
Fast Parallel Computation of
Longest Common Prefixes

Julian Shun
Carnegie Mellon University
Email: jshun@cs.cmu.edu

Abstract—Suffix arrays and the corresponding longest com-
mon prefix (LCP) array have wide applications in bioinformatics,
information retrieval and data compression. In this work, we
propose and theoretically analyze new parallel algorithms for
computing the LCP array given the suffix array as input. Most of
our algorithms have a work and depth (parallel time) complexity
related to the LCP values of the input. We also present a
slight variation of Kärkkäinen and Sanders’ skew algorithm that
requires linear work and poly-logarithmic depth in the worst
case. We present a comprehensive experimental study of our
parallel algorithms along with existing parallel and sequential
LCP algorithms. On a variety of real-world and artificial strings,
we show that on a 40-core shared-memory machine our fastest
algorithm is up to 2.3 times faster than the fastest existing parallel
algorithm, and up to 21.8 times faster than the fastest sequential
LCP algorithm.

I. Introduction
Suffix arrays [27] (also known as PAT arrays [12]) along with
the corresponding longest common prefix array have appli-
cations in many fields, including bioinformatics, information
retrieval and data compression. The suffix array (SA) is a data
structure that stores the suffixes of a string in lexicographical
order. Many applications of suffix arrays also require the longest
common prefix (LCP) array, which stores the length of the
longest common prefix between every adjacent pair of suffixes
in the suffix array. For example, the LCP values are used for
efficient pattern matching with a suffix array [27], and used
along with the suffix array to build a suffix tree [38] or simulate
suffix tree traversals [1]. The suffix array and its corresponding
LCP array are often preferred over suffix trees for text indexing
due to their lower space requirements [13]. With the rapid
growth in data sizes, having fast parallel algorithms for suffix
arrays and LCP arrays are particularly important. While there
exists algorithms that compute both the suffix array and LCP
array together, sometimes the suffix array is already available,
and it is beneficial to have a fast algorithm for computing just
the LCP array. Furthermore, separating the computation of SA
and LCP allows one to use a fast SA algorithm that does not
compute the LCP values, followed by a fast LCP algorithm.
With such a separation, improvements in either SA algorithms
or LCP algorithms improves the overall running time of the
SA+LCP computation.

The suffix array and the first algorithm for constructing it
were described by Manber and Myers [27]. Their sequential
algorithm requires O(n log n) work1, and also produces the
LCP array. The first linear-work suffix array algorithms were
described independently by Kärkkäinen and Sanders [17], Ko
and Aluru [24] and Kim et al. [23]. Among these, the skew
algorithm [17] (also named DC3 in [20]) of Kärkkäinen and

1Throughout the paper, we use log x to denote the base 2 logarithm of x.

Sanders can also compute the LCP array. Fischer [8] later
describes a sequential linear-work algorithm which computes
both the SA and LCP, and is based on a modification of the
sequential linear-work suffix array algorithm of Nong et al. [32].
In addition, many superlinear-work suffix array algorithms exist
(see e.g. [33]), and some are faster in practice than the linear-
work algorithms for certain inputs.

As for sequential standalone LCP algorithms (which com-
pute the LCP array given the SA as input), a brute-force method
is to directly compute the LCP value between every pair of
adjacent suffixes in the SA, requiring quadratic work in the
worst-case. The first linear-work LCP algorithm was described
by Kasai et al. [22]. Kärkkäinen et al. [19] later describe a linear-
work algorithm for computing the permuted longest common
prefix (PLCP) array. The LCP array can easily be computed
from the PLCP array, and Kärkkäinen et al. show that their
approach is more efficient in practice than that of Kasai et al.
They also discuss another technique in the same paper based on
irreducible LCP values, which requires O(n log n) work. The
details of these algorithms are described in Section II. Gog and
Ohlebusch [10] present a more space-efficient sequential LCP
algorithm that requires the Burrows-Wheeler Transform [5] as
input and requires O(n2) work in the worst case. There have also
been many papers describing how to reduce the working space
requirements of LCP computation [3, 28, 34, 19, 41, 10, 2, 11]
and adapting them to external memory [26, 4, 18].

As for parallel algorithms, besides simply parallelizing
the brute-force method, there are two existing methods for
computing the LCP array. The first method is to use the skew
algorithm of Kärkkäinen and Sanders [17], which runs in
linear work and O(log2 n) depth (number of parallel time steps)
with high probability2. Note that the skew algorithm is not a
standalone LCP algorithm as it computes both the SA and LCP
array together. Deo and Keely [6] present a standalone parallel
LCP algorithm for GPUs that is based on a parallelization of
the sequential algorithm by Kasai et al. [22].

