
Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition
and Related Graph Problems

Quanquan C. Liu†
Northwestern University

USA
quanquan@northwestern.edu

Jessica Shi
MIT CSAIL

USA
jeshi@mit.edu

Shangdi Yu
MIT CSAIL

USA
shangdiy@mit.edu

Laxman Dhulipala†
University of Maryland

USA
laxman@umd.edu

Julian Shun
MIT CSAIL

USA
jshun@mit.edu

Abstract
Maintaining a 𝑘-core decomposition quickly in a dynamic graph
has important applications in network analysis. The main challenge
for designing efficient exact algorithms is that a single update to
the graph can cause significant global changes. Our paper focuses
on approximation algorithms with small approximation factors that
are much more efficient than what exact algorithms can obtain.

We present the first parallel, batch-dynamic algorithm for ap-
proximate 𝑘-core decomposition that is efficient in both theory
and practice. Our algorithm is based on our novel parallel level
data structure, inspired by the sequential level data structures of
Bhattacharya et al. [STOC ’15] and Henzinger et al. [2020]. Given a
graph with 𝑛 vertices and a batch of updates B, our algorithm prov-
ably maintains a (2 + 𝜀)-approximation of the coreness values of all
vertices (for any constant 𝜀 > 0) in 𝑂 (|B| log2 𝑛) amortized work
and 𝑂 (log2 𝑛 log log𝑛) depth (parallel time) with high probability.

As a by-product, our 𝑘-core decomposition algorithm also gives
a batch-dynamic algorithm for maintaining an𝑂 (𝛼) out-degree ori-
entation, where 𝛼 is the current arboricity of the graph. We demon-
strate the usefulness of our low out-degree orientation algorithm by
presenting a new framework to formally study batch-dynamic algo-
rithms in bounded-arboricity graphs. Our framework obtains new
provably-efficient parallel batch-dynamic algorithms for maximal
matching, clique counting, and vertex coloring.

We implemented and experimentally evaluated our 𝑘-core de-
composition algorithm on a 30-core machine with two-way hyper-
threading on 11 graphs of varying densities and sizes. Compared
to the state-of-the-art algorithms, our algorithm achieves up to a
114.52× speedup against the best parallel implementation, up to a
544.22× speedup against the best approximate sequential algorithm,
and up to a 723.72× speedup against the best exact sequential algo-
rithm. We also obtain results for our algorithms on graphs that are
orders-of-magnitude larger than those used in previous studies.
†This work was done while the authors were at MIT CSAIL.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs International 4.0 License.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538569

CCS Concepts
• Theory of computation → Dynamic graph algorithms; •
Computing methodologies→ Shared memory algorithms.
Keywords
parallel batch-dynamic algorithms, 𝑘-core decomposition, low out-
degree orientation, maximal matching, 𝑘-clique counting, vertex
coloring

ACM Reference Format:
Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun.
2022. Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and
Related Graph Problems. In Proceedings of the 34th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’22), July 11–14, 2022,
Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3490148.3538569

1 Introduction
Discovering the structure of large-scale networks is a fundamental
problem for many areas of computing. One of the key challenges is
to detect communities in which individuals (or vertices) have close
ties with one another, and to understand how well-connected a
particular individual is to the community. The well-connectedness
of a vertex or a group of vertices is naturally captured by the concept
of a 𝑘-core or, more generally, the 𝑘-core decomposition; hence,
this particular problem and its variants have been widely studied in
the machine learning [1, 24, 28], database [10, 14, 23, 46, 54], social
network analysis and graph analytics [18, 19, 37, 39], computational
biology [15, 40, 49, 52], and other communities [27, 39, 51, 59].

Given an undirected graph 𝐺 , with 𝑛 vertices and𝑚 edges, the
𝑘-core of the graph is the maximal subgraph 𝐻 ⊆ 𝐺 such that
the induced degree of every vertex in 𝐻 is at least 𝑘 . The 𝑘-core
decomposition of the graph is defined as a partition of the graph into
layers such that a vertex 𝑣 is in layer𝑘 if it belongs to a𝑘-core but not
a (𝑘 + 1)-core; this value is known as the coreness of the vertex and
the coreness values induce a natural hierarchical clustering. Classic
algorithms for 𝑘-core decomposition are inherently sequential. A
well-known algorithm for finding the decomposition is to iteratively
select and remove all vertices 𝑣 with smallest degree from the graph
until the graph is empty [53]. Unfortunately, the length of the
sequential dependencies, or the depth, of such a process can be
Ω(𝑛) given a graph with 𝑛 vertices. As 𝑘-core decomposition is a P-
complete problem [3], it is unlikely to have a parallel algorithmwith

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

191

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3490148.3538569
https://doi.org/10.1145/3490148.3538569
https://doi.org/10.1145/3490148.3538569

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

polylogarithmic depth. To obtain parallel methods with poly(log𝑛)
depth, we relax the condition of obtaining an exact decomposition
to one of obtaining a close approximate decomposition.

Previous works studied approximate 𝑘-core decompositions as
a way for obtaining faster and more scalable algorithms in larger
graphs than in exact settings [13, 14, 24, 28, 63]. Approximate core-
ness values are useful for applications where existing methods are
already approximate, such as diffusion protocols in epidemiological
studies [15, 40, 49, 52], community detection and network centrality
measures [21, 25, 32, 55, 66, 69], network visualization and model-
ing [1, 12, 68, 70], protein interactions [2, 5], and clustering [29, 44].
Furthermore, due to the rapidly changing nature of today’s large
networks, many recent studies have focused on the dynamic setting,
where edges and vertices can be inserted and deleted and the 𝑘-core
decomposition is computed in real time.

Our paper focuses on the batch-dynamic setting where updates
are performed over a batch of multiple edge updates applied simul-
taneously. Such a setting is conducive to parallelization, which we
leverage to obtain scalable algorithms. We provide a work-efficient
batch-dynamic approximate 𝑘-core decomposition algorithm based
on a parallel level data structure that we design. We implement
our algorithm and show experimentally that it performs favorably
compared to the state-of-the-art. Furthermore, we show that our
parallel level data structure can be used to obtain work-efficient
parallel batch-dynamic algorithms for several other problems: low
out-degree orientation, maximal matching, 𝑘-clique counting, and
vertex coloring.

We introduce the necessary definitions in Section 2 before giving
a technical overview of our results in Section 3. Section 4 presents
our parallel level data structure and𝑘-core decomposition algorithm
in more detail. Section 5 presents experimental results. Section 6
gives an overview of our algorithms for several other problems.
2 Preliminaries
This paper studies undirected, unweighted graphs, and we use 𝑛 to
denote the number of vertices and𝑚 to denote the number of edges
in a graph. Definition 2.3 defines approximate𝑘-core decomposition.
The definition requires the definition of a 𝑘-core, which we define
first.
Definition 2.1 (𝑘-Core). For a graph 𝐺 and positive integer 𝑘 , the
𝑘-core of 𝐺 is the maximal subgraph of 𝐺 with minimum degree 𝑘 .
Definition 2.2 (𝑘-Core Decomposition). A 𝑘-core decomposition
is a partition of vertices into layers such that a vertex 𝑣 is in layer 𝑘 if
it belongs to a 𝑘-core but not to a (𝑘 + 1)-core. 𝑘 (𝑣) denotes the layer
that vertex 𝑣 is in, and is called the coreness of 𝑣 .

Definition 2.2 defines an exact 𝑘-core decomposition. A
𝑐-approximate 𝑘-core decomposition is defined as follows.
Definition 2.3 (𝑐-Approximate 𝑘-Core Decomposition). A
𝑐-approximate 𝑘-core decomposition is a partition of vertices into
layers such that a vertex 𝑣 is in layer 𝑘 ′ only if 𝑘 (𝑣)𝑐 ≤ 𝑘 ′ ≤ 𝑐𝑘 (𝑣),
where 𝑘 (𝑣) is the coreness of 𝑣 .

We let 𝑘 (𝑣) denote the estimate of 𝑣 ’s coreness. Fig. 1 shows an
example of a 𝑘-core decomposition and a (3/2)-approximate 𝑘-core
decomposition.
Model Definitions.We analyze the theoretical efficiency of our
parallel algorithms in the work-depth model. The model is defined

3/2-Approximate
3-Core

3-Core

2-Core

1-Core 1-Core

Figure 1: Exact 𝑘-core decomposition (left) and (3/2)-approximate
𝑘-core decomposition (right).

Symbol Meaning

𝐺 = (𝑉 , 𝐸) undirected/unweighted graph
𝑛,𝑚 number of vertices, edges, resp.
𝛼 current arboricity of graph
𝐾 number of levels in PLDS

𝑁 (𝑣) (resp. 𝑁 (𝑆)) set of neighbors of vertex 𝑣 (resp. vertices 𝑆)
dl(𝑣) desire-level of vertex 𝑣
ℓ , ℓ (𝑣) a level (starting with level ℓ = 0), current level of vertex 𝑣, resp.
𝑉ℓ , 𝑍ℓ set of vertices in level ℓ , set of vertices in levels ≥ ℓ , resp.
𝑔𝑖 set of levels in group 𝑖 (starting with 𝑔0)

𝑔 (𝑣), 𝑔𝑛 (ℓ) group number of vertex 𝑣, index 𝑖 where level ℓ ∈ 𝑔𝑖 , resp.
𝑘 (𝑣) , 𝑘 (𝑣) coreness of 𝑣, estimate of the coreness of 𝑣, resp.

up(𝑣) ,up∗ (𝑣) up-degree of 𝑣, up*-degree of 𝑣, resp.
𝜀, 𝜆, 𝛿 constants where 𝜀, 𝜆, 𝛿 > 0

Table 1: Table of notations used in this paper.

in terms of two complexity measures work and depth [16, 35]. The
work is the total number of operations executed by the algorithm.
The depth is the longest chain of sequential dependencies. We
assume that concurrent reads and writes are supported in 𝑂 (1)
work/depth. A work-efficient parallel algorithm is one with work
that asymptotically matches the best-known sequential time com-
plexity for the problem. We say that a bound holds with high
probability (w.h.p.) if it holds with probability at least 1− 1/𝑛𝑐 for
any 𝑐 ≥ 1.

We use parallel primitives in our algorithms, which take as input
a sequence 𝐴 of length 𝑛, including: parallel reduce-add, which
returns the sum of the entries in 𝐴, and parallel filter , which also
takes as input a predicate function 𝑓 , and returns the sequence 𝐵
containing each element 𝑎 ∈ 𝐴 where 𝑓 (𝑎) is true, while preserving
the same relative order as the order of elements in 𝐴. These primi-
tives take𝑂 (𝑛) work and𝑂 (log𝑛) depth [35]. We also use parallel
hash tables that support insertions, deletions, and membership
queries; they can perform 𝑛 insertions or deletions in 𝑂 (𝑛) work
and𝑂 (log∗ 𝑛) depth w.h.p. and 𝑛 membership queries in𝑂 (𝑛) work
and 𝑂 (1) depth w.h.p. [30].

Our parallel algorithms operate in the batch-dynamic setting. A
batch-dynamic algorithm processes updates (vertex or edge inser-
tions/deletions) in batches B of size |B|. For simplicity, since we
can reprocess the graph using an efficient parallel static algorithm
when |B| ≥ 𝑚, we consider 1 ≤ |B| < 𝑚 for our bounds.

Given a graph 𝐺 = (𝑉 , 𝐸) and a sequence of batches of edge
insertions and deletions, B1, . . . ,B𝑁 , where B𝑖 = (𝐸𝑖delete, 𝐸

𝑖
insert),

the goal is to efficiently maintain a (2 + 𝜀)-approximate 𝑘-core
decomposition (for any constant 𝜀 > 0) after applying each
batch B𝑖 (in order) on 𝐺 . In other words, let 𝐺𝑖 = (𝑉 , 𝐸𝑖) be the
graph after applying batches B1, . . . ,B𝑖 and suppose that we
have a (2 + 𝜀)-approximate 𝑘-core decomposition on 𝐺𝑖 ; then, for
B𝑖+1, our goal is to efficiently find a (2 + 𝜀)-approximate 𝑘-core
decomposition of 𝐺𝑖+1 =

(
𝑉 , (𝐸𝑖 ∪ 𝐸𝑖+1insert) \ 𝐸

𝑖+1
delete

)
.

All notations used are summarized in Table 1. Our data

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

192

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

structure also maintains a low out-degree orientation, which may be
parameterized by a graph property known as the arboricity.
Definition 2.4 (Arboricity). The arboricity (𝛼) of a graph is the
minimum number of spanning forests needed to cover the graph.
Definition 2.5 (𝑐-Approximate Low Out-Degree Orientation).
Given an undirected graph 𝐺 = (𝑉 , 𝐸), a 𝑐-approximate low
out-degree orientation is an acyclic orientation of all edges in 𝐺
such that the maximum out-degree of any vertex, 𝑑+𝑚𝑎𝑥 , is within a
𝑐-factor of the minimum possible maximum out-degree, 𝑑+𝑜𝑝𝑡 of any
acyclic orientation:1 𝑑+𝑜𝑝𝑡/𝑐 ≤ 𝑑+𝑚𝑎𝑥 ≤ 𝑐 · 𝑑+𝑜𝑝𝑡 .

We define an 𝑂 (𝛼) out-degree orientation to be an acyclic
orientation where all out-degrees are 𝑂 (𝛼). For an oriented graph,
we call neighbors of vertex 𝑣 connected by outgoing edges the out-
neighbors of 𝑣 and neighbors of 𝑣 connected by incoming edges
the in-neighbors of 𝑣 .
3 Technical Overview
In this paper, we provide a number of parallel work-efficient al-
gorithms for various problems. This section gives an overview of
our algorithms and how they compare with prior work. Table 2
summarizes our algorithmic results.

