS(v, G, S)
7 Search from v for the first k vertices that have v as their

center. This defines a tree.
8 If the search exhausts all vertices with center v, return.
9 Otherwise identify a vertex u that partitions the tree such

that its subtree and the rest of the tree are each at least a
constant fraction of k.

10 Add u to S1.
11 SECONDARYCENTERS(v, G, S ∪ u)
12 SECONDARYCENTERS(u, G, S ∪ u)

Now consider the clusters defined by ρ(v). The secondary
centers associated with a primary center s partition the tree
for s into subtrees. Each subtree begins (relative to the root)
at a center and ends when encountering another center (this
other center is not included). Each vertex in the tree for s will
be assigned the correct partition by ρ(v) because each will
be assigned to the first secondary center on the way to the
primary center.

The set of solid edges in Figure 1 is an example of the
spanning forest. This gives the following.

Corollary III.4. For any vertex v, SP(v, ρ(v)) ⊆ C(ρ(v)).

Lemma III.5. For any vertex s ∈ S, its cluster C(s)
can be found in O(k|C(s)|) operations in expectation and
O(k|C(s)| log n) operations whp, and using O(|C(v)| +
k log n) symmetric memory whp.

Proof. For any center s ∈ S, identifying all the vertices in
its cluster C(s) can be implemented as a BFS starting at s.
For each vertex v ∈ V that the BFS visits, the algorithm
checks if ρ(v) = s. If so, we add v to C(s) and put its
unvisited neighbors in the BFS queue, and otherwise we do
neither. By Corollary III.4, any vertex v for which ρ(v) =
s must have a path to s only through other vertices whose
center is v. Therefore the algorithm will visit all vertices in
C(s). Furthermore, because the graph has bounded degree it
will only visit O(C(s)) vertices not in C(s). Each visit to
a vertex u requires finding ρ(v). Our bound on the number
of operations therefore follows from Lemma III.2. We use
O(|C(v)|) symmetric memory for storing the queue and C(v),
and O(k log n) memory whp for calculating ρ(v).

We now show how to select the secondary centers such that
the size of each cluster is at most k. Algorithm 1 describes
the process. By Lemma III.3, before the secondary centers
are added, each primary vertex in s ∈ S0 defines a rooted
tree of paths from the vertices in its cluster to s. The function
SECONDARYCENTERS then recursively cuts up this tree into
subtrees rooted at each u that is identified.



Lemma III.6. Algorithm 1 runs in O(nk) operations and
O(n/k) writes (both in expectation), and uses O(k log n)
symmetric memory whp on the Asymmetric RAM Model. It
generates a implicit k-decomposition S of G with labels
distinguishing S0 from S1.

Proof. The algorithm creates clusters of size at most k by
construction (it partitions any cluster bigger than k using the
added vertices u). Each call to SECONDARYCENTERS (without
recursive calls) will use O(k2) operations in expectation
because we visit k vertices and each one has to search back to
v to determine if v is its center. Each call also uses O(k log n)
space for the search whp because we need to store the k
elements found so far and each ρ(v) uses O(k log n) space for
the search whp. Before making the recursive calls, we write out
u to S1, requiring one write per call to SECONDARYCENTERS.
The symmetric memory can be reused by the recursive calls.

We are left with showing there are at most O(n/k) calls
to SECONDARYCENTERS. There are n/k primary centers in
expectation. If there are too many (beyond some constant factor
above the expectation), we can try again. Because the graph
has bounded degree, we can find a vertex that partitions the
tree such that its subtree and the rest of the tree are both at
most a constant fraction of k. We can now charge all internal
nodes of the recursion against the leaves. There are at most
O(n/k) leaves because each defines a cluster of size Θ(k).
Therefore there are O(n/k) calls to SECONDARYCENTERS,
giving the stated overall bounds.

Parallelizing the decomposition. To parallelize the decompo-
sition in Algorithm 1, we make one small change; in addition
to adding u to the set of secondary centers at each recursive
call to SECONDARYCENTERS, we add all children of v (thus
separating v into its own cluster). This guarantees that the
height of the tree decreases by at least one on each recursive
call, and only increases the number of writes by a constant
factor. This gives the following lemma.