We note that by first constructing the suffix tree, we can
obtain the LCP values by inspecting the depth of each internal
node in the tree. Linear work and poly-logarithmic depth
parallel suffix tree algorithms exist [15, 37, 7, 38], however, this
approach is less satisfactory since constructing the suffix tree is
less efficient in practice than constructing the SA and LCP array
together. In fact, the fastest parallel suffix tree algorithm in
practice requires first constructing the SA and LCP array [38].

With a fast parallel LCP algorithm, the performance of
parallel applications that require the SA and LCP array could
be improved. For example, the fastest parallel algorithms for

2We use “with high probability” (w.h.p.) to mean with probability at least
1 − 1/nc for a constant c > 0.

SC14, November 16-21, 2014, New Orleans, Louisiana, USA
978-1-4799-5500-8/14/$31.00 c©2014 IEEE

Note: this is a slightly updated version of the paper appearing in the
conference proceedings.

Algorithm Work Depth

klaap-LCP (seq.) O(n) O(n)
kmp-LCP (seq.) O(n) O(n)

naive-LCP O(nlavg) O(lmax)
skew-SA+LCP O(n) w.h.p. O(log2 n) w.h.p.

skew-LCP O(n) O(log2 n)
par-iLCP O(n log n) O(log n + lmax)
par-LCP O(n + Klmax) O(n/K + lmax)

O(n + Klavg) expected O(n/K + lmax)
par-PLCP O(n + Klmax) O(n/K + lmax)

O(n + Klavg) expected O(n/K + lmax)
dk-LCP O(n + Klmax) O(n/K + log n + lmax)

O(n + Klavg) expected O(n/K + log n + lmax)
dk-PLCP O(n + Klmax) O(n/K + log n + lmax)

O(n + Klavg) expected O(n/K + log n + lmax)

TABLE I: Work and depth bounds for LCP algorithms. n = input size, lmax =
maximum lcp value, lavg = average lcp value, and K is an algorithm parameter,
which trades off between work and depth. Our new algorithms are shown in
bold font.

suffix tree construction [38] and Lempel-Ziv factorization [39]
require computing the SA and LCP array, which is the dominant
cost of the algorithms (at least 80% of the total running time).
Our contributions. In this work, we present several parallel
standalone LCP algorithms. The first two are based on a
parallelization of the sequential algorithms of [22] and [19] (par-
LCP and par-PLCP, respectively), and require O(n+Klmax) work
and O(n/K+lmax) depth for a parameter K ≤ n, where lmax is the
maximum LCP value of the suffixes of the string. The parameter
K represents a trade-off between work and parallelism. We
discuss variants of these algorithms that improve the work to
O(n + Klavg) in expectation. The third algorithm (skew-LCP) is
a slight modification of the skew algorithm [17], and requires
linear work and O(log2 n) depth in the worst case. We also apply
Deo and Keely’s parallelization idea (dk-LCP) to the sequential
algorithm of Kärkkäinen et al. [19] (we refer to this variant as
dk-PLCP). Finally, we present a straightforward parallelization
of the irreducible LCP algorithm of Kärkkäinen et al. [19]
(par-iLCP), which requires O(n log n) work and O(log n + lmax)
depth. We note that the only two parallel algorithms that require
O(n) work and poly-logarithmic depth independent of the LCP
values of the string (i.e. are work-efficient) are the original
skew algorithm (skew-SA+LCP) and skew-LCP, our variant
for standalone LCP computation. For reference, we provide
a table of the work and depth bounds for LCP algorithms in
Table I, with our new algorithms/variants shown in bold font.

We present the first comprehensive evaluation of shared-
memory implementations of parallel LCP algorithms, compar-
ing our algorithms along with our CPU implementation of the
parallel algorithm of Deo and Keely [6] and an implementation
of the original parallel skew algorithm. We also compare the
parallel implementations with the fastest sequential algorithms
for computing the LCP array. Our parallel implementations use
Cilk Plus [25], which is a dynamic multithreading language
where simple constructs (e.g. parallel for-loops) are used to
indicate which parts of the program are safe to run in parallel,
and a run-time scheduler assigns work to threads and performs
load-balancing. Our experiments on a 40-core shared-memory
machine using a variety of real-world and artificial inputs
show that par-PLCP usually performs the fastest among the
parallel implementations, and outperforms our implementation
of Deo and Keely’s algorithm by a factor of 1.5 to 2.3 in
parallel. Compared to the fastest sequential LCP algorithm,
par-PLCP is 14.4–21.8 times faster on 40 cores on the real-
world inputs. We also show that while our linear-work and
poly-logarithmic depth skew-LCP algorithm is 6–11x slower

i S[i] SA[i] LCP[i] PLCP[i] sufi
0 b 6 0 0 $
1 a 5 0 3 a$
2 n 3 1 2 ana$
3 a 1 3 1 anana$
4 n 0 0 0 banana$
5 a 4 0 0 na$
6 $ 2 2 0 nana$

Fig. 1: SA, LCP, and PLCP arrays for S = banana$.

than par-PLCP, it outperforms the only existing algorithm with
the same theoretical guarantees (skew-SA+LCP) by 1.4–2x in
parallel.