We first discuss 𝑘-core decomposition. A number of previous
works [47, 50, 58, 71, 72] providedmethods formaintaining the exact
𝑘-core decomposition under single edge updates in the sequential
setting. Unfortunately, none of these works provide algorithms
with provable polylogarithmic update time. The main bottleneck
for obtaining provably-efficient methods is that a single edge update
can cause all coreness values to change: consider a cycle with one
edge removed as a simple example. Removing and adding the edge
into this cycle, repeatedly, in succession, causes the coreness of all
vertices to change by one with each update. In the parallel setting,
a number of previous works [4, 26, 34, 36, 67] investigated batch-
dynamic algorithms for exact 𝑘-core decomposition. Unfortunately,
none of these works have poly(log𝑛) depth and some even have
Ω(𝑛) depth.

This paper shows that we can surprisingly obtain a parallel
batch-dynamic 𝑘-core decomposition algorithm with amortized
time bounds that are independent of the number of vertices that
changed coreness for approximate coreness. Such provable time
bounds can be obtained by cleverly avoiding updating coreness
values until enough error has accumulated; once such error has
accumulated, we can charge the amount of time required to up-
date the coreness to the number of updates that occurred. Doing
so carefully allows a provable 𝑂 (log2 𝑛) amortized work per up-
date that is independent of the number of changed coreness values.
A recent paper by Sun et al. [63] provides a sequential dynamic
approximate 𝑘-core decomposition algorithm that takes 𝑂 (log2 𝑛)
amortized time per update. Their algorithm is a threshold peeling/e-
limination procedure that gives a (2 + 𝜀)-approximation bound.
They also provide another sequential algorithm, which they call
round-indexing, that performs faster in practice.2 However, they do
not provide formal runtime proofs for this algorithm. Their thresh-
old peeling algorithm is inherently sequential since a vertex that
1𝑑+𝑜𝑝𝑡 , is equal to the degeneracy, 𝑑 , of𝐺 , and is closely related to 𝛼 : 𝑑/2 ≤ 𝛼 ≤ 𝑑 .
2Our experiments compare against the round-indexing algorithm since it is faster than
their thresholding peeling algorithm in practice.

Table 2: Work and depth bounds of algorithms in this paper.3

Problem Approx Work Depth Adversary

𝑘-core (2 + 𝜀) 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛)4 Adaptive
𝑘-core (2 + 𝜀) 𝑂 (𝑚 + 𝑛) 𝑂 (log3 𝑛) Static

Orientation (4 + 𝜀) 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛) Adaptive
Matching Maximal 𝑂 (|B | (𝛼 + log2 𝑛)) 𝑂 (logΔ log2 𝑛)6 Adaptive
𝑘-clique Exact 𝑂 (|B |𝛼𝑘−2 log2 𝑛) 𝑂 (log2 𝑛) Adaptive
Coloring 𝑂 (𝛼 log𝑛)5 𝑂 (|B | log2 𝑛) 𝑂 (log2 𝑛) Oblivious
Coloring 𝑂 (2𝛼) 𝑂 (|B | log3 𝑛) 𝑂 (log2 𝑛) Adaptive

changes thresholds can cause another to change their threshold
(and coreness estimate), resulting in a long chain of sequential de-
pendencies; such a situation results in polylogarithmic amortized
depth, whereas efficient parallel algorithms require polylogarithmic
depth w.h.p. in the worst case, which we obtain.

To design our 𝑘-core decomposition algorithm, we formulate a
parallel level data structure (PLDS) inspired by the sequential level
data structures (LDS) of Bhattacharya et al. [7] and Henzinger et
al. [33] to maintain a partition of the vertices satisfying specific
degree properties in certain induced subgraphs. In the LDS, vertices
are updated one at a time. One of our main technical insights is
that we can update many vertices simultaneously, leading to high
parallelism. Our 𝑘-core decomposition algorithm is work-efficient,
matches the approximation factor of the best-known sequential
dynamic approximate 𝑘-core decomposition algorithm of Sun et
al. [63], while achieving polylogarithmic depth w.h.p.

Dynamic problems related to 𝑘-core decompositions have been
recently studied in the theory community such as densest sub-
graph [7, 60] and low out-degree orientations [6, 11, 31, 33, 38, 41,
42, 62]; some of these works use the LDS. However, none of these
previous works proved guarantees regarding the 𝑘-core decomposi-
tion that can be maintained via a LDS. Notably, we show via a new,
intuitive proof that one can use the level of a vertex to estimate its
coreness in the LDS of [33]. Unlike the proof in [63] for their dy-
namic algorithm, our proof does not require densest subgraphs nor
any additional information besides the two invariants maintained
by the structure.

Our main theoretical and practical technical contributions for
𝑘-core decomposition are three-fold: (1) we present a simple mod-
ification and a new (2 + 𝜀)-approximate coreness proof for the
sequential level data structure of [7, 33] (which were not previously
used for coreness values) using only the levels of the vertices—no
such modification was known prior to this work since [63] requires
an additional elimination/peeling/round-indexing procedure; (2)
we provide the first parallel work-efficient batch-dynamic level data
structure that takes 𝑂 (log2 𝑛 log log𝑛) depth w.h.p., which we use
to obtain a (2 + 𝜖)-approximate batch-dynamic 𝑘-core decomposi-
tion algorithm; and (3) we provide multicore implementations of
our new algorithm and demonstrate its practicality through exten-
sive experimentation with state-of-the-art parallel and sequential
algorithms.

The following theorems give our theoretical bounds.
Theorem 3.1 (Batch-Dynamic 𝑘-Core Decomposition). Given𝐺 =

(𝑉 , 𝐸) where𝑛 = |𝑉 | and batch of updatesB, our algorithmmaintains
3All bounds are w.h.p., except for the work of static 𝑘-core,𝑂 (𝛼 log𝑛)-coloring, and
maximal matching.
4𝑂 hides a factor of𝑂 (log log𝑛) .
5Wedenote by𝛼 the current arboricity of the graph after processing all updates including
the most recent ones.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

193

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

(2+ 𝜀)-approximations of core values for all vertices (for any constant
𝜀 > 0) in𝑂 (|B| log2 𝑛) amortized work and𝑂 (log2 𝑛 log log𝑛) depth
w.h.p., using 𝑂 (𝑛 log2 𝑛 +𝑚) space.

Using the same parallel level data structure, we also obtain the
following result for maintaining a low out-degree orientation.
Theorem 3.2 (Batch-Dynamic Low Out-Degree Orientation). Our
algorithm maintains an (4 + 𝜀)-approximation of a minimum acyclic
out-degree orientation, with the same bounds as Theorem 3.1, where
the amortized number of edge flips is 𝑂 (|B| log2 𝑛).

A consequence of Theorem 3.2 is the following corollary.
Corollary 3.3 (𝑂 (𝛼) Out-Degree Orientation). Our algorithm
maintains an 𝑂 (𝛼) out-degree orientation, where 𝛼 is the current
arboricity (Definition 2.4), with the same bounds as Theorem 3.2.

Using Theorem 3.2, we design a framework for parallel batch-
dynamic algorithms on bounded-arboricity graphs (the framework
is described in our full paper [48]), for batch of updates B, which
in addition to problem-specific techniques allows us to obtain a set
of batch-dynamic algorithms for a variety of other fundamental
graph problems including maximal matching, clique counting, and
vertex coloring. The coloring algorithms are based heavily on the
sequential algorithms of Henzinger et al. [33], but we present them
as an application of our framework.
Theorem 3.4 (Batch-Dynamic Maximal Matching). We maintain
a maximal matching in 𝑂 (|B|(𝛼 + log2 𝑛)) amortized work and
𝑂 (log2 𝑛 (logΔ + log log𝑛)) depth w.h.p.,6 in𝑂 (𝑛 log2 𝑛 +𝑚) space.
Theorem 3.5 (Batch-Dynamic Implicit 𝑂 (2𝛼)-Vertex Coloring).
We maintain an implicit 𝑂 (2𝛼)-vertex coloring7 in 𝑂 (|B| log3 𝑛)
amortized work and 𝑂 (log2 𝑛) depth w.h.p. for updates, and
𝑂 (𝑄𝛼 log𝑛) work and 𝑂 (log𝑛) depth w.h.p., for 𝑄 queries, using
𝑂 (𝑛 log2 𝑛 +𝑚) space.
Theorem 3.6 (Batch-Dynamic 𝑘-Clique Counting). We maintain
the count of 𝑘-cliques in 𝑂 (|B|𝛼𝑘−2 log2 𝑛) amortized work and
𝑂 (log2 𝑛) depth w.h.p., in 𝑂 (𝑚𝛼𝑘−2) space.

All of the above results are robust against adaptive adversaries
which have access to the algorithm’s previous outputs. The follow-
ing algorithm is robust against oblivious adversaries which do not
have access to previous outputs.
Theorem 3.7. We maintain an 𝑂 (𝛼 log𝑛)-vertex coloring in
𝑂 (|B| log2 𝑛) amortized expected work and 𝑂 (log2 𝑛 log log𝑛)
depth w.h.p., in 𝑂 (𝑚 + 𝑛 log2 𝑛 + 𝛼 log𝑛) space.

Our 𝑘-core, low out-degree orientation, and vertex coloring al-
gorithms are work-efficient when compared to the best-known se-
quential, dynamic algorithms for the respective problems [7, 33, 63].
For maximal matching, our algorithm is work-efficient when 𝛼 =

Ω(log2 𝑛) when compared to the best-known sequential algorithm
that is robust against adaptive adversaries [31, 56]; the extra work
when 𝛼 = 𝑜 (log2 𝑛) comes from the fact that our bounds are with
respect to the current arboricity, compared to [31, 56] whose bounds
are with respect to the maximum arboricity over the sequence of
updates.

The best-known batch-dynamic algorithm for 𝑘-clique count-
ing, by Dhulipala et al. [20], takes 𝑂 (|B|𝑚𝛼𝑘−4) expected work
6Δ denotes the maximum current degree of the graph after processing all updates.
7An implicit vertex coloring algorithm returns valid colorings for queried vertices.

Levels

𝑘-Core Decomposition
𝑂 𝛼 Out-Degree Orientation

Orientation Maximal Matching
𝑘-Clique Counting

Implicit 𝑂 2! -Coloring

𝑂(𝛼	log	𝑛)-ColoringBoth

PLDS

Figure 2: This figure shows what parts of the PLDS are used in each
result. The level of each vertex is used to determine the𝑘-core decom-
position (Theorem 3.1) and low out-degree orientation (Theorem 3.2
and Corollary 3.3). The orientation of the edges is used for maximal
matching (Theorem 3.4), implicit𝑂 (2𝛼)-coloring (Theorem 3.5), and
𝑘-clique counting (Theorem 3.6). Finally, both are used for𝑂 (𝛼 log𝑛)-
coloring (Theorem 3.7).

and 𝑂 (log𝑘−2 𝑛) depth w.h.p., using 𝑂 (𝑚 + |B|) space. Compared
with their algorithm, our algorithm uses less work when 𝑚 =

𝜔 (𝛼2 log2 𝑛). In many real-world networks, 𝛼 <<
√
𝑚 (see e.g., Ta-

ble 3, for maximum 𝑘-core values, which upper bound 𝛼); thus, our
result is more efficient in many cases at an additional multiplicative
space cost of 𝑂 (𝛼𝑘−2). We also obtain smaller depth for all 𝑘 > 4.
We provide further comparisons with the best-known sequential
clique counting algorithm [22] in our full paper [48]. We describe
more specific batch-dynamic challenges we face in designing the
above algorithms in Section 6. The components of the PLDS used
in each of the above results are summarized in Fig. 2.

Finally, using ideas from our batch-dynamic 𝑘-core decomposi-
tion algorithm, we provide a new parallel static (2+𝜀)-approximate
𝑘-core decomposition algorithm. We compare this algorithm with
the best-known parallel static exact algorithm of [18] which uses
𝑂 (𝑚 + 𝑛) expected work and 𝑂 (𝜌 log𝑚) depth w.h.p., where 𝜌 is
the number of steps necessary to peel all vertices (𝜌 could potentially
be Ω(𝑛)). Hence, [18] does not guarantee poly(log𝑛) depth.
Theorem 3.8. Given 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 =

|𝐸 | edges, for any constant 𝜀 > 0, our algorithm finds an (2 + 𝜀)-
approximate 𝑘-core decomposition in 𝑂 (𝑛 +𝑚) expected work and
𝑂 (log3 𝑛) depth w.h.p., using 𝑂 (𝑛 +𝑚) space.
Experimental Contributions. In addition to our theoretical con-
tributions, we also provide optimized multicore implementations
of our 𝑘-core decomposition algorithms. We compare the perfor-
mance of our algorithms with state-of-the-art algorithms on a va-
riety of real-world graphs using a 30-core machine with two-way
hyper-threading. Our parallel static approximate 𝑘-core algorithm
achieves a 2.8–3.9x speedup over the fastest parallel exact 𝑘-core
algorithm [18] and achieves a 14.76–36.07x self-relative speedup.