Lemma III.7. On the Asymmetric NP model, Algorithm 1 runs
in depth O((k log n)(k2 log n+ ω)) whp.

Proof. Certainly selecting the set S0 can be done in parallel.
Furthermore the calls to SECONDARYCENTERS on line 4 can be
made recursively in parallel. The depth will be proportional to
the depth to each call to SECONDARYCENTERS (not including
recursive calls) multiplied by the depth of the recursion.
To bound the depth, in the parallel version we also mark
the children of the root as secondary centers, which does
not increase the number of secondary centers asymptotically
(due to the bounded-degree assumption). In this way the
height of the tree decreases by one on each recursive call.
The depth of the recursion is at most the depth of the tree
associated with the primary center ρ0(v). This is bounded by
O(k log n) whp because by Lemma III.2 every vertex finds
its primary center within O(k log n) steps whp. The depth of
SECONDARYCENTERS (without recursion) is just the number
of operations (O(k2 log n) whp) plus the depth of the one write
of u (which costs ω). This gives the bound.

Extension to unconnected graphs. Note that once a connected
component contains at least one primary center, the definition
and Theorem III.1 hold. However, it is possible that in a small
component, the search of ρ(·) exhausts all connected vertices
without finding any primary centers (vertices in the initial
sample, S0). In this case, we check whether the size of the
cluster is at least k, and if so, we mark as a primary center
the vertex that is the smallest according to the total order on
vertices. This marks at most n/k primary centers and the rest
of the algorithm remains unchanged. This step is added after
line 1 in Algorithm 1, and requires O(nk) work and operations,
O(n/k) writes, and O(k) depth. The cost bound therefore is
not changed. If the component is smaller than k, we use the
smallest vertex in the component as a center implicitly, but
never write it out. The ρ(·) function can easily return this in
O(k) operations.

IV. GRAPH CONNECTIVITY AND SPANNING FOREST

This section describes parallel write-efficient algorithms for
graph connectivity and spanning forest; that is, identifying
which vertices belong to each connected component and
producing a spanning forest of the graph. These tasks can
be easily accomplished sequentially by performing a breadth-
first or depth-first search in the graph with O(m) operations
and O(n) writes. While there are several work-efficient parallel
algorithms for the problem [16], [20]–[22], [31]–[33], all
of them use Ω(n + m) writes. This section has two main
contributions: (1) Section IV-B provides a parallel algorithm
using O(n+m/ω) writes in expectation, O(nω+m) expected
work, and O(ω2 log2 n) depth with high probability; (2)
Section IV-C gives an algorithm for constructing a connectivity
oracle on constant-degree graphs in O(n/

√
ω) expected writes

and O(n
√
ω) expected total operations. Our oracle-construction

algorithm is parallel, having depth O(ω3/2 log3 n) whp, but it
also represents a contribution as a sequential algorithm.

Our parallel algorithm (Section IV-B) can be viewed as a
write-efficient version of the parallel algorithm due to Shun
et al. [33]. This algorithm uses a low-diameter decomposition
algorithm of Miller et al. [28] as a subroutine, which we review
and adapt next in Section IV-A and Appendix C in [7].

A. Low-diameter Decomposition

Here we review the low-diameter decomposition of Miller et
al. [28]. The so-called “(β, d)-decomposition” is terminology
lifted from their paper, and it should not be confused with our
implicit k-decompositions. The details of the decomposition
subroutine are important only to extract a bound on the number
of writes, and are left to Appendix C in [7].

A (β, d)-decomposition of an undirected graph G = (V,E),
where 0 < β < 1 and 1 ≤ d ≤ n, is defined as a partition
of V into subsets V1, . . . , V` such that (1) the shortest path
between any two vertices in each Vi using only vertices in Vi
has length at most d, and (2) the number of edges (u, v) ∈ E
crossing the partition, i.e., such that u ∈ Vi, v ∈ Vj , and i 6= j,
is at most βm. Miller et al. [28] provide a parallel algorithm
for generating a (β,O(log n/β))-decomposition using O(m)



operations, reads, and writes. As described, however, their
algorithm performs Θ(m) writes. The key subroutine of the
algorithm, however, is just breadth-first searches (BFS’s).
Replacing these BFS’s with write-efficient BFS’s [6] yields
the following theorem:

Theorem IV.1. A (β,O(log n/β))-decomposition can be gen-
erated in O(n) expected writes, O(m + ωn) expected work,
and O(ωlog2 n/β) depth whp on the Asymmetric NP model.