II. Preliminaries
In this paper, we state complexity bounds of algorithms in the
work-depth model, where the work W is equal to the number
of operations required and the depth D is equal to the number
of time steps required. Then if P processors are available, using
Brent’s scheduling theorem [16] we can bound the running
time by O(W/P + D). For sequential algorithms, the work and
the depth terms are equivalent. We say that a parallel algorithm
is work-efficient if its work is asymptotically equal to the work
of the fastest sequential algorithm for the same problem.

We will make use of the basic parallel primitives, prefix
sum and filter [16]. Prefix sum takes a sequence A of length
n, an associative binary operator ⊕, and an identity element
⊥ such that ⊥ ⊕ a = a for all a, and returns the sequence
(⊥,⊥⊕A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕A[0]⊕A[1]⊕ . . .⊕A[n−1]).
Filter takes a sequence A of length n, a predicate function f
and returns a sequence A′ of length n′ containing the elements
in a ∈ A such that f (a) returns true, in the same order that
they appear in A. Filter can easily be implemented using prefix
sum, and both require O(n) work and O(log n) depth [16].

We denote a string by S, its length by n, the i’th character
(using zero-based indexing) of a string S by S[i], and the
sub-string starting at the i’th character and ending at the j’th
character of S by S[i, . . . , j]. We denote the alphabet of S by
Σ and the alphabet size by |Σ|. We assume that a string ends
with a special character $ lexicographically smaller than all
characters in Σ.

We define sufi of a string S to be the suffix of S starting at
position i (i.e. S[i, . . . , n− 1]). The suffix array [27] SA of S is
a permutation of the integers [0, . . . , n− 1] such that sufSA[0] <
sufSA[1] < . . . < sufSA[n−1], where “<” means lexicographically
smaller. The inverse array Rank of SA stores the rank of each
suffix in SA. In particular, Rank[j] = i if and only if SA[i] = j.
The longest common prefix array is an array LCP of length
n such that LCP[0] = 0 and for i > 0, LCP[i] contains the
length of the longest common prefix (lcp) between sufSA[i−1]
and sufSA[i]. The permuted longest common prefix array [19]
is an array PLCP of length n that stores the lcp’s in the order
that they appear in S instead of their order in SA. In other
words, PLCP[S A[i]] = LCP[i]. As an example, Fig. 1 shows
the SA, LCP, PLCP arrays for the string S = banana$.

A standalone LCP algorithm takes as input the string S,
its suffix array SA and its length n, and outputs the LCP array.
We now review the existing sequential and parallel standalone
LCP algorithms.
naive-LCP. The LCP array can be computed in a brute-force
manner by comparing every pair of adjacent suffixes one
character at a time from the beginning of the suffixes. This
approach can easily be parallelized as the comparison of each

1: procedure naive-LCP(S, SA, n)
2: LCP[0] = 0
3: parfor i = 1 to n − 1 do
4: h = 0
5: j = SA[i]
6: k = SA[i − 1]
7: while S[j + h] == S[k + h] do
8: h = h + 1
9: LCP[i] = h

Fig. 2: naive-LCP: naive parallel LCP algorithm.

suffix pair is independent of any other suffix pair. The work is
proportional to the sum of all lcp values, which can be bounded
by O(nlavg), where lavg is the average lcp value, but is quadratic
in the worst case. The depth is proportional to the maximum
lcp value, lmax. The pseudo-code for this brute-force algorithm,
which we refer to as naive-LCP, is shown in Fig. 2.
klaap-LCP. The first linear-work sequential LCP algorithm
was described by Kasai et al. [22], which we refer to as klaap-
LCP. The pseudo-code for the klaap-LCP algorithm is shown
in Fig. 3, and is adapted from [22]. The klaap-LCP algorithm
uses the observation LCP[Rank[i]] ≥ LCP[Rank[i − 1]] − 1 to
reduce redundant computation. The algorithm first computes
the Rank array (Lines 2–3). It then uses the Rank array to
iterate over the suffixes in the order that they appear in the
original string, keeping a counter h of the lcp value of the
current suffix. To compute the lcp value of the next suffix
in original string order, character comparisons are performed
between the suffix and its previous suffix in SA order, starting
with the (h − 1)’st character of the suffixes. Kasai et al. show
that this algorithm requires at most 2n character comparisons,
giving an O(n) work algorithm.