We show that our parallel batch-dynamic 𝑘-core algorithm
achieves up to 544.22× speedups over the state-of-the-art sequen-
tial dynamic approximate 𝑘-core algorithm of Sun et al. [63], while
achieving comparable accuracy. We also achieve up to 114.52×
speedups over the state-of-the-art parallel batch-dynamic exact
𝑘-core algorithm of Hua et al. [34], and up to 723.72× speedups
against the state-of-the-art sequential exact 𝑘-core algorithm of
Zhang and Yu [72]. Our batch-dynamic algorithm outperforms
the best multicore static 𝑘-core algorithms by up to 121.76×
on batch sizes that are less than 1/3 of the number of edges in
the entire graph. We demonstrate that existing exact dynamic
implementations are not efficient or scalable enough to handle

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

194

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

graphs with billions of edges, whereas our algorithm is able to.
Furthermore, our demonstrated speedups of up to two orders of
magnitude indicates that our implementation not only fills the gap
for processing graphs that are orders of magnitude larger than can
be handled by existing implementations, but also that it is the best
option for many smaller networks. Our code is publicly available
at https://github.com/qqliu/batch-dynamic-kcore-decomposition.
4 Batch-Dynamic 𝑘-Core Decomposition
In this section, we describe our parallel, batch-dynamic algorithm
for maintaining an (2 + 𝜀)-approximate 𝑘-core decomposition (for
any constant 𝜀 > 0) and prove its theoretical efficiency.
4.1 Algorithm Overview
We present a parallel level data structure (PLDS) that maintains
a (2 + 𝜀)-approximate 𝑘-core decomposition that is inspired by
the class of sequential level data structures (LDS) of [7, 33]. Our
algorithm achieves 𝑂 (log2 𝑛) amortized work per update and
𝑂 (log2 𝑛 log log𝑛) depth w.h.p. In our full paper [48], we also
present a deterministic version of our algorithm that achieves
the same work bound with 𝑂 (log3 𝑛) depth. Our data structure
can also handle batches of vertex insertions/deletions (described
in our full paper [48]). Our data structure requires 𝑂 (log2 𝑛)
amortized work, which matches the 𝑂 (log2 𝑛) amortized update
time of [7, 33]. As in [33], our data structure can handle changing
arboricity that is not known a priori. Such adaptivity is necessary
to successfully maintain accurate approximations of coreness
values.

The LDS and our PLDS consists of a partition of the vertices into
𝐾 = 𝑂 (log2 𝑛) levels.8 We provide a very high level overview of
PLDS in this section. The levels are partitioned into equal-sized
groups of consecutive levels. Updates are partitioned into insertions
and deletions. Vertices move up and down levels depending on
the type of edge update incident to the vertex. Rules governing
the induced degrees of vertices to neighbors in different levels
determine whether a vertex moves. Using information about the
level of a vertex, we obtain a (2 + 𝜀)-approximation on the coreness
of the vertex.

After every edge update, vertices update their levels depending
on whether they satisfy two invariants. One invariant upper bounds
the induced degree of each vertex 𝑣 in the subgraph consisting of all
vertices in the same or higher level. Vertices whose degree exceeds
this bound move up one or more levels. We process the levels from
smallest to largest level and move all vertices from the same level
in parallel. The second invariant lower bounds the induced degree
of each vertex 𝑣 in the subgraph consisting of all vertices in the
level below 𝑣 , the level of 𝑣 and all levels higher than the level of 𝑣 .
Vertices that violate this invariant calculate a desire-level or the
closest level they can move to that satisfies this invariant. Then,
vertices with the same desire-level are moved in parallel to that level.
Finally, the coreness estimates of the vertices are computed based
on the current level of each vertex. We obtain the low out-degree
orientation by orienting edges from lower to higher levels (breaking
ties by vertex index). Fig. 4 shows the invariants maintained by our
algorithm; Figs. 5 and 6 show how our algorithm processes insertion
8When𝑚 = 𝑜 (𝑛) , we can also show that𝑂 (log2𝑚) levels suffice.

	𝑥

Group 0

Group 1

…

Θ log	𝑛
levels

Θ log	𝑛
levels 	𝑤

	𝑣
	𝑢

	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

	𝑥

	𝑤
	𝑣

	𝑢	𝑎

	𝑥
	𝑤

	𝑣
	𝑢	𝑎

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

Figure 3: Example of a cascade of vertex movements caused by an
edge deletion on 𝑢 (shown by the dashed red line).

and deletion updates. Together, they demonstrate an example run
of our algorithm.
4.2 Sequential Level Data Structure (LDS)
The sequential level data structures (LDS) of [7, 33] maintains a
low out-degree orientation under dynamic updates. Within their
LDS, a vertex moves up or down levels one by one, where a vertex
𝑣 (incident to an edge update) first checks whether an invariant is
violated, and then may move up or down one level. Then, the vertex
checks the invariants and repeats. Such movements may cause
other vertices to move up or down levels. The LDS combined with
our Section 4.5 directly gives an 𝑂 (log2 𝑛) update time sequential,
dynamic algorithm that outputs (2+𝜀)-approximate coreness values.

Unfortunately, such a procedure can be slow in practice. Specifi-
cally, a vertex that moves one level could cause a cascade of vertices
to move one level. Then, if the vertex moves again, the same cascade
of movements may occur. An example is shown in Fig. 3. Further-
more, any trivial parallelization of the LDS to support a batch of
updates will run into race conditions and other issues, requiring
the use of locks which blows up the runtime in practice.

Thus, our PLDS solves several challenges posed by the sequential
LDS. Given a batch B of edge updates: (1) our algorithm processes
the levels in a careful order that yields provably low depth for
batches of updates; (2) our insertion algorithm processes vertices
on each level at most once, which is key to the depth bounds—
after vertices move up from level ℓ , no future step in the algorithm
moves a vertex up from level ℓ ; and (3) our deletion algorithm
moves vertices to their final level in one step. In other words, a
vertex moves at most once in a deletion batch.
4.3 Detailed PLDS Algorithm
As mentioned previously, the vertices of the input graph𝐺 = (𝑉 , 𝐸)
in our PLDS are partitioned across 𝐾 levels. For each level ℓ =

0, . . . , 𝐾−1, let𝑉ℓ be the set of vertices that are currently assigned to
level ℓ . Let𝑍ℓ be the set of vertices in levels ≥ ℓ . Provided a constant
𝛿 > 0, the levels are partitioned into groups 𝑔0, . . . , 𝑔 ⌈log(1+𝛿) 𝑛⌉ ,
where each group contains 4⌈log(1+𝛿) 𝑛⌉ consecutive levels. Each
ℓ ∈

[
𝑖 ⌈log(1+𝛿) 𝑛⌉, . . . , (𝑖 + 1) ⌈log(1+𝛿) 𝑛⌉ − 1

]
is a level in group 𝑖 .

Our data structure consists of 𝐾 = 𝑂 (log2 𝑛) total levels. The PLDS
satisfies the following invariants as introduced in [7, 33], which
also govern how the data structure is maintained. The invariants
assume a given constant 𝛿 > 0 and a constant 𝜆 > 0.
Invariant 1 (Degree Upper Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ < 𝐾

and ℓ ∈ 𝑔𝑖 , then 𝑣 has at most (2 + 3/𝜆) (1 + 𝛿)𝑖 neighbors in 𝑍ℓ .
Invariant 2 (Degree Lower Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ > 0,
and ℓ − 1 ∈ 𝑔𝑖 , then 𝑣 has at least (1 + 𝛿)𝑖 neighbors in 𝑍ℓ−1.

https://github.com/qqliu/batch-dynamic-kcore-decomposition

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

	𝑣

	𝑥
	𝑦

	𝑤

	𝑢

Group 0

Group 1

Group 2

…

𝛿 = 0.4 and 𝜆 = 3

…

≤ 1.4 1 ⋅ 3 = 4.2
neighbors

≥ 1.4 4 = 1 neighbors
Θ log	𝑛
levels

Θ log	𝑛
levels

Θ log	𝑛
levels

Figure 4: Example of invariants maintained by the PLDS for 𝛿 = 0.4
and 𝜆 = 3. There are Θ(log𝑛) groups, each with Θ(log𝑛) . Each vertex
is in exactly one level of the structure and moves up and down by
some movement rules. For example, vertex 𝑥 (blue) is on level 3 and
in group 1.

Algorithm 1 Update(B)
Input: A batch of edge updates B.
1: Let Bins = all edge insertions in B, and Bdel = all edge deletions in B.
2: Call RebalanceInsertions(Bins). [Algorithm 2]
3: Call RebalanceDeletions(Bdel). [Algorithm 3]

Vertices with no neighbors are placed in level 0. An example
partitioning of vertices and maintained invariants is shown in Fig. 4.
Let ℓ (𝑣) be the level that 𝑣 is currently on. We define the group
number , 𝑔(𝑣), of a vertex 𝑣 to be the index 𝑖 of the group 𝑔𝑖 where
ℓ (𝑣) ∈ 𝑔𝑖 . Similarly, we define 𝑔𝑛(ℓ) = 𝑖 to be the group number for
level ℓ where ℓ ∈ 𝑔𝑖 . We define the up-degree, up(𝑣), of a vertex
𝑣 to be the number of its neighbors in 𝑍ℓ (𝑣) (up-neighbors), and
up*-degree, up∗ (𝑣), to be the number of its neighbors in 𝑍ℓ (𝑣)−1
(up∗-neighbors). These two notions of induced degree correspond
to the requirements of the two invariants of our data structure.
We define neighbors𝑤 of 𝑣 at levels ℓ (𝑤) < ℓ (𝑣) to be the down-
neighbors of 𝑣 . Lastly, the desire-level dl(𝑣) of a vertex 𝑣 is the
closest level to the current level of the vertex that satisfies both In-
variant 1 and Invariant 2.
Definition 4.1 (Desire-level). The desire-level, dl(𝑣), of vertex 𝑣 is
the level ℓ ′ that minimizes |ℓ (𝑣) − ℓ ′ |, and where up∗ (𝑣) ≥ (1 + 𝛿)𝑖′

and up(𝑣) ≤ (2 + 3/𝜆) (1+𝛿)𝑖 where ℓ ′ − 1 ∈ 𝑔𝑖′ , ℓ ′ ∈ 𝑔𝑖 , and 𝑖 ′ ≤ 𝑖 .
In other words, the desire-level of 𝑣 is the closest level ℓ ′ to the current
level of 𝑣 , ℓ (𝑣), where both Invariant 1 and Invariant 2 are satisfied.

We show that the invariants are always maintained except for
a period of time when processing a new batch of insertions/dele-
tions. During this period, the data structure undergoes a rebalance
procedure, where the invariants may be violated. The main update
procedure in Algorithm 1 separates the updates into insertions and
deletions (Line 1), and then calls RebalanceInsertions (Line 2) and
RebalanceDeletions (Line 3). We make two crucial observations:
when processing a batch of insertions, Invariant 2 is never violated;
and, similarly, when processing a batch of deletions, Invariant 1
is never violated. Thus, no vertex needs to move down when pro-
cessing an insertion batch and no vertex needs to move up when
processing a deletion batch. The two procedures are asymmetric,
and so we first describe RebalanceInsertions (Algorithm 2), and
then describe RebalanceDeletions (Algorithm 3).
Data Structures. Each vertex 𝑣 keeps track of its set of neighbors
in two structures. 𝑈 keeps track of the neighbors at 𝑣 ’s level and
above. We denote this set of 𝑣 ’s neighbors by 𝑈 [𝑣]. 𝐿𝑣 keeps track
of neighbors of 𝑣 for every level below ℓ (𝑣)—in particular, 𝐿𝑣 [𝑗]

Algorithm 2 RebalanceInsertions(𝐵ins)
Input: A batch of edge insertions 𝐵ins.
1: Let𝑈 contain all up-neighbors of each vertex, keyed by vertex. So𝑈 [𝑣]

contains all up-neighbors of 𝑣.
2: Let 𝐿𝑣 contain all neighbors of 𝑣 in levels [0, . . . , ℓ (𝑣) − 1], keyed by

level number.
3: parfor each edge insertion 𝑒 = (𝑢, 𝑣) ∈ B𝑖𝑛𝑠 do
4: Insert 𝑒 into the graph.
5: for each level 𝑙 ∈ [0, . . . , 𝐾 − 1] starting with 𝑙 = 0 do
6: parfor each vertex 𝑣 incident to 𝐵ins or is marked, where ℓ (𝑣) =
𝑙 ∩ up(𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙) do

7: Mark and move 𝑣 to level 𝑙 + 1 and create 𝐿𝑣 [𝑙] to store 𝑣’s neigh-
bors at level 𝑙 .