B. Connectivity and Spanning Forest

The parallel connectivity algorithm of [33] applies the low-
diameter decomposition recursively with β set to a constant less
than 1. Each level of recursion contracts a subset of vertices
into a single supervertex for the next level. The algorithm
terminates when each connected component is reduced to a
single supervertex. The stumbling block for write efficiency
is this contraction step, which performs writes proportional to
the number of remaining edges.

Instead, our write-efficient algorithm applies the low-
diameter decomposition just once, but with a much smaller β,
as follows:

1) Perform the low-diameter decomposition with parameter
β = 1/ω.

2) Find a spanning tree on each Vi (in parallel) using write-
efficient BFS’s of [6].

3) Create a contracted graph, where each vertex subset in the
decomposition is contracted down to a single vertex. To
write down the cross-subset edges in a compacted array,
employ the write-efficient filter of [6].

4) Run any parallel linear-work spanning forest algorithm on
the contracted graph, e.g., the algorithm from [16] with
O(ω log n) depth.

Combining the spanning forest edges across subsets (produced
in Step 4) with the spanning tree edges (produced in Step
2) gives a spanning forest on the original graph. Adding the
bounds for each step together yields the following theorem.
Again only O(1) symmetric memory is required per task.

Theorem IV.2. For any choice of 0 < β < 1, connectivity and
spanning forest can be solved in O(n+ βm) expected writes,
O(ωn+ βωm+m) expected work, and O(ω log2 n/β) depth
whp on the Asymmetric NP model. For β = 1/ω+n/m, these
bounds reduce to O(n+m/ω) expected writes, O(m+ ωn)
expected work and O(ωmin{ω,m/n} log2 n) depth whp.

The proof is given in the full version of this paper [7].

C. Connectivity Oracle in Sublinear Writes

A connectivity oracle supports queries that take as input a
vertex and return the label (component ID) of the vertex. This
allows one to determine whether two vertices belong in the
same component. The algorithm is parameterized by a value k,
to be chosen later. We assume throughout that the symmetric
memory per task is Ω(k log n) words and that the undirected
graph has bounded degree.

We begin with an outline of the algorithm. The goal is
to produce an oracle that can answer for any vertex which

component it belongs to in O(k) work. To build the oracle,
we would like to run the connectivity algorithm on the clusters
graph produced by an implicit k-decomposition. The result
would be that all center vertices in the same component be
labeled with the same identifier. Answering a query then
amounts to outputting the component ID of the center it maps
to, which can be queried in O(k) expected work and O(k log n)
work whp according to Lemma III.2.

The main challenge in implementing this strategy is that
we cannot afford to write out the edges of the clusters graph
(as there could be too many edges). Instead, we treat the
implicit k-decomposition as an implicit representation of the
clusters graph. Given an implicit representation, our connected
components algorithm is the following:

1) Find an implicit k-decomposition of the graph.
2) Run the write-efficient connectivity algorithm from Sec-

tion IV-B with β = 1/k, treating the k-decomposition
as an implicit representation of the clusters graph, i.e.,
querying edges as needed.

As used in the connectivity algorithm, our implicit repre-
sentation need only be able to list the edges in the clusters
graph that are adjacent to a center vertex x. To do so, start at
x, and explore outwards (e.g., with BFS), keeping all vertices
and edges encountered so far in symmetric memory. For each
frontier vertex v, query its center (as in Lemma III.5) — if
ρ(v) = x, then v’s unexplored neighbors are added to the next
frontier; otherwise (if ρ(v) 6= x) the edge (x, ρ(v)) is in the
clusters graph, so add it to the output list.

Lemma IV.3. Assuming a symmetric memory of size
Ω(k log n), the centers neighboring each center in the clusters
graph can be listed in no writes, and work, depth, and
operations all O(k2) in expectation or O(k2 log n) whp.