1: procedure klaap-LCP(S, SA, n)
2: for i = 0 to n − 1 do . Compute Rank array
3: Rank[SA[i]] = i
4: LCP[0] = 0
5: h = 0
6: for i = 0 to n − 1 do
7: if Rank[i] , 0 then
8: k = SA[Rank[i] − 1]
9: while S[i + h] == S[k + h] do

10: h = h + 1
11: LCP[Rank[i]] = h
12: if h > 0 then
13: h = h − 1

Fig. 3: klaap-LCP: sequential LCP algorithm of Kasai et al.

kmp-LCP. Kärkkäinen et al. [19] describe a modification of
the klaap-LCP algorithm, which writes out the lcp values in a
permuted order. We refer to this algorithm as kmp-LCP and the
pseudo-code for the algorithm is shown in Fig. 4, and is adapted
from [19]. In particular, it writes the lcp value of the i’th suffix
in S in position i in the PLCP array (Line 15). Obtaining
the LCP array is done in a post-processing phase (Lines 16–
17), by applying the relation LCP[i] = PLCP[SA[i]]. Another
difference from klaap-LCP is that in the pre-processing phase
(Lines 3–4) kmp-LCP computes the index of the preceding
suffix in SA for each suffix (stored in the Φ array), whereas
klaap-LCP does this in the main loop using the Rank array
(Line 8 of Algorithm 3). This saves a random read to SA, since
the read to SA[i−1] on Line 4 of kmp-LCP is already in cache,
whereas Line 8 of klaap-LCP involves a random read to SA.

As in klaap-LCP, the number of character comparisons in
kmp-LCP is at most 2n, but kmp-LCP was shown to perform
faster in practice (by about 50%) than klaap-LCP due to

requiring fewer random reads and writes. The authors of [19]
discuss space-saving variants which computes only n/q entries
of PLCP but requires O(q) work for a random access. They
also discuss certain applications where the PLCP array may be
used instead of the LCP array [36]. In this paper, we assume
that the entire LCP array must be computed.

1: procedure kmp-LCP(S, SA, n)
2: Φ[SA[0]] = −1
3: for i = 1 to n − 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i − 1]
5: h = 0
6: for i = 0 to n − 1 do
7: if Φ[i] == −1 then
8: h = 0
9: else

10: k = Φ[i]
11: while S[i + h] == S[k + h] do
12: h = h + 1
13: if h > 0 then
14: h = h − 1
15: PLCP[i] = h
16: for i = 0 to n − 1 do . Convert PLCP to LCP
17: LCP[i] = PLCP[SA[i]]

Fig. 4: kmp-LCP: sequential LCP algorithm of Kärkkäinen et al.

dk-LCP. Deo and Keely describe a parallel version of klaap-
LCP for GPUs [6]. The pseudo-code for our implementation
of their algorithm is shown in Fig. 5, and we refer to it as
dk-LCP. Lines 2–3 are the same as in klaap-LCP, except done
in parallel. The algorithm finds all of the indices i j such that
LCP[Rank[i j]] = 0, which can be done by comparing the first
character of each suffix with the first character of its previous
suffix in SA, and applying a parallel filter (Line 5)3. In particular,
we mark all the indices i such that S[i] , S[SA[Rank[i]] − 1]
and apply a filter keeping just the marked indices. These indices
form intervals [i j, . . . , i j+1 − 1], and since the intervals could
be large (especially for strings from a small alphabet), each
interval that is larger than some threshold is split into sub-
intervals, and in parallel the sequential klaap-LCP algorithm is
applied to all sub-intervals (Lines 6–19). Our implementation
uses a threshold of bn/Kc for some input parameter K ≤ n (for
simplicity, the pseudo-code assumes K evenly divides n, but
can be adapted for the general case). Since the first suffix of a
sub-interval may not have an lcp value of 0, there is extra work
done relative to klaap-LCP in computing its lcp value (unlike
in klaap-LCP, it does not know the lcp value of its previous
suffix). Hence the total work can no longer be bounded by O(n).
We provide an analysis of the algorithm in Section III. Deo and
Keely’s original GPU algorithm also includes a load-balancing
component, but since our implementation uses Cilk Plus [25],
we leave this to the work-stealing run-time scheduler.
skew-SA+LCP. The skew algorithm [17] is a linear-work
parallel suffix array construction algorithm, and can be used to
also compute the LCP array during the suffix array construction.
The skew algorithm works in 4 steps:
1) Recursively construct the suffix array SA12 and longest

common prefix array LCP12 of the suffixes starting at
positions i in S where i mod 3 , 0.

2) Use SA12 to construct the suffix array SA0 of the positions
i in S where i mod 3 = 0.