8: parfor each 𝑤 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑤
stayed in level 𝑙 do

9: 𝑈 [𝑣] ← 𝑈 [𝑣] \ {𝑤 } , 𝐿𝑣 [𝑙] ← 𝐿𝑣 [𝑙] ∪ {𝑤 }.
10: parfor each 𝑢 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑢

is in level 𝑙 + 1 do
11: Mark 𝑢 if up(𝑢) > (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙+1) .
12: 𝑈 [𝑢] ← 𝑈 [𝑢] ∪ {𝑣 }, 𝐿𝑢 [𝑙] ← 𝐿𝑢 [𝑙] \ {𝑣 }.
13: parfor each 𝑥 ∈ 𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 + 1 and 𝑥

is in level ℓ (𝑥) ≥ 𝑙 + 2 do
14: 𝐿𝑥 [𝑙] ← 𝐿𝑥 [𝑙] \ {𝑣 }, 𝐿𝑥 [𝑙 + 1] ← 𝐿𝑥 [𝑙 + 1] ∪ {𝑣 }.
15: Unmark 𝑣 if up(𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛 (𝑙+1) . Otherwise, leave 𝑣

marked.

contains the neighbors of 𝑣 at level 𝑗 < ℓ (𝑣). We describe specific
data structure implementation details in our full paper [48].
RebalanceInsertions(𝐵ins). Algorithm 2 shows the pseudocode.
Provided a batch of insertions 𝐵ins, we iterate through the 𝐾 levels
from the lowest level ℓ = 0 to the highest level ℓ = 𝐾 − 1 (Line 5).
For each level, in parallel we check the vertices incident to edge
insertions in 𝐵ins or is marked to see if they violate Invariant 1
(Line 6). If a vertex 𝑣 in the current level 𝑙 violates Invariant 1, we
move 𝑣 to level 𝑙 + 1 (Line 7). After moving 𝑣 , we update structures
𝑈 [𝑣], 𝐿𝑣 , and the structures of 𝑤 ∈ 𝑁 (𝑣) where ℓ (𝑤) ∈ [𝑙, 𝑙 + 1].
First, we create 𝐿𝑣 [𝑙] to store the neighbors of 𝑣 in level 𝑙 (Line 7).
If 𝑣 moved to level 𝑙 + 1 and 𝑤 stayed in level 𝑙 , then we delete
𝑤 from 𝑈 [𝑣] and instead insert 𝑤 into 𝐿𝑣 [𝑙] (Lines 8–9). We do
not need to make any data structure modifications for 𝑤 since 𝑣
stays in 𝑈 [𝑤]. Similarly, no data structure modifications to 𝑣 and
𝑤 are necessary when both 𝑣 and 𝑤 move to level 𝑙 + 1. For each
neighbor of 𝑣 on level 𝑙 + 1, we need to check whether it now
violates Invariant 1 (Line 10). If it does, then we mark the vertex
(Line 11). We process any such marked vertices when we process
level 𝑙 + 1. We also update the𝑈 and 𝐿 arrays of every neighbor of
𝑣 on level 𝑙 + 1 (Line 12). Specifically, let 𝑢 be one such neighbor, we
add 𝑣 to 𝑈 [𝑢] and remove 𝑣 from 𝐿𝑢 [𝑙]. We conclude by making
appropriate modifications to 𝐿 for each neighbor on levels ≥ 𝑙 + 2
(Lines 13–14). Specifically, let 𝑥 be one such neighbor, we remove
𝑣 from 𝐿𝑥 [𝑙] and add 𝑣 to 𝐿𝑥 [𝑙 + 1]. All neighbors of vertices that
moved can be checked and processed in parallel. Finally, 𝑣 becomes
unmarked if it satisfies all invariants; otherwise, it remains marked
and must move again in a future step (Line 15).

Fig. 5 shows an example of our entire insertion procedure de-
scribed in Algorithm 2 for 𝛿 = 0.4 and 𝜆 = 3. The red lines in the
example represent the batch of edge insertions. Thus, in (𝑎), the
newly inserted edges are the edges (𝑢, 𝑣), (𝑢, 𝑥), and (𝑥,𝑤). We

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

196

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

𝛿 = 0.4 and 𝜆 = 3

(𝑎) (𝑏)

	𝑥
Group 0

Group 1

	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥

	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

	𝑏 	𝑏

	𝑥 	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥 	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

	𝑥
	𝑤

	𝑣 	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

(𝑐) (𝑑) (𝑒)

	𝑏 	𝑏 	𝑏

Figure 5: Example of RebalanceInsertions described in the text for 𝛿 = 0.4 and 𝜆 = 3. The red lines represent the batch of edge insertions.

Algorithm 3 RebalanceDeletions(Bdel)
Input: A batch of edge deletions Bdel.
1: Let𝑈 contain all up-neighbors of each vertex, keyed by vertex. So𝑈 [𝑣]

contains all up-neighbors of 𝑣. Let 𝐿𝑣 contain all neighbors of 𝑣 in levels
[0, . . . , ℓ (𝑣) − 1], keyed by level number.

2: parfor each edge deletion 𝑒 = (𝑢, 𝑣) ∈ Bdel do
3: Remove 𝑒 from the graph.
4: parfor each vertex 𝑣 where up∗ (𝑣) < (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−1) do
5: Calculate dl(𝑣) using CalculateDesireLevel(𝑣).
6: for each level 𝑙 ∈ [0, . . . , 𝐾 − 1] starting with level 𝑙 = 0 do
7: parfor each vertex 𝑣 where dl(𝑣) = 𝑙 do
8: Move 𝑣 to level 𝑙 .
9: parfor each vertex 𝑣 where dl(𝑣) = 𝑙 do
10: parfor each neighbor 𝑤 of 𝑣 where ℓ (𝑤) ≥ 𝑙 do
11: Let 𝑝𝑣 and 𝑝𝑤 be the previous levels of 𝑣 and 𝑤, respectively,

before the move.
12: if ℓ (𝑤) = 𝑙 then
13: 𝐿𝑤 [𝑝𝑣] ← 𝐿𝑤 [𝑝𝑣] \ {𝑣 }, 𝐿𝑣 [𝑝𝑤] ← 𝐿𝑣 [𝑝𝑤] \ {𝑤 }.
14: 𝑈 [𝑤] ← 𝑈 [𝑤] ∪ {𝑣 },𝑈 [𝑣] ← 𝑈 [𝑣] ∪ {𝑤 }.
15: else
16: if 𝑝𝑣 > ℓ (𝑤) then
17: 𝑈 [𝑤] ← 𝑈 [𝑤] \ {𝑣 }, 𝐿𝑣 [ℓ (𝑤)] ← 𝐿𝑣 [ℓ (𝑤)] \ {𝑤 }.
18: else if 𝑝𝑣 = ℓ (𝑤) then
19: 𝑈 [𝑤] ← 𝑈 [𝑤] \ {𝑣 }.
20: else 𝐿𝑤 [𝑝𝑣] ← 𝐿𝑤 [𝑝𝑣] \ {𝑣 }.
21: 𝐿𝑤 [𝑙] ← 𝐿𝑤 [𝑙] ∪ {𝑣 },𝑈 [𝑣] ← 𝑈 [𝑣] ∪ {𝑤 }.
22: if up∗ (𝑤) < (1 + 𝛿)𝑔𝑛 (ℓ (𝑤)−1) then
23: Recalculate dl(𝑤) using Algorithm 4.

iterate from the bottommost level (level 0) to the topmost level
(level 𝐾 − 1).

The first level where we encounter vertices that are marked or
are adjacent to an edge insertion is level 2. Since level 2 is part of
group 0, the cutoff for Invariant 1 is (2 + 3/𝜆) (1 + 𝛿)0 = 3 provided
𝜆 = 3 and 𝛿 = 0.4. In level 2, only 𝑤 violates Invariant 1 since
the number of its neighbors on levels ≥ 2 is 4 (𝑥 , 𝑦, 𝑧, and 𝑎), so
up(𝑤) = 4 > 3 (shown in (𝑏)). Then, in (𝑐), we move 𝑤 up to
level 3. We need to update the data structures for neighbors of𝑤 at
level 3 and above (as well as𝑤 ’s own data structures); the vertices
with data structure updates are 𝑥 , 𝑤 , 𝑦, and 𝑧. After the move, 𝑥
becomes marked because it now violates Invariant 1 (the cutoff for
level 3 is (2 + 3/3) (1 + 0.4) = 4.2 since level 3 is in group 1); 𝑤
becomes unmarked because it no longer violates Invariant 1. In (𝑑),
we move on to process level 3. The only vertex that is marked or
violates Invariant 1 is 𝑥 . Therefore, we move 𝑥 up one level (shown
in (𝑒)) and update relevant data structures (of 𝑥 , 𝑣 , 𝑦, 𝑧, and 𝑏).
RebalanceDeletions(𝐵del). Unlike in LDS, deletions in PLDS are
handled by moving each vertex at most once, directly to its final
level (the vertex does not move again during this procedure). We
show in the analysis that this guarantee is crucial to obtaining low
depth. The pseudocode is shown in Algorithm 3. For each vertex 𝑣
incident to an edge deletion, we checkwhether it violates Invariant 2

Algorithm 4 CalculateDesireLevel(𝑣)
Input: A vertex 𝑣 that needs to move to a level 𝑗 < ℓ (𝑣) .
Output: The desire-level dl(𝑣) of vertex 𝑣.
1: 𝑑 ← up∗ (𝑣), 𝑝 ← 1, 𝑖 ← 2
2: while 𝑑 < (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−𝑝) and ℓ (𝑣) − 𝑝 > 0 do
3: 𝑑 ← 𝑑 +∑𝑖−1

𝑗=𝑝

��𝐿𝑣 [ℓ (𝑣) − 𝑗 − 1]��
4: if 𝑑 ≥ (1 + 𝛿)𝑔𝑛 (ℓ (𝑣)−𝑖) then
5: Binary search within levels [ℓ (𝑣) − 𝑖 + 1, . . . , ℓ (𝑣) − 𝑝] to find the

closest level to ℓ (𝑣) that satisfies Invariants 1 and 2; return this level.
6: 𝑝 ← 𝑖, 𝑖 ← min(2 · 𝑖, ℓ (𝑣)) .
7: return 0.

(Line 4). On Line 4, 𝑔𝑛(ℓ (𝑣) − 1) gives the group number 𝑖 where
ℓ (𝑣) − 1 ∈ 𝑔𝑖 . If 𝑣 violates Invariant 2, we calculate its desire-
level, dl(𝑣), using CalculateDesireLevel (Line 5), described next. We
iterate through the levels from 𝑙 = 0 to 𝑙 = 𝐾 − 1 (Line 6). Then, in
parallel for each vertex 𝑣 whose desire-level is 𝑙 , we move 𝑣 to level
𝑙 (Lines 7–8). We update the data structures of each 𝑣 that moved
and𝑤 ∈ 𝑁 (𝑣) where ℓ (𝑤) ≥ 𝑙 (Lines 9–21). Specifically, we need to
update𝑈 [𝑣],𝑈 [𝑤], 𝐿𝑣, and 𝐿𝑤 if 𝑣 was originally an up-neighbor of
𝑤 and becomes a down-neighbor or vice versa. Finally, we update
the desire-level of neighbors of 𝑣 that no longer satisfy Invariant 2
(Lines 22–23). We process all vertices that move and their neighbors
in parallel.

Fig. 6 shows an example of Algorithm 3 for 𝛿 = 1 and 𝜆 = 3. In
(𝑎), the newly deleted edges are (𝑥, 𝑧) and (𝑦,𝑤). For each vertex
adjacent to an edge deletion, we calculate its desire-level, or the
closest level to its current level that satisfies Invariant 2. In (𝑏),
only 𝑥 and 𝑧 violate Invariant 2. The lower bound on the number
of neighbors that must be at or above level 3 for 𝑥 and level 4 for 𝑧
is (1 + 𝛿)1 = 2 since 𝛿 = 1 and levels 3 and 4 are in group 1. (Recall
that the lower bound is calculated with respect to the level below 𝑥

and 𝑧.) We calculate that the desire-levels of 𝑥 and 𝑧 are both 3. The
desire-levels of 𝑦 and𝑤 are their current levels because they do not
violate the invariant. Then, we iterate from the bottommost level
(starting with level 0) to the topmost level (level 𝐾 − 1). Level 3 is
the first level where vertices want to move. Then, we move 𝑥 and 𝑧
to level 3 (shown in (𝑐)). We only need to update the data structures
of neighbors at or above 𝑥 and 𝑧 so we only update the structures of
𝑥 , 𝑦, and 𝑧. Invariant 2 is no longer violated for 𝑥 and 𝑧. In fact, our
algorithm guarantees that each vertexmoves at most once. We check
whether any of 𝑥 or 𝑧’s up-neighbors violate Invariant 2. Indeed, 𝑦
now violates the invariant. In (𝑑), we recompute the desire-level of
𝑦 and its desire-level is now 4. Then, we move 𝑦 to level 4 in (𝑒).
CalculateDesireLevel(𝑣). Algorithm 4 shows the procedure for
calculating the desire-level, dl(𝑣), of vertex 𝑣 , which is used in Al-
gorithm 3. Let 𝑔𝑛(ℓ) be the index 𝑖 where level ℓ ∈ 𝑔𝑖 . We use a
doubling procedure followed by a binary search to calculate the
desire-level. We initialize a variable 𝑑 to up∗ (𝑣) (number of neigh-
bors at or above level ℓ (𝑣) − 1). Starting with level ℓ (𝑣) − 2, we add

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

197

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

𝛿 = 1 and 𝜆 = 3

(𝑎) (𝑏)

	𝑥

Group 0

Group 1

	𝑤

	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

(𝑐) (𝑑) (𝑒)

𝑑𝑙 𝑧 = 3

	𝑥

	𝑤

	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

𝑑𝑙 𝑥 = 3

𝑑𝑙 𝑦 = 5

𝑑𝑙 𝑤 = 2

	𝑥
	𝑤

	𝑧
	𝑢

	𝑦

0
1
2
3
4
5

	𝑎
	𝑥

	𝑤
	𝑧

	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

𝑑𝑙 𝑦 = 4

	𝑥
	𝑤

	𝑧
	𝑢

	𝑦

0
1
2
3
4
5

	𝑎

Figure 6: Example of RebalanceDeletions described in the text for 𝛿 = 1 and 𝜆 = 3. The red dotted lines represent the batch of edge deletions.