Proof. Listing all the vertices in the cluster takes expected
work O(k2) according to Lemma III.5, or O(k2 log n) whp.
The number of vertices in the cluster is O(k), so they can all
fit in symmetric memory. Moreover, because each vertex in
the cluster has O(1) neighbors, the total number of explored
vertices in neighboring clusters is O(k), all of which can fit
in symmetric memory. Each of these vertices is queried with
a cost of O(k) operations in expectation and O(k log n) whp
given the specified symmetric memory size (Lemma III.2).

Note that a consequence of the implicit representation is
that listing neighbors is more expensive, and thus the number
of operations performed by a BFS increases, affecting both
the work and the depth. The implicit representation is only
necessary while operating on the original clusters graph, i.e.,
while finding the low-diameter decomposition and spanning
trees of each of those vertex subsets; the contracted graph can
be built explicitly as before. The best choice of k is k =

√
ω,

giving us the following theorem, whose proof is provided in
the full version of this paper [7].

Theorem IV.4. A connectivity oracle that answers queries in
O(
√
ω) expected work and O(

√
ω log n) work whp can be

constructed in O(n/
√
ω) expected writes, O(

√
ωn) expected



work, and O(ω3/2 log3 n) depth whp on the Asymmetric NP
model, assuming a symmetric memory of size Ω(

√
ω log n).

We can also output the spanning forest on the contracted
graph in the same bounds, which will be used in the biconnec-
tivity algorithms in Sections V-C and V-D.

V. GRAPH BICONNECTIVITY

In this section we introduce algorithms related to biconnectiv-
ity and 1-edge connectivity queries. We first review the classic
approach and its output, which requires Θ(m) writes. Then we
propose a new BC (biconnected-component) labeling output,
which has size O(n) and can be constructed in O(n) writes.
Queries such as determining bridges, articulation points, and
biconnected components can be answered in O(1) operations
(and no writes) with the BC labeling. Finally we show how an
implicit k-decomposition (as generated by Algorithm 1) can
be integrated into the algorithm to further reduce the writes to
O(n/

√
ω).

We begin by presenting sequential algorithms that we believe
to be new and interesting. Then in Section V-D we show that
these algorithms are parallelizable. All of our algorithms use
O(k log n) symmetric memory.

In this section we assume that the graph is connected. If
not, we can run the connectivity algorithm and then run the
algorithm on each component. The results for a graph are
the union of the results of each of its connected components.
Several of the proofs for theorems in this section are given in
the full version of this paper [7].

A. The Classic Algorithm

The classic Tarjan-Vishkin parallel algorithm [35] to compute
biconnected components and bridges of a connected graph is
based on the Euler-tour technique. The algorithm starts by
building a spanning tree T rooted at some arbitrary vertex.
Each vertex is labeled by first(v) and last(v), which are the
ranks of v’s first and last appearance on the Euler tour of T .
The low value low(v) and the high value high(v) of a vertex
v ∈ V are defined as:

low(v) = min{w(u) | u is in the subtree rooted at v}
high(v) = max{w(u) | u is in the subtree rooted at v}

where

w(u) = min {first(u)∪{first(u′) | (u, u′) is a nontree edge}}3

Namely, low(v) and high(v) indicate the first and last vertex
on the Euler tour that are connected by a nontree edge to
the subtree rooted at v. The low(·) and high(·) values can
be computed by a reduce on each vertex followed by a
leaffix4 on the subtrees. The computation of low and high
takes O(ω log n) depth, O(m + ωn) work, and O(n) writes
on the Asymmetric NP model, by using the tree-contraction

3If there are multiple edges (u, u′) in the graph, none of them are considered
here.

4Leaffix is similar to prefix but defined on a tree and computed from the
leaves to the root.
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Fig. 2: An example of the BC labeling of a graph. The spanning
tree is rooted at vertex 1. The solid and dotted lines indicate tree
edges with the dotted lines being the critical edges. Dashed lines
are non-tree edges. The vertex labels are l = [∅, 1, 1, 1, 2, 1, 1, 3, 3]
(vertex 1 does not have a label), and component heads r = [1, 2, 6].
Based on the BC labeling the bridges, articulation points, and
biconnected components can be easily retrieved as {(2, 5)}, {2, 6},
and {{1, 2, 3, 4, 6, 7}, {2, 5}, {6, 8, 9}}.

algorithm and scheduling theorem from [6]. Then a tree edge
is a bridge if and only if the child’s low and high is inclusively
within the range of first and last values of its parent. The
cost of this variant of the Tarjan-Vishkin algorithm applied to
finding bridges is dominated by the cost of the spanning tree,
as given in Theorem IV.2.