3) Merge SA12 and SA0 together to form SA.

3The number of these indices is at most |Σ|. Without loss of generality, in
the pseudo-code, we assume that all characters in Σ appear in the string.

1: procedure dk-LCP(S, SA, n)
2: parfor i = 0 to n − 1 do . Compute Rank array
3: Rank[SA[i]] = i
4: LCP[0] = 0, i0 = 0
5: Compute indices i1 < i2 < . . . < i|Σ|−1 such that for all

1 ≤ j < |Σ|, S[i] , S[SA[Rank[i]] − 1] . lcp is 0
6: parfor j = 0 to |Σ| − 1 do . Parallelize over intervals
7: B = d

(i j+1−i j)K
n e . Number of sub-intervals

8: parfor b = 0 to B − 1 do . Parallelize over sub-intervals
9: h = 0

10: start = i j + bn
K

11: end = min {i j +
(b+1)n

K , i j+1}

12: for i = start to end − 1 do . Sequential klaap-LCP
13: if Rank[i] , 0 then
14: k = SA[Rank[i] − 1]
15: while S[i + h] == S[k + h] do
16: h = h + 1
17: LCP[Rank[i]] = h
18: if h > 0 then
19: h = h − 1

Fig. 5: dk-LCP: parallel LCP algorithm of Deo and Keely.

4) Use SA and LCP12 to compute the full LCP array.
To perform step (1) it assigns lexicographic integer labels

s′i ∈ [1, . . . , 2n/3] to the triples S[i, i + 1, i + 2] for i mod 3 , 0
using a stable integer sort followed by a prefix sum. If the
names are all unique then the array of labels is the suffix array
SA12, and LCP12 contains all 0’s; otherwise it recurses on the
string S′ = s1s2 where s1 is formed by concatenating all of
the labels s′i for i mod 3 = 1 in order of i and s2 is formed
by concatenating all of the labels s′j for j mod 3 = 2 in order
of j. The authors of [17] show that the stable integer sorting
here can be done in linear work and O(log n) depth w.h.p. for
an initial alphabet of constant size by combining techniques
in [35, 14].

To perform step (2), the suffixes at positions i where
i mod 3 = 0 can be sorted by sorting the pairs (S[i], sufi+1)
using an integer sort, as the suffixes sufi+1 are at mod 1 positions
and hence already in sorted order in SA12 from step (1). The
integer sort requires O(n) work and O(log n) depth w.h.p.

The merge in step (3) can be performed by using pairs
(S[i], sufi+1) if comparing a mod 0 suffix with a mod 1 suffix,
and triples (S[i],S[i + 1], sufi+2) if comparing a mod 0 suffix
with a mod 2 suffix. This ensures that the suffixes appearing in
the pairs or triples already appear in sorted order in SA12.
Computing the relative order of two suffixes in SA12 can
be done in constant work by pre-computing an inverse array
mapping each suffix to its position in SA12. The inverse array
can be computed in linear work and O(1) depth. The merge
can be done using a parallel merging algorithm in O(n) work
and O(log n) depth [16].

Finally, to perform step (4) the algorithm uses the fact that
an lcp value in LCP corresponds to 3 times the corresponding
value in LCP12, and the fact that the lcp value between the
two suffixes at positions i and j of the LCP12 array is equal
to mini≤k< j LCP12[k]. For two suffixes sufSA[i−1] and sufSA[i],
the algorithm first compares c characters (0 ≤ c ≤ 2) from the
beginning of the suffixes until both (SA[i−1]+c) mod 3 , 0 and
(SA[i] + c) mod 3 , 0. If fewer than c characters match, then
LCP[i] = c′, where c′ is the length of the prefix that matches.
Otherwise, let l be equal to the lcp between sufSA[i−1]+c and
sufSA[i]+c. These suffixes are represented in LCP12 because
they are at mod 1 and/or mod 2 positions, and the positions in
LCP12 can be looked up using the inverse array from step (3).

However, the suffixes may not be adjacent in LCP12, so a range
minima query between the two positions in LCP12 is done if
necessary to give the lcp value between the suffixes. Then
LCP[i] is equal to c + 3l + l′, where l′ is the lcp value between
sufSA[i−1]+c+3l and sufSA[i]+c+3l. l′ is at most 2 and is computed
by comparing the characters of the suffixes one-by-one. To
answer range minima queries in O(1) work/depth, the algorithm
builds a range minima query table over LCP12, which requires
O(n) work and O(log n) depth [16].