the number of neighbors in level ℓ (𝑣) − 2 to 𝑑 (Algorithm 4, Line 3).
This procedure checks whether moving 𝑣 to ℓ (𝑣) − 1 satisfies Invari-
ant 2 (Line 4). If it passes the check, then we are done and we move
𝑣 to ℓ (𝑣) − 1. Otherwise, we iteratively double the number of levels
from which we count neighbors until we find a level where Invari-
ant 2 is satisfied (Line 6). On each iteration, we sum the number
of neighbors (Line 3) in the range of levels using a parallel reduce.
We continue until we find a level where Invariant 2 is satisfied. Let
this level be ℓ ′ and the previous cutoff be ℓprev. Finally, we perform
a binary search within the range [ℓ ′, . . . , ℓprev] to find the closest
level to ℓ (𝑣) that satisfies Invariant 2 (Line 5).
4.4 Efficiency Analysis
We now analyze the work and depth of our PLDS. First, it is easy
to show that there exists a level where both invariants are satisfied.
This allows our PLDS to assign each vertex to a single level. Then,
we make the following two observations that a batch of insertions
never violates Invariant 2 and a batch of deletions never violates In-
variant 1. This is true because deletions can never increase the
up-degree of any vertex and insertions can never decrease the up*-
degree of any vertex. All proofs are given in our full paper [48].
Observation 4.2 (Batch Insertions). Given a batch of insertions,
B𝑖𝑛𝑠 , Invariant 2 is never violated while B𝑖𝑛𝑠 is applied.
Observation 4.3 (Batch Deletions). Given a batch of deletions,
B𝑑𝑒𝑙 , Invariant 1 is never violated while B𝑑𝑒𝑙 is applied.
Batch Insertion Depth Bound. Using our observations, the depth
of our batch insertion algorithm (Algorithm 2) depends on the
following lemma which states that once we have processed a level
(after finishing the corresponding iteration of Line 5), no vertex will
want to move from any level lower than that level. This means that
each level is processed exactly once, resulting in at most 𝑂 (log2 𝑛)
levels to be processed sequentially.
Lemma 4.4. After processing level 𝑖 in Algorithm 2, no vertex 𝑣 in
levels ℓ (𝑣) ≤ 𝑖 will violate Invariant 1. Furthermore, no vertex𝑤 on
levels ℓ (𝑤) > 𝑖 will have dl(𝑤) ≤ 𝑖 .
Batch Deletion Depth Bound. For the batch deletion algorithm
(Algorithm 3), we prove that, starting from the lowest level, after all
vertices with dl(𝑤) = 𝑖 are moved to the 𝑖’th level, no vertex 𝑣 will
have dl(𝑣) ≤ 𝑖 . This means that each level is processed exactly once,
resulting in at most 𝑂 (log2 𝑛) levels to be processed sequentially.
Lemma 4.5. After processing all vertices that move to level 𝑖 in Al-
gorithm 3, no vertex 𝑣 needs to be moved to any level 𝑗 ≤ 𝑖 in a future
iteration of Line 6; i.e., no vertex 𝑣 has dl(𝑣) ≤ 𝑖 after processing 𝑖 .

We describe the depth of our parallel data structures next. We
maintain the list of neighbors using separate parallel hash tables for
each vertex 𝑣 . One hash table contains 𝑣 ’s neighbors at the same or
higher levels. Vertex 𝑣 ’s neighbors in levels below ℓ (𝑣) are placed
in a separate hash table for each level. Parallel lookups into the

hash tables require 𝑂 (1) depth w.h.p., and inserting and deleting
elements within the tables require 𝑂 (log∗ 𝑛) depth w.h.p.

The only additional depth we need to consider is the depth in-
curred from Algorithm 4. Both the doubling search and the binary
search require 𝑂 (log𝐾) = 𝑂 (log log𝑛) depth. All other contribu-
tions come from concurrently modifying and accessing dynamic
arrays and hash tables and can be done in 𝑂 (log∗ 𝑛) depth w.h.p.

Using the above, we successfully prove that the depth of Algo-
rithm 1 is 𝑂 (log2 𝑛 log log𝑛) w.h.p. The extra space in addition to
storing the graph is 𝑂 (𝑛 log2 𝑛) because we must have 𝑂 (log2 𝑛)
size dynamic arrays for each vertex to track their neighbors at lower
levels (i.e., the neighbors in 𝐿𝑣). We provide a set of linear-space
data structures in the full paper [48] at the cost of increased depth.
Our work bound uses potential functions similar to those in Section
4 of [7]. Our parallel algorithm serializes to a set of sequential steps
that can be analyzed using these potential functions. We present
the proof of the work bound in our full paper [48]. Together, we
obtain the work, depth, and space bounds in Theorem 3.1.
4.5 Estimating the Coreness and Orientation
(2 + 𝜀)-Approximation of Coreness. The coreness estimate, 𝑘 (𝑣),
is an estimate of the coreness of a vertex 𝑣 . We compute a coreness
estimate using only 𝑣 ’s level and the number of levels per group
(which is fixed). We show how to use such information to obtain a
(2+𝜀)-approximation to the actual coreness of 𝑣 for any constant 𝜀 >
0. (We can find an approximation for any fixed 𝜀 by appropriately
setting 𝛿 and 𝜆.) To calculate 𝑘 (𝑣), we find the largest index 𝑖 of a
group 𝑔𝑖 , where ℓ (𝑣) is at least as high as the highest level in 𝑔𝑖 .
Definition 4.6 (Coreness Estimate). The coreness estimate 𝑘 (𝑣)
of vertex 𝑣 is (1 + 𝛿)max(⌊ (ℓ (𝑣)+1)/4 ⌈log1+𝛿 𝑛⌉ ⌋−1,0) , where each group
has 4⌈log(1+𝛿) 𝑛⌉ levels.

To see an example, consider vertex 𝑦 in Fig. 6 (𝑒). We estimate
𝑘 (𝑦) = 1 since the highest level that is the last level of a group
and is equal to or below level ℓ (𝑦) = 4 is level 2. Level 2 is part of
group 0, and so our coreness estimate for 𝑦 is (1 + 𝛿)0 = 1. This is a
2-approximation of its actual coreness of 2. Using Definition 4.6, we
prove that our PLDS maintains a (2 + 3/𝜆) (1 + 𝛿)-approximation
of the coreness value of each vertex, for any constants 𝜆 > 0 and
𝛿 > 0. Therefore, we obtain the following lemma giving the desired
(2 + 𝜀)-approximation. Our experimental analysis shows that our
theoretical bounds limit the maximum error of our experiments,
although our average errors are much smaller. To get a maximum
error bound of (2+𝜀) for any 𝜀 > 0, we can set 𝛿 = 𝜀/3 and 𝜆 = 9

𝜀 +3.
By Lemma 4.8, it suffices to return 𝑘 (𝑣) as the estimate of the

coreness of 𝑣 ; this proves the approximation factor in Theorem 3.1.
Lemma 4.7. Let 𝑘 (𝑣) be the coreness estimate and 𝑘 (𝑣) be the core-
ness of 𝑣 , respectively. If 𝑘 (𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔′ , then 𝑘 (𝑣) ≥
(1 + 𝛿)𝑔′ . Otherwise, if 𝑘 (𝑣) < (1+𝛿)𝑔′

(2+3/𝜆) (1+𝛿) , then 𝑘 (𝑣) < (1 + 𝛿)
𝑔′ .

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

The proof of Lemma 4.7 is in the full paper [48] and is an in-
ductive proof using the PLDS invariants. We also show in the full
paper that it implies Lemma 4.8.
Lemma 4.8. The coreness estimate𝑘 (𝑣) of a vertex 𝑣 satisfies 𝑘 (𝑣)(2+𝜀) ≤
𝑘 (𝑣) ≤ (2 + 𝜀)𝑘 (𝑣) for any constant 𝜀 > 0.

For arbitrary batch sizes, getting better than a 2-approximation
for coreness values is P-complete [3], and so there is unlikely to
exist a polylogarithmic-depth algorithm with such guarantees.
𝑂 (𝛼) Out-Degree Orientation. We orient all edges from vertices
in lower levels to higher levels, breaking ties for vertices on the
same level by using their indices. Such an orientation can be main-
tained dynamically in the same work and depth as our PLDS via a
parallel hash table keyed by the edges and where the values give the
orientation. The proof of Theorem 3.2 is given in our full paper [48].
5 Experimental Evaluation
In this section, we compare the performance of our dynamic PLDS
with existing approaches on a set of large real-world graphs. Our
results show that our algorithms consistently achieve speedups, by
up to two orders of magnitude, compared with all of the previous
state-of-the-art dynamic 𝑘-core decomposition algorithms.
EvaluatedAlgorithms.We evaluate two versions of our algorithm:
PLDS: an exact implementation of our theoretical algorithm and
PLDSOpt: a version with ⌈log1+𝛿 𝑛/50⌉ levels per group. PLDS
maintains the approximation guarantees given by Lemma 4.8, while
PLDSOpt achieves better performance while maintaining slightly
worse approximation bounds.

We compare our algorithms with the following dynamic imple-
mentations: Sun: the sequential, approximate algorithm of Sun et
al. [63], specifically their faster, round-indexing algorithm, which
is publicly available [64]; Hua: the parallel, exact algorithm of Hua
et al. [34], kindly provided by the authors; Zhang: the sequential,
exact algorithm of Zhang and Yu [72], kindly provided by the au-
thors; and LDS: our implementation of the sequential, approximate
algorithm of Henzinger et al. [33], but using our coreness approxi-
mation procedure in Section 4.5. All are state-of-the-art algorithms,
outperforming previous algorithms in their respective categories.

We also implemented ApproxKCore, our new static parallel
approximate 𝑘-core decomposition algorithm (Theorem 3.8). We
compared it with ExactKCore, the state-of-the-art parallel, static,
exact 𝑘-core algorithm of Dhulipala et al. [18].
Setup. We use c2-standard-60 Google Cloud instances (3.1 GHz
Intel Xeon Cascade Lake CPUs with a total of 30 cores with two-way
hyper-threading, and 236 GiB RAM) and m1-megamem-96 Google
Cloud instances (2.0 GHz Intel Xeon Skylake CPUs with a total of
48 cores with two-way hyper-threading, and 1433.6 GB RAM). We
use hyper-threading in our parallel experiments by default. Our
programs are written in C++, use a work-stealing scheduler [8],
and are compiled using g++ (version 7.5.0) with the -O3 flag. We
terminate experiments that take over 3 hours. PLDS and PLDSOpt
finished within 3 hours for all experiments.
Datasets. We test our algorithms on 11 real-world undirected
graphs from SNAP [45], the DIMACS Shortest Paths challenge
road networks [17], and the Network Repository [57], namely dblp,
brain, wiki, orkut, friendster , stackoverflow, usa, ctr , youtube,
and livejournal. We also used twitter , a symmetrized version of

Table 3: Graph sizes and largest values of 𝑘 for 𝑘-core decomposition.

Graph Dataset Num. Vertices Num. Edges Largest value of 𝑘

dblp 317,080 1,049,866 101
brain 784,262 267,844,669 1200
wiki 1,094,018 2,787,967 124
youtube 1,138,499 2,990,443 51
stackoverflow 2,584,164 28,183,518 163
livejournal 4,846,609 42,851,237 329
orkut 3,072,441 117,185,083 253
ctr 14,081,816 16,933,413 2
usa 23,947,347 28,854,312 3
twitter 41,652,230 1,202,513,046 2484
friendster 65,608,366 1,806,067,135 304

the Twitter network [43]. We remove duplicate edges, zero-degree
vertices, and self-loops. Table 3 reflects the graph sizes after this
removal, and gives the largest 𝑘-core values. Both stackoverflow
and wiki are temporal networks; for these, we maintain the edge
insertions and deletions in the temporal order from SNAP. usa
and ctr are two high-diameter road networks and brain is a highly
dense human brain network fromNeuroData (https://neurodata.io/).
All experiments are run on the c2-standard-60 instances, except
for twitter and friendster, which are run on the m1-megamem-96
instances as they require more memory.
Ins/Del/Mix Experiments. Our experiments are run for three
different types of batched updates, referred to by: (1) Ins: starting
with an empty graph, all edges are inserted in multiple size |B|
batches of insertion updates, (2) Del: starting with the original
graph, all edges are deleted in multiple size |B| batches of deletion
updates, and (3)Mix: starting with the initial graphminus a random
set 𝐼 of |B|/2 edges, a set𝐷 of |B|/2 random edges is chosen among
the edges in the graph; then, a single size |B|mixed batch of updates
with insertions 𝐼 and deletions𝐷 is applied. For the temporal graphs,
stackoverflow and wiki, the order of updates in the batches follows
the order in SNAP [45]. For the rest, updates are generated by
taking two random permutations of the edge list, one for Ins and
one forDel. Batches are generated by taking regular intervals of the
permuted lists. For Mix, 𝐼 and 𝐷 are chosen uniformly at random.
5.1 Accuracy vs. Running Time
We start by evaluating the empirical error ratio of the per-vertex
core estimates given by our implementations (PLDSOpt, PLDS,
LDS) and Sun on dblp and livejournal, using batches of size 105 and
106, respectively. Fig. 7 shows the average batch time (in seconds)
against the average and maximum per-vertex core estimate error

ratio. This error ratio is computed as max
(
𝑘 (𝑣)
𝑘 (𝑣) ,

𝑘 (𝑣)
𝑘 (𝑣)

)
for each

vertex 𝑣 (where 𝑘 (𝑣) is the core estimate and 𝑘 (𝑣) is the exact core
value). The average is the error ratio averaged across all vertices
and the maximum is the maximum error. If the exact core number
is 0, we ignore the vertex in our error ratio since our algorithm
guarantees an estimate of 0; for vertices of non-zero degree, the
lowest estimated core number is 1 for all implementations.