For biconnected components, the standard output is an array
B[·] of size m, where the i-th element in B indicates to
which biconnected component the i-th edge belongs [17], [25].
Explicitly writing out B is costly in the asymmetric setting,
especially when m� n. We provide an alternative BC labeling
as output that requires only O(n) writes.

B. The BC Labeling

Here we describe the BC (biconnected-component) labeling,
which effectively represents biconnectivity output in O(n)
space. Instead of storing all edges within each biconnected
component, the BC labeling stores a component label for each
vertex, and a vertex for each component. An example of a
BC labeling of a graph is shown in Figure 2. We will later
show how to use this representation along with an implicit
decomposition to reduce the writes further.

Definition 3. The BC labeling of a connected undirected graph
with respect to a rooted spanning tree stores a vertex label
l : V \{root} → [C] where C is the number of biconnected
components in the graph, and a component head r : [C]→ V
of each biconnected component.

Lemma V.1. The BC labeling of a connected graph can be
computed in O(m) operations and O(n+m/ω) writes on the
Asymmetric RAM. Queries to find bridges, articulation points,
or biconnected components can be answered in no writes and
O(1) operations given a BC labeling on a rooted spanning
tree.

The algorithm to compute BC labeling. A vertex v ∈ V
(except for the root) is an articulation point if and only if
there exists at least one child u in the spanning tree that has
first(v) ≤ low(u) and high(u) ≤ last(v). We call the tree edge
between such a pair of vertices a critical edge. The algorithm to
compute the BC labeling simply removes all critical edges and



runs graph connectivity on all remaining graph edges. Then the
algorithm described in Section IV-B gives a unique component
label that we assign as the vertex label. For each component,
its head is the vertex that is its parent in the spanning tree
(this parent is unique). Each connected component and its head
form a biconnected component.

The correctness of the algorithm can be proven by showing
the equivalence of the result of this algorithm and that of the
Tarjan-Vishkin algorithm [35].

Because the number of biconnected components is at most n,
the spanning tree, vertex labels, and component heads require
only linear space. Therefore, the space requirement of the BC
labeling is O(n).

Query on BC labeling. We now show that queries are easy
with the BC labeling. An edge is a bridge if and only if it
is the only edge connecting a single-vertex component and
its component head (the biconnected component contains this
single edge). The root of the spanning tree is an articulation
point if and only if it is the head of at least two biconnected
components. Any other vertex is an articulation point if and
only if it is the head of at least one biconnected component.

This new representation can be interpreted as an implicit
version of the standard output [17], [25] of biconnected
components, i.e. the label of the biconnected component of
each edge can be reported in O(1) operations. This is simple:
we report the label of the endpoint of the edge that is further
from the root along the spanning tree. The correctness can be
shown in two cases: if the edge is a spanning tree edge, then
the component label is stored in the further vertex; otherwise,
the two vertices must have the same label and reporting either
one gives the label of this biconnected component.

Using BC labeling gives the following theorem (see Sec-
tion V-D for the depth analysis):

Theorem V.2. Articulation points, bridges, and biconnected
components on the Asymmetric NP model take O(m + nω)
expected work and O(ωmin{ω,m/n} log2 n) depth whp, and
each query can be answered in O(1) work.

It is interesting to point out that the BC labeling can
efficiently answer queries that are non-trivial when using the
standard output. More details about BC labeling can be found
in the full version of this paper [7].

C. Biconnectivity Oracle in Sublinear Writes

Next we will show how the implicit k-decomposition
generated by Algorithm 1 can be integrated into the algorithm
to further reduce writes in the case of bounded-degree graphs.
Our goal is as follows.

Theorem V.3. There exists an algorithm that computes ar-
ticulation points, bridges, and biconnected components of a
bounded-degree graph in O(n

√
ω) expected work, O(n/

√
ω)

writes and O(ω3/2 log3 n) depth, and each query takes an
expected O(ω) work and O(ω log n) work whp, with no writes,
on the Asymmetric NP model.