The overall work of the algorithm is O(n) since each level
of recursion requires linear work and reduces the problem size
to 2n/3. The depth is O(log2 n) w.h.p. as there are O(log n)
levels of recursion, each requiring O(log n) depth w.h.p. We
later show how to modify the skew algorithm to compute the
LCP array given the suffix array as input.
irreducible-LCP. Kärkkäinen et al. [19] describe a technique
for computing the PLCP array based on irreducible lcp values,
which we refer to as irreducible-LCP. PLCP[i] is reducible
if S[i − 1] = S[Φ[i] − 1] and irreducible otherwise, where Φ
is computed as in kmp-LCP, i.e. Φ[SA[i]] = SA[i − 1]. For
reducible values, it can be shown [28, 19] that PLCP[i] =
PLCP[i− 1]− 1. The algorithm works by computing the PLCP
values corresponding to the irreducible lcp’s using the brute-
force method of comparing the suffixes from the beginning, and
using the results to compute each remaining PLCP value in
constant work. The authors show that the sum of all irreducible
lcp values is at most 2n log n. Hence, the overall work is
O(n log n) (note that this is not work-efficient). The authors also
show that in practice the algorithm is slower than kmp-LCP. We
later present a straightforward parallelization of this algorithm.

III. Algorithms and Analysis
In this section, we present several parallel algorithms for
computing the longest common prefix array given a string
and its corresponding suffix array. We also analyze the work
and depth bounds of the algorithms.
par-LCP and par-PLCP. Our first approach is similar to that
of Deo and Keely [6], but instead of requiring a pre-processing
step to find the intervals that are processed in parallel, we split
the input into equal-sized intervals. This approach can be used
to parallelize both klaap-LCP and kmp-LCP. The algorithms
use a parameter K ≤ n, which trades off between parallelism
and work, and split the input into intervals of size at most
bn/Kc (there are either K or K + 1 intervals). We refer to our
parallelization of klaap-LCP as par-LCP (pseudo-code shown
in Fig. 6) and our parallelization of kmp-LCP as par-PLCP
(pseudo-code shown in Fig. 7). For simplicity, the pseudo-code
assumes K evenly divides n, but can be adapted for the general
case. We process the intervals in parallel, where each interval
runs klaap-LCP or kmp-LCP sequentially, with a counter h
starting at 0. The parameter K could, for example, be set to
O(P) where P is the number of processors available to the
computation, and this is what we use in our experiments.

In par-LCP (Fig. 6), the Rank array is computed in parallel
on Lines 2–3. Then Line 5 is a parallel for-loop splitting the
indices into equal-sized chunks, where each chunk is processed
sequentially in Lines 6–14 using klaap-LCP. For par-PLCP
(Fig. 7), the loops computing Φ (Lines 3–4) and computing
LCP (Lines 17–18) can be trivially parallelized. Again, on Line
5, the indices are split in a parallel for-loop, and each chunk
is processed sequentially in Lines 6–16 using kmp-LCP.

In contrast to dk-LCP (and dk-PLCP, which is described

1: procedure par-LCP(S, SA, n)
2: parfor i = 0 to n − 1 do . Compute Rank array
3: Rank[SA[i]] = i
4: LCP[0] = 0
5: parfor j = 0 to K − 1 do . Parallelize over intervals
6: h = 0
7: for i =

jn
K to (j+1)n

K − 1 do . Sequential klaap-LCP
8: if Rank[i] , 0 then
9: k = SA[Rank[i] − 1]

10: while S[i + h] == S[k + h] do
11: h = h + 1
12: LCP[Rank[i]] = h
13: if h > 0 then
14: h = h − 1

Fig. 6: par-LCP: our parallelization of klaap-LCP.

next), par-LCP and par-PLCP do not have a pre-processing
phase to find all the indices for which the lcp value is 0,
therefore leading to splits that perform more extra work on
average for the first element of each chunk. However, we
later show experimentally that the extra work is insignificant
compared to the work required for pre-processing.
dk-PLCP. We observe that the approach of Deo and Keely can
also be used to parallelize kmp-LCP and refer to this variant
as dk-PLCP. Due to space constraints we do not show the
pseudo-code for this algorithm, but it is very similar to that of
dk-LCP in Fig. 5.
Analysis. We now analyze the theoretical performance of the
four parallel algorithms (par-LCP, par-PLCP, dk-LCP and dk-
PLCP) based on splitting the computation into intervals (and
sub-intervals). In the analysis, we assume that K evenly divides
n, but the bounds still hold in the general case. The performance
is based on the maximum or average lcp value of the suffixes
of the string, which we denote as lmax and lavg, respectively.

Theorem 3.1: For a parameter K ≤ n, par-LCP and par-
PLCP require O(n + Klmax) work and O(n/K + lmax) depth.