The parameters we use for PLDSOpt, PLDS, and LDS are all
combinations of 𝛿 = {0.2, 0.4, 0.8, 1.6, 3.2, 6.4} and 𝜆 = {3, 6, 12, 24,
48, 96}. We call these theoretically-efficient parameters, since they
maintain the work-efficiency of our algorithms. For Sun, we use
all combinations of their parameters 𝜀sun = 𝜆sun = {0.2, 0.4, 0.8, 1.6,
3.2}, and 𝛼sun = {2(1 + 3𝜀sun)}. We also tested 𝛼sun = {1.1, 2, 3.2},
as done in Sun et al.’s work [63]. When 𝛼 = 1.1, the theoretical
efficiency bounds by Sun et al. [63] no longer hold, but they yield

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

199

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

better estimates empirically. We compare this heuristic setting to
a similar one in our algorithms, where we replace (2 + 3/𝜆) with
1.1 in our code (where our efficiency bounds no longer hold) for
𝛿 = {0.4, 0.8, 1.6, 3.2}. We refer to these as the heuristic parameters.

Fig. 7 shows that, using theoretically-efficient parameters, our
PLDSOpt, PLDS, and LDS implementations are faster than Sun,
Zhang, and Hua, for parameters that give similar average and max-
imum per-vertex core estimate error ratios. Furthermore, besides
PLDS, PLDSOpt outperforms all other algorithms, regardless of ap-
proximation factor and error. This set of experiments demonstrates
the flexibility of our algorithm; one can achieve smaller error at
the cost of slightly increased runtime. However, as the experiments
demonstrate, PLDSOpt still outperforms all other algorithms even
when the parameters are tuned to give small error; this performance
gain is maintained for Ins, Del, and Mix. Greater speedups are
achieved on livejournal compared to dblp. Such a result is expected
since larger batches allow for greater parallelism.

Concretely, compared with Zhang, PLDSOpt achieves 7.19–
147.59×, 19.70–58.41×, and 9.75–142.79× speedups on Ins, Del,
and Mix batches, respectively. Compared with Hua, PLDSOpt
achieves 2.49–33.95×, 6.81–24.51×, and 2.94–21.77× speedups.
Against PLDS, PLDSOpt obtains 2.98–47.8×, 1.03–25.58×, and
1.5–76.94× speedups for Ins, Del, and Mix, respectively, on
parameters that give similar approximations. Compared with
Sun, on parameters that give similar theoretical guarantees and
smaller empirical average error, PLDSOpt achieves 21.34–544.22×,
25.49–128.65×, and 19.04–248.36× speedups for Ins, Del, and Mix,
respectively. Neither Zhang nor Hua guarantee polylogarithmic
work. The peeling-based algorithm of Sun can have large depth
and they do not provide a concrete bound on their amortized
work for their faster, round-indexing implementation. Thus, the
speedups we obtain over the benchmarks are due to the greater
theoretical efficiency and because our algorithms are parallel.

Finally, PLDSOpt achieves average error in the ranges 1.26–2.13,
1.47–4.20, and 1.28–2.33 for Ins, Del, and Mix, respectively. PLDS
gives comparable average errors in the ranges 1.27–4.22, 1.33–3.39,
and 1.63–5.73, for Ins, Del, andMix, respectively, while running
slower than PLDSOpt for all parameters, despite the guarantee
that the maximum error of PLDS is bounded by (1 + 𝛿) (2 + 3/𝜆)
(Lemma 4.8). Thus, our optimized version allows us to obtain good
error bounds empirically while drastically improving performance.
5.2 Batch Size vs. Running Time
Fig. 8 shows the average per-batch running times for Ins, Del,
and Mix on varying batch sizes for PLDSOpt, PLDS, Hua, LDS,
and Zhang on dblp and livejournal. We do not run this experiment
on Sun since their implementation does not have batching. Our
experiments show that PLDSOpt is faster for all batch sizes except
for the smallest Del and Mix batches.

Against PLDS, PLDSOpt achieves a speedup over all batches from
10.85–21.25×, 2.81–5.65×, and 10.42–29.28× for Ins, Del, and Mix,
respectively, on dblp and 8.47–16.9×, 1.99–7.18×, and 1.9–15.26×
for Ins, Del, and Mix, respectively, on livejournal for all but the
batch of size 100 for Del. On the batch size of 100 , PLDS performs
better than PLDSOpt by a 1.79× factor. Compared with Hua, PLD-
SOpt achieves speedups over all batches from 5.17–16.43×, 3.39–
44.58×, and 2.53–13.05× for Ins,Del, andMix, respectively, on dblp

and 15.97–114.52×, 1.71–45.01×, and 9.10–19.82× for Ins, Del, and
Mix, respectively, on livejournal. Compared with Zhang, PLDSOpt
achieves speedups of 2.49–22.74×, 2.00–29.92×, and 2.95–21.57× for
Ins, Del, andMix, respectively, on dblp, and 31.53–95.33×, 1.25–
73.19× and 4.26–87.05× for Ins, Del, and Mix, respectively, on
livejournal on all but the smallest batches for Del andMix. For Del
with a batch size of 100, Zhang is the fastest with speedups of 1.46×
and 6.86× over PLDSOpt on dblp and livejournal, respectively. For
Mix with batch size 100, LDS is the fastest with speedups of 3.19×
over PLDSOpt on livejournal. For small batch sizes, sequential algo-
rithms perform better than parallel algorithms since the runtimes
of parallel algorithms are dominated by parallel overheads.
5.3 Thread Count vs. Running Time
Fig. 9 shows the scalability of PLDSOpt, PLDS, and Hua with respect
to their single-thread running times on dblp and livejournal using a
batch size of 106. LDS, Sun, and Zhang are represented as horizon-
tal lines since they are sequential. For Ins, Del, andMix batches,
PLDSOpt and PLDS achieve up to 30.28×, 32.02×, and 33.02×, and
26.46×, 25.33×, and 21.15×, self-relative speedup, respectively. Hua
achieves up to a 3.6× self-relative speedup. We see that our PLDS
algorithms achieve greater self-relative speedups than Hua. Also,
with just 4 threads (available on a standard laptop), PLDSOpt al-
ready outperforms all other algorithms. Hua’s algorithm performs
DFS/BFS, which could lead to linear depth, potentially explaining
the bottleneck to their scalability with more cores.

Gabert et al. [26] present a parallel batch-dynamic 𝑘-core de-
composition algorithm but their code is proprietary. However, their
algorithm appears slower and less scalable based on their paper’s
stated results. For example, their algorithm on 105 edges using 32
threads for the livejournal graph requires 4 seconds, while our al-
gorithm on a batch of 106 edges using 30 threads (more edges and
fewer threads) requires a maximum of 0.35 seconds. Also, they ap-
pear to exhibit a maximum of 8× self-relative speedup on livejournal
while we exhibit 21.2× self-relative speedup on livejournal.
5.4 Results on Large Graphs
Fig. 10 shows the runtimes of PLDSOpt, PLDS, Hua, Sun, and Zhang
compared with the static algorithms ExactKCore and ApproxKCore
on additional graphs, using Ins,Del, andMix batches, all of size 106.
ExactKCore and ApproxKCore are run from scratch over the entire
graph after every batch since they do not handle batch updates.
PLDSOpt and PLDS finished for all graphs and experiments while all
other algorithms timed out on Ins and Del batches for twitter and
friendster . Zhang was able to finish on Mix because their indexing
algorithm (used to create their data structures provided the initial
graph without the mixed batch) was able to finish; since only one
mixed batch is used to update the graph, the sum of the time needed
for indexing plus the update time of one batch fell under the timeout.
The same is true for ExactKCore and ApproxKCore. However, these
algorithms were not able to finish for Ins and Del because the sum
of the update times across all batches is too high.

PLDSOpt is faster than all other dynamic algorithms on all types
of batches, except for PLDS on ctr and usa. We report concrete
speedups for experiments which finished within the timeout. For
Ins, it gets 10.01–229.71× speedups over Zhang, 6.20–58.66×
speedups over Hua, 26.02–119.77× speedups over Sun, and 1.45–
23.89× speedups over PLDS. For Del, it gets 30–176.48× speedups

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

200

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

Zhang Hua PLDSOpt PLDS Sun

100 100.5

108

109

Avg. Ins Error (ratio)

D
B

L
P

M
ax

S
p
ac

e
(B

y
te

s)

100 100.5

109

1010

Avg. Ins Error (ratio)

L
J

M
ax

S
p
ac

e
(B

y
te

s)

100 101

108

109

Avg. Del Error (ratio)

D
B

L
P

M
ax

S
p
ac

e
(B

y
te

s)

100 101

109

1010

Avg. Del Error (ratio)

L
J

M
ax

S
p
ac

e
(B

y
te

s)

PLDSOpt PLDS Sun LDS Zhang Hua

100 100.2 100.4 100.6

10�2

10�1

100

101

DBLP Avg. Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

100 100.2 100.4 100.6

10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

100 100.2 100.4 100.6

10�2

10�1

100

DBLP Avg. Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100 100.2 100.4 100.6

10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100 100.2 100.4 100.6

10�2

10�1

100

101

DBLP Avg. Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

100 100.5

10�1

100

101

102

LJ Avg. Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

100 101

10�2

10�1

100

101

DBLP Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

100 101 102

10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

100 101

10�2

10�1

100

DBLP Max Error (ratio)
A

v
g.

D
e
l

T
im

e
(s

ec
)

100 101 102

10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100 101

10�2

10�1

100

101

DBLP Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

100 101 102

10�1

100

101

102

LJ Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

Figure 7: Comparison of the average per-batch time versus the average (top row) and maximum (bottom row) per-vertex core estimate error
ratio of PLDSOpt, PLDS, Sun, and LDS, using varying parameters, on the dblp and livejournal graphs, with batch sizes 105 and 106, respectively.
Experiments were run for Ins, Del, and Mix. The data uses theoretically-efficient parameters as well as the heuristic parameters where
(2 + 3/𝜆) = 𝛼sun = 1.1. Runtimes for Hua and Zhang are shown as horizontal lines.

PLDSOpt PLDS � = 0.2 0.4 0.8 1.6 3.2
6.4 � = 3 6 12 24 48 96

PLDSOpt PLDS � = 3 6 12 24 48
96 � = 0.2 0.4 0.8 1.6 3.2 6.4

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

PLDSOpt PLDS LDS Zhang Hua

102 103 104 105 106 107

10�3

10�1

101

DBLP Batch Size (Insertions)

A
v
g.

In
s

T
im

e
(s

ec
)

102 103 104 105 106 107
10�4

10�3

10�2

10�1

100

DBLP Batch Size (Deletions)

A
v
g.

D
e
l

(s
ec

)

102 103 104 105 106 107

10�3

10�2

10�1

100

101

DBLP Batch Size (Mixed)

A
v
g.

M
ix

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

103

WLJ Batch Size (Insertions)W

A
v
g.

In
s

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Deletions)W

A
v
g.

D
e
l

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Mixed)W

A
v
g.

M
ix

T
im

e
(s

ec
)

PLDSOpt PLDS Sun LDS Zhang Hua

0 20 40 60

10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

In
s

T
im

e
(s

ec
)

0 20 40 60

10�1

100

DBLP Number of Hyper-threads

A
v
g.

D
e
l

T
im

e
(s

ec
)

0 20 40 60
10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

M
ix

T
im

e
(s

ec
)

0 20 40 60

100

101

102

WLJ Number of Hyper-threadsWi

A
v
g.

In
s

T
im

e
(s

ec
)

0 20 40 60
10�1

100

101

WLJ Number of Hyper-threadsWW

A
v
g.

D
e
l

T
im

e
(s

ec
)

0 20 40 60

100

101

WLJ Number of Hyper-threadsW

A
v
g.

M
ix

T
im

e
(s

ec
)

Figure 8: Average Ins, Del, and Mix per-batch running times on varying batch sizes for PLDSOpt, PLDS, LDS, Zhang, and Hua on dblp and
livejournal.

PLDSOpt PLDS � = 0.2 0.4 0.8 1.6 3.2
6.4 � = 3 6 12 24 48 96

PLDSOpt PLDS � = 3 6 12 24 48
96 � = 0.2 0.4 0.8 1.6 3.2 6.4

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

In
s

T
im

e
(s

ec
)

101 102

10�1

100

101

Max Error (ratio)

A
v
g.

D
e
l

T
im

e
(s

ec
)

100.5 101 101.5

10�1

100

101

Max Error (ratio)

A
v
g.

M
ix

T
im

e
(s

ec
)

PLDSOpt PLDS LDS Zhang Hua

102 103 104 105 106 107

10�3

10�1

101

DBLP Batch Size (Insertions)

A
v
g.

In
s

T
im

e
(s

ec
)

102 103 104 105 106 107
10�4

10�3

10�2

10�1

100

DBLP Batch Size (Deletions)

A
v
g.

D
e
l

(s
ec

)

102 103 104 105 106 107

10�3

10�2

10�1

100

101

DBLP Batch Size (Mixed)

A
v
g.

M
ix

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

103

WLJ Batch Size (Insertions)W

A
v
g.

In
s

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Deletions)W

A
v
g.

D
e
l

T
im

e
(s

ec
)

102 103 104 105 106 107

10�3

10�1

101

WLJ Batch Size (Mixed)W

A
v
g.

M
ix

T
im

e
(s

ec
)

PLDSOpt PLDS Sun LDS Zhang Hua

0 20 40 60

10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

In
s

T
im

e
(s

ec
)

0 20 40 60

10�1

100

DBLP Number of Hyper-threads

A
v
g.

D
e
l

T
im

e
(s

ec
)

0 20 40 60
10�1

100

101

DBLP Number of Hyper-threads

A
v
g.

M
ix

T
im

e
(s

ec
)

0 20 40 60

100

101

102

WLJ Number of Hyper-threadsWi

A
v
g.

In
s

T
im

e
(s

ec
)

0 20 40 60
10�1

100

101

WLJ Number of Hyper-threadsWW

A
v
g.

D
e
l

T
im

e
(s

ec
)

0 20 40 60

100

101

WLJ Number of Hyper-threadsW

A
v
g.