𝑒1 

𝑒1
′  

𝑒2
′  

𝑒2 

Fig. 3: An example of a local graph. The vertices in the grey shaded
area are in one cluster. The local graph contains the vertices in the
shaded area and the outside vertices shown in octagons. Solid lines
indicate the edges that are in the clusters and thick grey lines represent
cluster tree edges connecting other clusters (which are shown in yellow
pentagons). The three neighbor clusters sharing the same cluster label
are connected using two edges (dashed curves). Edges e1 and e2
are the edges that only have one endpoint in the cluster. The other
endpoint is set to be the outside vertex connecting the cluster of
the other original endpoint of this edge in the cluster spanning tree.
Consequently e′1 and e′2 are the replacement edges for e1 and e2.

The overall idea of the new algorithm is to replace the
vertices in the original graph with the clusters generated by
Algorithm 1. We generate the BC labeling on the clusters graph
(so the vertex labels are now the cluster labels), and then show
that biconnectivity queries can be answered using only the
information on the clusters graph and a constant number of
associated clusters. The cost analysis is based on the parameter
k, and using k =

√
ω gives the result in the theorem.

1) The BC labeling on the clusters graph: In the first step
of the algorithm we generate the BC labeling on the clusters
graph with k =

√
ω. We root this spanning tree and name it the

clusters spanning tree. The head vertex of a cluster is chosen
as the cluster root for that cluster. (The root cluster does not
have a cluster root.) For a cluster, we call the endpoint of a
cluster tree edge outside of the cluster an outside vertex. The
outside vertices of a cluster is the set of outside vertices of
all associated cluster tree edges. Note that all outside vertices
except for one are the cluster roots for neighbor clusters.

2) The local graph of a cluster: We next define the concept
of the local graph of a cluster, so that each query only needs
to look up a constant number of associated local graphs. An
example of a local graph is shown in Figure 3 and a more
formal definition is as follows.

Definition 4. The local graph G′ of a cluster is defined as
(Vi ∪ Vo, E′), where Vi is the set of vertices in the cluster, Vo
is the set of outside vertices, and E′ consists of:

1) The edges with both endpoints in this cluster and the
associated clusters’ tree edges.

2) For c neighbor clusters sharing the same cluster label,
we find the c corresponding outside vertices in Vo, and
connect the vertices with c− 1 edges.



Algorithm 2: Sublinear-write algorithm for biconnectivity
Input: Connected bounded-degree graph G = (V,E) and an

implicit k-decomposition.
1 Apply connectivity algorithm to generate the clusters graph.
2 Compute low(·) and high(·) values of all clusters.
3 Compute the BC labeling of the clusters graph.

// Bridges and articulation points can be queried
4 Compute the root biconnectivity of all outside vertices in all

local graphs.
5 Apply leaffix to identify the articulation point of each cluster

root.
// Biconnectivity and 1-edge connectivity on vertices and edges can be

queried
6 Compute the number of biconnected components in each cluster

that are completely within this cluster.
7 Apply prefix sums on the clusters to give an identical label to

each biconnected component.
// The label of biconnected component can be queried

3) For an edge (v1, v2) with only one endpoint v1 in Vi, we
find the outside vertex vo that is connected to v2 on the
cluster spanning tree, and create an edge from v1 to vo.

Figure 3 shows an example local graph. Solid black lines
are edges within the cluster and solid grey lines are cluster
tree edges. Neighbor clusters that share a label are shown with
dashed outlines and connected via curved dashed lines. e1 and
e2 are examples of edges with only one endpoint in the cluster,
and they are replaced by e′1 and e′2 respectively.

Computing local graphs requires a spanning tree and BC
labeling of the clusters graph.

Lemma V.4. The cost to construct one local graph is O(k2)
in expectation and O(k2 log n) whp on the Asymmetric RAM
model.

The analysis of the cost is provided in the full version [7].

3) Queries: With the local graph and the BC labeling on
the clusters graph, many types of biconnectivity queries can
be answered. The required preprocessing steps are shown in
Algorithm 2.