Proof: For each interval, the maximum value of the counter
h is lmax and there are n/K decrements, so the number of
character comparisons (equal to the number of times h is
incremented) is at most n/K + lmax. This analysis is similar
to that of [22]. Over all K intervals, the number of character
comparisons is at most n + Klmax. The work of the main loop
(Lines 5–14 of par-LCP and Lines 5–16 of par-PLCP) is thus
O(n + Klmax).

An alternative argument for the work bound of the main
loop is that except for the first element of each interval, the
work for the rest of the elements is exactly the same as in
the sequential algorithm and hence bounded by O(n). The first
element of an interval can do at most lmax comparisons, and
over all K intervals, this contributes O(Klmax) to the work.
Hence the total work is bounded by O(n + Klmax).

The intervals can be processed in parallel, but each interval
is done sequentially doing at most n/K + lmax comparisons, so
the depth of the main loop is O(n/K + lmax). The parallel loops
on Lines 2–3 of par-LCP and Lines 3–4 and 17–18 of par-PLCP
require O(n) work and O(1) depth. Therefore, the work of the
algorithms is O(n + Klmax) and depth is O(n/K + lmax).

Note that if K = ω(n/lmax) then our algorithms do more
than O(n) work in the worst case. However, in our experiments
we set K to be the number of threads, which is less than n/lmax
for most inputs. Also, for real-world strings the O(Klmax) term
is usually very loose as it is unlikely that the first elements of
many intervals have an lcp value close to lmax.

1: procedure par-PLCP(S, SA, n)
2: Φ[SA[0]] = −1
3: parfor i = 1 to n − 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i − 1]
5: parfor j = 0 to K − 1 do . Parallelize over intervals
6: h = 0
7: for i =

jn
K to (j+1)n

K − 1 do . Sequential kmp-LCP
8: if Φ[i] == −1 then
9: h = 0

10: else
11: k = Φ[i]
12: while S[i + h] == S[k + h] do
13: h = h + 1
14: if h > 0 then
15: h = h − 1
16: PLCP[i] = h
17: parfor i = 0 to n − 1 do . Convert PLCP to LCP
18: LCP[i] = PLCP[SA[i]]

Fig. 7: par-PLCP: our parallelization of kmp-LCP.

By using randomization, we can improve the work bound to
O(n + Klavg) in expectation, as discussed in Lemma 3.2 below.
This improvement is significant when lavg � lmax.

Lemma 3.2: Modified versions of par-LCP and par-PLCP
require O(n + Klavg) expected work and O(n/K + lmax) depth.

Proof: Instead of fixing the interval start indices at jn/K
for 0 ≤ j < K, we pick an integer uniformly at random between
0 and n/K − 1 and shift all start indices to the right by this
amount. We then add back a start index at i = 0 (if it was
shifted) to guarantee that all elements are processed.

We consider the extra work performed for the first elements
of the intervals, except for at i = 0. Summing over all possible
random shifts, each first element where i > 0 will be a first
element of an interval exactly once, and the total extra work for
these elements can be upper bounded by nlavg (the sum over all
lcp values). Each random shift is picked with 1/(n/K) = K/n
probability, so the expected work for these elements for a single
execution is at most (K/n)nlavg = Klavg. The extra work for the
first element at i = 0 can be bounded by lmax. The remainder of
the work done in the main loop is the same as in the sequential
algorithm, and so contributes O(n) to the total work. Therefore,
the total expected work is O(n + Klavg).

Again, the depth is bounded by the maximum size of an
interval plus lmax, giving a bound of O(n/K + lmax).

We also provide an analysis of dk-LCP and dk-PLCP, which
is similar to that of par-LCP and par-PLCP.

Lemma 3.3: dk-LCP and dk-PLCP require O(n + Klmax)
work and O(n/K + log n + lmax) depth.

Proof: For dk-LCP, computing the indices where the lcp
value is 0 (Line 5) is done with a parallel filter, which requires
O(n) work and O(log n) depth. Lines 2–3 can be done in O(n)
work and O(1) depth. Each interval larger than size n/K is
divided into sub-intervals of size n/K (except for the last
sub-interval which may contain fewer than n/K elements).
Similar to the analysis of par-LCP and par-PLCP, the number
of character comparisons for each sub-interval is O(n/K + lmax).
The intervals that were not sub-divided do no more work than
the sequential algorithm as the first lcp value is 0, and hence
contribute O(n) work. The maximum number of sub-intervals
is O(K) so this gives an overall work of O(n + Klmax). The
overall depth including the filter is O(n/K + log n + lmax) as the
maximum interval and sub-interval size is n/K. The analysis
for dk-PLCP is similar.

Analogous to Lemma 3.2, for dk-LCP and dk-PLCP, we
can shift the sub-intervals in each interval by a random amount
and obtain the bounds in the following lemma. The proof is
omitted as it is similar to the proof of Lemma 3.2.