M
ix

T
im

e
(s

ec
)

Figure 9: Parallel speedup of PLDSOpt, PLDS, and Hua, with respect to their single-threaded running times on dblp and livejournal on Ins, Del,
and Mix batches of size 106 for all algorithms. The “60” on the 𝑥-axis indicates 30 cores with hyper-threading. LDS, Sun, and Zhang are shown
as horizontal lines since they are sequential.

over Zhang, 15.79–52.36× speedups over Hua, 41.02–100.34×
speedups over Sun, and 2.51–23.45× speedups over PLDS (except
on ctr and usa). For Mix, it gets 17.54–723.72× speedups over
Zhang, 11.34–91.95× over Hua, 6.95–35.59× speedups over Sun,
and 2.81–18.68× speedups over PLDS (except on ctr and usa).
These massive speedups over previous work demonstrate the
utility of PLDSOpt not only on large graphs but also on smaller
graphs. Notably, our PLDSOpt and PLDS algorithms perform not
only well on dense networks but also on very sparse road networks.
For ctr and usa, PLDS performs better than PLDSOpt, achieving up
to a 1.09× speedup on Del and 1.12× speedup on Mix.

Compared to the static algorithms, PLDSOpt achieves speedups
for all but the smallest graphs, dblp, wiki, and youtube. For these
graphs, the batch of size 106 accounts for more than 1/3 of the
edges, and so even if the static algorithm reprocesses the entire
graph per batch, it does not process many more edges past the
batch size. Thus, it is expected that the parallel static algorithms
perform better on small graphs and large batches. For all but the
smallest graphs, PLDSOpt obtains 2.22–13.09×, 5.56–19.64×, and
4.4–121.76× speedups over the fastest static algorithm for each

graph for Ins, Del, and Mix, respectively. ExactKCore and Ap-
proxKCore both timeout for Ins and Del on twitter and friendster ;
otherwise, we expect to see the large improvements that we see for
Mix on these experiments.
5.5 Accuracy of Approximation Algorithms
We also computed the average and maximum errors of all of our
approximation algorithms for our experiments shown in Fig. 10. We
tested the errors for 𝛿 = 0.4 and 𝜆 = 3. According to our theoretical
proofs, the maximum error (for PLDS) should be (2 + 3/3) (1 +
0.4) = 4.2. We confirm that the maximum empirical error for PLDS
falls under this constraint. PLDSOpt achieves an average error of
1.24–2.37 compared to errors of 1.26–3.48 for PLDS, 1.01–4.17 for
ApproxKCore, and 1.03–3.23 for Sun. PLDSOpt gets a maximum
error of 3–6 compared to 2–4.19 for PLDS, 3–5 for ApproxKCore,
and 3–5.99 for Sun. We conclude that our error bounds match those
of the current best-known algorithms and are sufficiently small to
be of use for many applications.
6 Additional Parallel Algorithms
Here, we provide an overview of the techniques and challenges for
our other algorithms. Due to space constraints, we provide detailed

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

201

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

dblp
youtube wiki ctr usa

stack
overfl

ow
livejo

urnal orkut brain twitter
friendster

10�1

100

101

T.O. T.O.

A
v
g.

In
s

T
im

e
(s

ec
)

PLDSOpt Hua ApproxKCore ExactKCore Zhang Sun PLDS

dblp
youtube wiki ctr usa

stack
overfl

ow
livejo

urnal orkut brain twitter
friendster

10�2

10�1

100

101

T.O. T.O.

A
v
g.

D
e
l

T
im

e
(s

ec
)

dblp
youtube wiki ctr usa

stack
overfl

ow
livejo

urnal orkut brain twitter
friendster

10�1

100

101

102

T.O. T.O.

A
v
g.

M
ix

T
im

e
(s

ec
)

Figure 10: Average per-batch running times for PLDSOpt, Hua, PLDS,
Sun, Zhang, ApproxKCore, and ExactKCore, on dblp, youtube, wiki,
ctr, usa, stackoverflow, livejournal, orkut, brain, twitter, and friend-
ster with batches of size 106 (and approximation settings 𝛿 = 0.4 and
𝜆 = 3 for PLDSOpt and PLDS). All benchmarks (except PLDSOpt and
PLDS) timed out (T.O.) at 3 hours for twitter and friendster for Ins
and Del. Hua and Sun timed out on twitter and friendster for Mix.
The top graph shows insertion-only, middle graph shows deletion-
only, and bottom graph shows mixed batch runtimes.

descriptions and proofs of each of these algorithms in our full
paper [48]. The bounds for these algorithms are shown in Table 2.
6.1 Static 𝑘-Core Decomposition
We present a parallel, approximate, static 𝑘-core decomposition
algorithm based on the parallel, exact algorithm of Dhulipala et
al. [18]. Their algorithm is a bucketing-based algorithm where ver-
tices are partitioned into buckets according to degree; vertices are
then peeled and the partitioningmay change as the vertices’ degrees
change. Although their algorithm is work-efficient, the depth could
be linear. We show that combining their bucketing-based algorithm
with our PLDS results in a parallel static (2 + 𝜀)-approximate 𝑘-
core decomposition algorithm with 𝑂 (𝑚 + 𝑛) expected work and
(log3 𝑛) depth w.h.p.. Our experiments (Section 5) also demonstrate
improvements over [18] on real-world networks.
6.2 Framework for Batch-Dynamic Graph

Algorithms from Low Out-Degree
Orientations

In this section, we introduce a framework that we will use in all of
our batch-dynamic algorithms that use our batch-dynamic low out-
degree orientation algorithm (Section 4.5). Our framework assumes
three differentmethods for each of the problems (maximalmatching,
𝑘-clique counting, and vertex coloring) that we solve. Specifically,
these three methods handle batches of insertions and deletions
separately and are instantiated in our full paper [48]; let BatchFlips,
BatchInsert, and BatchDelete denote these three methods.

We assume for simplicity that all updates in the batch B are
unique, which means that no edge deletion occurs on an inserted
edge in the batch and vice versa. Furthermore, we assume that the
updates are valid, meaning that if an edge insertion (𝑢, 𝑣) is in B,
then (𝑢, 𝑣) does not exist in the graph, and if an edge deletion (𝑤, 𝑥)

Algorithm 5 GraphProblemUpdate(𝐺,B)
Input: A graph𝐺 = (𝑉 , 𝐸) and a batch B of unique and valid updates.
Output: A solution to the relevant graph problem.
1: Update(B) [Algorithm 1].
2: 𝐴← LowOutdegreeOrient(B) .
3: Perform parallel filter on B to obtain a batch of insertions, Bins , and a

batch of deletions, Bdel .
4: BatchFlips(𝐴, Bins, Bdel) .
5: BatchDelete(Bdel) .
6: BatchInsert(Bins) .

is in B, then edge (𝑤, 𝑥) exists in the graph. Such assumptions are
only simplifying assumptions because it is easy to perform prepro-
cessing on B in 𝑂 (|B| log𝑛) work and 𝑂 (log𝑛) depth to ensure
that these assumptions are satisfied. In fact, our implementations
in Section 5 do perform this preprocessing on the input batches. To
find all unique updates, we perform a parallel sort in 𝑂 (|B| log𝑛)
work and 𝑂 (log𝑛) depth [9, 19, 35]; we first sort on the edge and
then the timestamp of the update. Then, we perform a parallel filter
in 𝑂 (|B|) work and 𝑂 (1) depth [9, 19, 35] where we keep each
edge with the latest timestamp. Then, we perform another parallel
filter to keep only edge insertions of nonexistent edges and edge
deletions of edges that exist in the graph. This preprocessing en-
sures B follows our simplifying assumptions and do not exceed the
complexity bounds of our PLDS, and hence, we assume all input
batches contain unique and valid updates. The work and depth for
preprocessing are subsumed by the bounds for the algorithms.

Detailed Framework The pseudocode for our framework is shown
in Algorithm 5. We first update the PLDS by calling the update pro-
cedure (Algorithm 1) on the batch of updates in Line 1. Afterwards,
we call our low out-degree orientation algorithm to obtain the set
of edges that were flipped, placed in set 𝐴 (Line 2). Then, we take
the batch of updates B and split the batch into a batch of insertions,
Bins , and a batch of deletions, Bdel (Line 3). We call BatchFlips
(Line 4) on the set of flipped edges𝐴, which processes the edge flips
accordingly for each problem. Finally, we call the problem specific
functions BatchDelete and BatchInsert (Lines 5 and 6) on Bdel and
Bins , respectively; we first call BatchDelete and then BatchInsert.

Analysis By Corollary 3.3, our low out-degree orienta-
tion algorithm gives a 𝑂 (𝛼) out-degree orientation. Further-
more, the amortized work of the algorithm indicates that
𝑂 (|B| log2 𝑛) amortized flips occur with each batch B. Suppose
that BatchFlips(𝐴) takes 𝑂

(
|𝐴|𝑊flips (𝛼)

)
work and 𝑂

(
𝐷flips

)
depth; BatchInsert(Bins) takes 𝑂 (|Bins |𝑊ins (𝛼)) work and
𝑂 (𝐷ins) depth, and BatchDelete (Bdel) takes 𝑂 (|Bdel |𝑊del (𝛼))
work and 𝑂 (𝐷del) depth; and the update methods require 𝑂 (𝑆)
space in total. Then, we show the following theorem about our
framework. The proof is provided in our full paper [48].
Theorem 6.1. Algorithm 5 takes

𝑂

(
|B|𝑊flips (𝛼) log2 𝑛 + |B|𝑊ins (𝛼) + |B|𝑊del (𝛼)

)
amortized work and

𝑂

(
log2 𝑛 log log𝑛 + 𝐷flips + 𝐷ins + 𝐷del

)
depth w.h.p., in 𝑂 (𝑛 log2 𝑛 +𝑚 + 𝑆) space.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

202

Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related Graph Problems SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

6.3 Maximal Matching
The best-known sequential algorithm of Neiman and Solomon [56]
(against an adaptive adversary) maintains the set of unmatched in-
neighbors of each vertex. When a vertex becomes unmatched due
to an edge deletion, it matches itself to an unmatched in-neighbor if
possible. If none are unmatched, it checks all of its out-neighbors to
see if any are unmatched. Unfortunately, such a simple algorithm
does not work when given batches of updates since many vertices
can become unmatched and we must match them with potentially
the same set of in-neighbors. Because in-degree is unbounded,
we cannot use a static algorithm on the induced subgraph of all
unmatched in-neighbors, as this subgraph is too large.

Our algorithm instead first runs a static maximal matching algo-
rithm on the induced subgraph consisting of all newly unmatched
vertices and their unmatched out-neighbors. Because the out-degree
is bounded, we can afford this. Then, for any vertex that remains
unmatched, we progressively try to match it to an in-neighbor by
doubling the number of in-neighbors we query with each attempt
and running the static algorithm on the induced subgraph of the
queried in-neighbors and the unmatched vertices. Our proof ensures
that work-efficiency is maintained by this doubling procedure.
6.4 𝑘-Clique Counting
The best-known batch-dynamic algorithm of Dhulipala et al. [20]
uses a static parallel 𝑘-clique counting algorithm [61] to enumerate
smaller cliques which are intersected with the update batch to
produce 𝑘-cliques in𝑂 (|B|𝑚𝛼𝑘−4) expected work and𝑂 (log𝑘−2 𝑛)
depth w.h.p., using 𝑂 (𝑚 + |B|) space. Our algorithm, in contrast,
dynamically maintains small cliques in memory, without ever using
any static algorithms. Then, new updates are used to complete and
turn partial structures into 𝑘-cliques. Specifically, we maintain for
each potential 𝑘-clique, 𝐶 , the largest incomplete clique without
a source, 𝐶 ′, where 𝐶 ′ ⊂ 𝐶 . When 𝐶 ′ becomes a clique, then 𝐶
becomes a 𝑘-clique (and deletions are treated symmetrically).

The main challenge is in maintaining these partial structures
efficiently; provided edge updates, we cannot afford to naively
update all structures formed by in-neighbors since the in-degree is
unbounded. By keeping an intricate count of different structures in
parallel hash tables, we are able to achieve better work than [20]
when𝑚 = 𝜔 (𝛼2 log2 𝑛); such a condition holds for many graphs,
e.g., the road networks and our densest graphs, brain, orkut, and
friendster, as shown in Table 3.
6.5 Vertex Coloring
Henzinger et al. [33] present two currently best-known sequential,
dynamic algorithms for vertex coloring, with complexity bounds in
terms of 𝛼 . Their first algorithm is robust against oblivious adver-
saries and uses the LDS to maintain disjoint color palettes for each
level. Each vertex has a color from its level’s palette. This invariant
is maintained under edge insertions that cause conflicts and vertex
level changes. In the batch-dynamic setting, the main challenge is
that several vertices may be choosing a color simultaneously from
the same palette of non-conflicting colors. We show that we can
maintain work-efficiency in expectation and low depth w.h.p. by
simply repeatedly choosing a non-conflicting color uniformly at
random (even if multiple use the same palette) until all relevant
vertices have chosen non-conflicting colors.

Henzinger et al. [33] also give an implicit vertex coloring algo-
rithm. An implicit coloring structure is maintained after updates
and provides valid colors for queried vertices. Their implicit color-
ing algorithm maintains a set of forests on the outgoing edges of
vertices in an orientation of the input graph. Their original algo-
rithm prevents cycles from forming in the forests because edges
are added sequentially. However, this is challenging to parallelize,
as it involves parallel cycle detection and then splitting the cycles
across multiple trees. Instead, we present a simpler version of their
algorithm that is easier to parallelize, provided an acyclic low out-
degree orientation (which PLDS maintains), while guaranteeing
the same properties. Our simpler algorithm is conducive to batch
updates, where we make use of parallel Euler trees [65].
Acknowledgements
This research is supported by NSF GRFP #1122374, DOE Early
Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,
Google Faculty Research Award, Google Research Scholar Award,
FinTech@CSAIL Initiative, DARPA SDHAward #HR0011-18-3-0007,
and Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.
References
[1] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large Scale Networks Fingerprinting and Visualization Using the
𝐾-Core Decomposition. In International Conference on Neural Information Pro-
cessing Systems.