Bridges. There are three cases when deciding whether an
edge is a bridge: a tree edge in the clusters spanning tree, a
cross edge in the clusters spanning tree, or an edge with both
endpoints in the same cluster. Deciding which case to use takes
constant operations.

A tree edge is a bridge if and only if it is a bridge of the
clusters graph, which we can mark with O(n/k) writes while
computing the BC labeling. A cross edge cannot be a bridge.

For an edge within a cluster, we use the following lemma:

Lemma V.5. An edge with both endpoints in one cluster is a
bridge if and only if it is a bridge in the local graph of the
corresponding cluster.

Proof. If an edge is a bridge in the original graph it means
that there are no edges from the subtree of the lower vertex
to the outside except for this edge itself. By applying the
modifications of the edges, this property still holds, which
means the edge is still a bridge in the local graph and vice
versa.

Checking if an edge in a cluster is a bridge takes O(k2) in
expectation and O(k2 log n) whp.
Articulation points. By a similar argument, a vertex is an
articulation point of the original graph if and only if it is an
articulation point of the associated local graph. Given a query
vertex v, we can check whether it is an articulation point in the
local graph associated to v, which costs O(k2) in expectation
and O(k2 log n) whp.

We now discuss how to perform several more complex
queries. To start with, we show some definitions and results
that are used in the query algorithms.

Definition 5. We say a vertex v in a cluster C’s local graph
is root-biconnected if v and the cluster root have the same
vertex label in C’s local graph.

A root-biconnected vertex v indicates that v can connect
to the ancestor clusters without using the cluster root (i.e.,
the cluster root is not an articulation point to cut v). Another
interpretation is that there is no articulation point in the cluster
C that disconnects v from the outside vertex of the cluster
root.

Lemma V.6. Computing and storing the root biconnectivity of
all outside vertices in all local graphs takes O(nk) operations
in expectation and O(n/k) writes on the Asymmetric RAM.

The proof is straightforward. The cost to construct the local
graphs and compute root biconnectivity is O(nk), and because
there are O(n/k) clusters tree edges, storing the results requires
O(n/k) writes.
Querying whether two vertices are biconnected. Checking
whether two vertices v1 and v2 can be disconnected by
removing any single vertex in the graph is one of the most
commonly-used biconnectivity-type queries. To answer this
query, our goal is to find the tree path between this pair of
vertices and check whether there is an articulation point on
this path that disconnects them.

The simple case is when v1 and v2 are within the same
cluster. We know that the two vertices are connected by a path
via the vertices within the cluster. We can check whether any
vertex on the path disconnects these two vertices using their
vertex labels.

Otherwise, v1 and v2 are in different clusters C1 and C2.
Assume CLCA is the cluster that contains the LCA of v1 and
v2 (which can be computed by the LCA of C1 and C2 in
O(1) operations) and vLCA ∈ CLCA is the LCA vertex. The tree
path between v1 and v2 is from v1 to C1’s cluster root, and
then to the cluster root of the outside vertex of C1’s cluster
root, and so on, until reaching vLCA, and the other half of the
path can be constructed symmetrically. It takes O(k2) expected
operations to check whether any articulation point disconnects
the paths in C1, C2 and CLCA. For the rest of the clusters,
because we have already precomputed and stored the root
biconnectivity of all outside vertices, then applying a leaffix
on the clusters spanning tree computes the cluster containing
the articulation point of each cluster root. Therefore, checking
whether such an articulation point exists on the path between



C1 and CLCA or between C2 and CLCA that disconnects v1 and
v2 takes O(1) operations. Thus, checking whether two vertices
are biconnected requires O(k2) operations in expectation.

In the full version of this paper [7] we show how to compute
whether two vertices are 1-edge connected, biconnected-
component labels for edges, bridge-block trees, cut-block
trees, and 1-edge-connected components. Each of these queries
requires O(k2) cost in expectation and O(k2 log n) whp after a
precomputation of O(nk) operations and O(n/k) writes. Some
of them use more sophisticated techniques.