[2] Altaf Amin, Yoko Shinbo, Kenji Mihara, Ken Kurokawa, and Shigehiko Kanaya.
2006. Development and implementation of an algorithm for detection of protein
complexes in large interaction networks. BMC bioinformatics 7 (02 2006), 207.

[3] Richard Anderson and Ernst W. Mayr. 1984. A P-complete Problem and Approxi-
mations to It. Technical Report.

[4] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. 2016.
Distributed 𝐾 -Core Decomposition and Maintenance in Large Dynamic Graphs.
InACM International Conference on Distributed and Event-Based Systems. 161–168.

[5] Gary D. Bader and Christopher WV Hogue. 2003. An automated method for
finding molecular complexes in large protein interaction networks. BMC Bioin-
formatics 4, 1 (Jan. 2003), 2.

[6] Edvin Berglin and Gerth Stølting Brodal. 2020. A Simple Greedy Algorithm for
Dynamic Graph Orientation. Algorithmica 82, 2 (feb 2020), 245–259.

[7] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos
Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining Dense
Subgraphs on One-Pass Dynamic Streams. In ACM Symposium on Theory of
Computing (STOC). 173–182.

[8] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief Announce-
ment: ParlayLib – A Toolkit for Parallel Algorithms on Shared-MemoryMulticore
Machines. In ACM Symp. on Parallel Alg. (SPAA).

[9] Guy E. Blelloch and Bruce M. Maggs. 1996. Parallel Algorithms. Commun. ACM
39 (1996), 85–97.

[10] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.
2014. Core Decomposition of Uncertain Graphs. In ACM SIGKDD. 1316–1325.

[11] Gerth Stølting Brodal and Rolf Fagerberg. 1999. Dynamic Representations of
Sparse Graphs. In Proc. 6th International Workshop on Algorithms and Data Struc-
tures (WADS). 342–351.

[12] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007.
A model of Internet topology using k-shell decomposition. Proceedings of the
National Academy of Sciences 104, 27 (2007), 11150–11154.

[13] T.-H. Hubert Chan, Mauro Sozio, and Bintao Sun. 2021. Distributed approximate
k-core decomposition and min-max edge orientation: Breaking the diameter
barrier. J. Parallel Distributed Comput. 147 (2021), 87–99.

[14] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia,
and Chenyi Zhang. 2020. Finding the Best 𝑘 in Core Decomposition: A Time and
Space Optimal Solution. In IEEE ICDE. 685–696.

[15] Martino Ciaperoni, Edoardo Galimberti, Francesco Bonchi, Ciro Cattuto,
Francesco Gullo, and Alain Barrat. 2020. Relevance of temporal cores for epidemic
spread in temporal networks. Scientific Reports 10, 1 (July 2020).

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3. ed.). MIT Press.

[17] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. 2008. Implemen-
tation Challenge for Shortest Paths. 395–398.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

203

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, Julian Shun

[18] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2017. Julienne: A Frame-
work for Parallel Graph Algorithms Using Work-efficient Bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.

[19] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA).

[20] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. 2021. Parallel
Batch-Dynamic k-Clique Counting. In 2nd Symposium on Algorithmic Principles
of Computer Systems (APOCS). 129–143.

[21] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and
Classification of Dense Implicit Communities in the Web Graph. ACM Trans.
Web 3, 2, Article 7 (April 2009), 36 pages.

[22] Zdenek Dvorák and Vojtech Tuma. 2013. A Dynamic Data Structure for Counting
Subgraphs in Sparse Graphs. In International Workshop on Algorithms and Data
Structures (WADS). 304–315.

[23] Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and KuiWu. 2019. Efficient
Computation of Probabilistic Core Decomposition at Web-Scale. In International
Conference on Extending Database Technology. 325–336.

[24] Hossein Esfandiari, Silvio Lattanzi, and Vahab Mirrokni. 2018. Parallel and
Streaming Algorithms for 𝐾 -Core Decomposition. In International Conference on
Machine Learning. 1397–1406.

[25] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.
Effective Community Search over Large Spatial Graphs. Proc. VLDB Endow. 10, 6
(Feb. 2017), 709–720.

[26] Kasimir Gabert, Ali Pinar, and Ümit V. Çatalyürek. 2021. Shared-Memory Scalable
k-Core Maintenance on Dynamic Graphs and Hypergraphs. In IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 998–1007.

[27] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.
2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and
Applications. ACM Trans. Knowl. Discov. Data 14, 1, Article 11 (Jan. 2020).

[28] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. 2019. Improved Parallel
Algorithms for Density-Based Network Clustering. In International Conference
on Machine Learning. 2201–2210.

[29] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis
Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph Clustering Frame-
work. In AAAI. 44–50.

[30] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a theory of nearly constant time
parallel algorithms. In IEEE FOCS. 698–710.

[31] Meng He, Ganggui Tang, and Norbert Zeh. 2014. Orienting Dynamic Graphs,
with Applications to Maximal Matchings and Adjacency Queries. In International
Symposium on Algorithms and Computation. 128–140.

[32] JohnHealy, Jeannette Janssen, EvangelosMilios, andWilliamAiello. 2007. Charac-
terization of Graphs Using Degree Cores. In International Workshop on Algorithms
and Models for the Web-Graph (WAW). 137–148.

[33] Monika Henzinger, Stefan Neumann, and Andreas Wiese. 2020. Explicit
and Implicit Dynamic Coloring of Graphs with Bounded Arboricity. CoRR
abs/2002.10142 (2020).

[34] Q. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen. 2020. Faster
Parallel Core Maintenance Algorithms in Dynamic Graphs. IEEE Transactions on
Parallel and Distributed Systems 31, 6 (2020), 1287–1300.

[35] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.
[36] H. Jin, N. Wang, D. Yu, Q. Hua, X. Shi, and X. Xie. 2018. Core Maintenance in

Dynamic Graphs: A Parallel Approach Based on Matching. IEEE Transactions on
Parallel and Distributed Systems 29, 11 (2018), 2416–2428.

[37] H. Kabir and K. Madduri. 2017. Parallel 𝑘-Core Decomposition on Multicore
Platforms. In IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 1482–1491.

[38] Haim Kaplan and Shay Solomon. 2018. Dynamic Representations of Sparse
Distributed Networks: A Locality-Sensitive Approach. In ACM Symposium on
Parallelism in Algorithms and Architectures. 33–42.

[39] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-Core Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9,
1 (Sept. 2015), 13–23.

[40] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,
H. Eugene Stanley, and Hernán A. Makse. 2010. Identification of influential
spreaders in complex networks. Nature Physics 6, 11 (Nov. 2010), 888–893.

[41] Tsvi Kopelowitz, Robert Krauthgamer, Ely Porat, and Shay Solomon. 2014. Ori-
enting Fully Dynamic Graphs with Worst-Case Time Bounds. In International
Colloquium on Automata, Languages and Programming (ICALP). 532–543.

[42] Lukasz Kowalik. 2007. Adjacency queries in dynamic sparse graphs. Inf. Process.
Lett. 102, 5 (2007), 191–195.

[43] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a Social Network or a News Media?. In International Conference on World
Wide Web. 591–600.

[44] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A Survey of
Algorithms for Dense Subgraph Discovery. In Managing and Mining Graph Data.
303–336.

[45] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[46] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.
2019. Efficient Progressive Minimum K-Core Search. Proc. VLDB Endow. 13, 3
(Nov. 2019), 362–375.

[47] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in
Large Dynamic Graphs. IEEE Transactions on Knowledge and Data Engineering
26, 10 (2014), 2453–2465.

[48] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun.
2022. Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related
Graph Problems. https://arxiv.org/abs/2106.03824

[49] Ying Liu, Ming Tang, Tao Zhou, and Younghae Do. 2015. Core-like groups result
in invalidation of identifying super-spreader by k-shell decomposition. Scientific
Reports 5 (May 2015), 9602–9602.

[50] Qi Luo, Dongxiao Yu, Zhipeng Cai, Xuemin Lin, and Xiuzhen Cheng. 2021.
Hypercore Maintenance in Dynamic Hypergraphs. In IEEE ICDE. 2051–2056.

[51] Qi Luo, Dongxiao Yu, Feng Li, Zhenhao Dou, Zhipeng Cai, Jiguo Yu, and Xi-
uzhen Cheng. 2019. Distributed Core Decomposition in Probabilistic Graphs. In
Computational Data and Social Networks. 16–32.

[52] Fragkiskos D. Malliaros, Maria-Evgenia G. Rossi, and Michalis Vazirgiannis. 2016.
Locating influential nodes in complex networks. Scientific Reports 6, 1 (2016).

[53] DavidW. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and Clustering
and Graph Coloring Algorithms. J. ACM 30, 3 (July 1983), 417–427.

[54] Sourav Medya, Tianyi Ma, Arlei Silva, and Ambuj Singh. 2020. A Game The-
oretic Approach For K-Core Minimization. In 19th International Conference on
Autonomous Agents and MultiAgent Systems. 1922–1924.

[55] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,
and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in Large-Scale
Networks via Sampling. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 815–824.

[56] Ofer Neiman and Shay Solomon. 2015. Simple deterministic algorithms for fully
dynamic maximal matching. ACM Trans. on Alg. (TALG) 12, 1 (2015), 1–15.

[57] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. In AAAI. 4292–4293. http:
//networkrepository.com

[58] Ahmet Erdem Sariyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and
Ümit V. Çatalyürek. 2016. Incremental 𝑘-core decomposition: algorithms and
evaluation. The VLDB Journal 25, 3 (2016), 425–447.

[59] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and
Ümit V. Çatalyürek. 2013. Streaming Algorithms for K-Core Decomposition. Proc.
VLDB Endow. 6, 6 (April 2013), 433–444.

[60] Saurabh Sawlani and Junxing Wang. 2020. Near-Optimal Fully Dynamic Densest
Subgraph. In ACM SIGACT Symposium on Theory of Computing. 181–193.

[61] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel Clique Count-
ing and Peeling Algorithms. In SIAM Conference on Applied and Computational
Discrete Algorithms (ACDA). 135–146.

[62] Shay Solomon and Nicole Wein. 2020. Improved Dynamic Graph Coloring. ACM
Trans. on Alg. (TALG) 16, 3, Article 41 (June 2020).

[63] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Approxi-
mate 𝐾 -Core Decomposition in Hypergraphs. ACM Trans. Knowl. Discov. Data
14, 4, Article 39 (May 2020).

[64] Bintao Sun, T-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Ap-
proximate 𝑘-Core Decomposition in Hypergraphs. https://github.com/btsun/
DynHyperCoreDecomp

[65] Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. 2019. Batch-Parallel Euler
Tour Trees. InWorkshop on Algorithm Engineering and Experiments (ALENEX).
92–106.

[66] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018. Efficient
Computing of Radius-Bounded k-Cores. In IEEE ICDE. 233–244.

[67] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua.
2017. Parallel Algorithm for Core Maintenance in Dynamic Graphs. In IEEE 37th
International Conference on Distributed Computing Systems (ICDCS). 2366–2371.

[68] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network com-
munities based on ground-truth. Knowledge and Information Systems 42, 1 (Jan.
2015), 181–213.

[69] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When En-
gagement Meets Similarity: Efficient (k,r)-Core Computation on Social Networks.
Proc. VLDB Endow. 10, 10 (June 2017), 998–1009.

[70] Haohua Zhang, Hai Zhao, Wei Cai, Jie Liu, and Wanlei Zhou. 2010. Using the k-
core decomposition to analyze the static structure of large-scale software systems.
J. Supercomput. 53, 2 (2010), 352–369.

[71] Y. Zhang, J. Yu, Y. Zhang, and L. Qin. 2017. A Fast Order-Based Approach for
Core Maintenance. In IEEE ICDE. 337–348.

[72] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss
Maintenance in Evolving Graphs. In ACM SIGMOD International Conference on
Management of Data. 1024–1041.

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

204

http://snap.stanford.edu/data
https://arxiv.org/abs/2106.03824
http://networkrepository.com
http://networkrepository.com
https://github.com/btsun/DynHyperCoreDecomp
https://github.com/btsun/DynHyperCoreDecomp

	Abstract
	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 Batch-Dynamic k-Core Decomposition
	4.1 Algorithm Overview
	4.2 Sequential Level Data Structure (LDS)
	4.3 Detailed PLDS Algorithm
	4.4 Efficiency Analysis
	4.5 Estimating the Coreness and Orientation

	5 Experimental Evaluation
	5.1 Accuracy vs. Running Time
	5.2 Batch Size vs. Running Time
	5.3 Thread Count vs. Running Time
	5.4 Results on Large Graphs
	5.5 Accuracy of Approximation Algorithms

	6 Additional Parallel Algorithms
	6.1 Static k-Core Decomposition
	6.2 Framework for Batch-Dynamic Graph Algorithms from Low Out-Degree Orientations
	6.3 Maximal Matching
	6.4 k-Clique Counting
	6.5 Vertex Coloring

	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 42.86, 719.14 Width 522.00 Height 18.00 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 42.857 719.1432 521.9978 17.9999

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 2
 14
 13
 14

 1

 HistoryList_V1
 qi2base