D. Parallelizing Biconnectivity Algorithms

The two biconnectivity algorithms discussed in this section
are highly parallelizable. The key algorithmic components
include Euler-tour construction, tree contraction, graph con-
nectivity, prefix sum, and preprocessing LCA queries on
the spanning tree. Because the algorithms run each of the
components a constant number of times, the depth of the
algorithm is bounded by the depth of graph connectivity,
whose bound is provided in Section IV (O(ω2 log2 n) and
O(ω3/2 log3 n) whp when plugging in β as 1/ω and 1/

√
ω,

respectively).5

For the sublinear-write algorithm, we assume that compu-
tations within a cluster are sequential, and the work is upper
bounded by O(k2) = O(ω) in expectation and O(k2 log n) =
O(ω log n) whp for the computations within a cluster. This term
is additive to the overall depth, because after computing the
spanning tree (forest) of the clusters, we run all computations
within the clusters in parallel and then run tree contraction
and prefix sums based on the calculated values. The O(ω)
expected work (O(ω log n) whp) is also the cost for a single
biconnectivity query, and multiple queries can be done in
parallel.

VI. SUBLINEAR-WRITE ALGORITHMS ON
UNBOUNDED-DEGREE GRAPHS

Given a graph G with n vertices and m edges that is not
bounded-degree, we can construct a bounded-degree graph
G′ with O(m+ n) vertices and edges such that connectivity
queries on G can be answered using G′, as follows.

The overall idea is to build a tree structure with virtual
nodes for each vertex that has more than a constant degree.
Each virtual node will represent a certain range of the edge list.
Consider a vertex v0 with degree d. We name v0’s neighbors
v1 to vd. We build a binary tree structure with 2 virtual nodes
on the first level v0,1→d/2, v0,d/2+1→d, 4 virtual nodes on the
second level v0,1→d/4, · · · , v0,3d/4+1→d and so on. We replace
the endpoint of an edge from the original graph G with the leaf
node in this tree structure that represents the corresponding
range with a constant number of edges. Notice that if both
endpoints of an edge have large degrees, then they both have
to be redirected.

5For both algorithms, the classic parallel algorithms with polylogarithmic
depth solve Euler-tour construction, tree contraction, and prefix sum, because
we here only require linear writes (in terms of the number of vertices, O(n)
and O(n/k), for the two algorithms).

The simple case is for a sparse graph in which most of the
vertices are bounded-degree, and the sum of the degrees for
vertices with more than a constant number of edges is O(n/k)
(or O(n/

√
ω)). In this case we can simply explicitly build a

tree structure for the edges of a vertex.
Otherwise, we require the adjacency array of the input graph

to have the following property: each edge can query its positions
in the edge lists for both endpoints. Namely, an edge (u, v)
knows it is the i-th edge in u’s edge list and j-th edge in v’s
edge list. To achieve this, either an extra pointer is stored for
each edge, or the edge lists are presorted and the label can
be binary searched (this requires O(log n) work for each edge
lookup). With this information, there exists an implicit graph
G′ with bounded-degree. The binary tree structures can be
defined such that given an internal tree node, we can find the
three neighbors (two neighbors for the root) without explicitly
storing the newly added vertices and edges. Notice that the new
graph G′ now has O(m+n) vertices including the virtual ones.
The virtual nodes help to generate implicit k-decomposition
and require no writes unless they are selected to be either
primary or secondary centers.

Graph connectivity is obviously not affected by this transfor-
mation. It is easy to check that a bridge in the original graph
G is also a bridge in the new graph G′ and vice versa. In the
biconnectivity algorithm, an edge in G can be split into multiple
edges in G′, but this will not change the biconnectivity property
within a biconnected component, unless the component only
contains one bridge edge, which can be checked separately.

This construction, combined with our earlier results, leads
to Theorem I.2.

VII. CONCLUSION

This work provides several algorithms targeted at solving
graph connectivity problems in memories exhibiting read-
write asymmetry. Our algorithms make use of an implicit
decomposition technique that we believe has wider applications.
By using this decomposition, we are able to reduce the number
of writes in exchange for a small increase in the total number
of operations. This allows us to offset the increased cost of
writes in anticipated future systems and hence improve overall
performance. In addition to emerging memory technologies, we
believe that research into algorithms with fewer writes provides
interesting results from both a theoretical and memory/cache
coherence perspective. Our work provides a framework that
can be used to develop write-efficient solutions to graph
connectivity problems.
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