Lemma 3.4: Modified versions of dk-LCP and dk-PLCP
require O(n + Klavg) expected work and O(n/K + log n + lmax)
depth.
Random Strings. Here we analyze the behavior of the
algorithms on random strings. We consider properties of random
strings from the alphabet Σ, where each character of the string is
chosen uniformly at random from Σ, and |Σ| ≥ 2. The expected
length of the longest repeated sub-string of a random string has
been shown to be O(log|Σ| n) [21, 27]. This is also the expected
maximum lcp value, since the longest common prefix of any
two suffixes is a repeated sub-string in the string.

Lemma 3.5: For a random string from an alphabet of size
|Σ| ≥ 2, par-LCP, par-PLCP, dk-LCP and dk-PLCP require O(n)
work and O(log n) depth in expectation for K = O(n/ log n).

Proof: The expected maximum lcp value of a suffix is
O(log|Σ| n) which is O(log n) for |Σ| ≥ 2. We apply Theorem 3.1
and Lemma 3.3 with lmax = O(log n) and K = O(n/ log n).

If |Σ| is known beforehand then we can set K =
O(n/ log|Σ| n), and achieve O(n) work and O(log|Σ| n) depth in
expectation for par-LCP and par-PLCP.
skew-LCP—Standalone LCP Computation with the Skew
Algorithm. We discuss a slight modification of the skew
algorithm [17] that can be used as a standalone LCP algorithm
(referred to as skew-LCP) given the suffix array SA as input. We
state the changes that need to be made to the skew algorithm
as described in Section II.

For step (1), we construct SA12 by marking the indices
i such that SA[i] mod 3 , 0, and apply a parallel filter
keeping just the elements at these indices. Computing the
new lexicographic names is still done by comparing triples and
using a parallel prefix sum to compute the new name of each
triple. However, since the suffixes in SA12 are already sorted
(SA is sorted), we can assign new lexicographic names in the
range [1, . . . , 2n/3] based on the suffix’s index in SA12, instead
of using an integer sort. Creating the string S′ to recurse on
is done as before—by moving all of the mod 1 suffixes to the
beginning and mod 2 suffixes to the end of the string using
a parallel for-loop. Steps (2) and (3) are no longer required
since we do not need to generate SA. Step (4) to generate the
LCP array from LCP12 remains the same as before.

Theorem 3.6: skew-LCP requires O(n) work and O(log2 n)
depth.

Proof: For each level of recursion, the prefix sum and
filter take linear work and O(log n) depth, and to answer range
minima queries in O(1) work and depth in step (4), a range
minima query look-up table can be built in linear work and
O(log n) depth [16]. As each recursive call reduces the problem
to two-thirds of the original size, the work recurrence is W(n) =
W(2n/3) + O(n) and depth recurrence is D(n) = D(2n/3) +
O(log n). Solving the recurrences gives the theorem.

We note that the bounds of the original skew algorithm [17]
are O(n) work and O(log2 n) depth w.h.p. for a constant alphabet.
The bounds required use of integer sorting algorithms [35, 14]
which limited the alphabet size. Since skew-LCP does not
involve integer sorting, the bounds hold for general alphabets.

Just like the original skew algorithm, skew-LCP can be
adapted to other models of computation using the techniques

1: procedure par-ILCP(S, SA, n)
2: Φ[SA[0]] = −1
3: parfor i = 1 to n − 1 do . Compute Φ array
4: Φ[SA[i]] = SA[i − 1]
5: Compute all indices i1 < i2 < . . . < im−1, such that

S[i j − 1] , S[Φ[i j] − 1]
6: i0 = 0, im = n
7: parfor j = 0 to m − 1 do
8: h = 0
9: if Φ[i j] , −1 then

10: k = Φ[i j]
11: while S[i j + h] == S[k + h] do
12: h = h + 1
13: PLCP[i j] = h . Irreducible lcp value
14: parfor l = i j + 1 to i j+1 − 1 do
15: PLCP[l] = h − (l − i j) . Reducible lcp values

16: parfor i = 0 to n − 1 do . Convert PLCP to LCP
17: LCP[i] = PLCP[SA[i]]

Fig. 8: parallel-iLCP: parallel irreducible LCP algorithm.

in [17]. In the Bulk Synchronous Parallel (BSP) model [42],
skew-LCP requires O(n/P + L log2 P + gn/P) time for a
communication parameter g, synchronization cost L and number
of processors P. This bound was true only for P = O(n1−ε)
in the original skew algorithm due to the need for integer
sorting. The bounds for skew-LCP in the external-memory
and cache-oblivious models are the same as for the original
skew algorithm—that is O((n/B) logM/B(n/B)) I/O’s (external-
memory) or cache misses (cache-oblivious) for a block size of
B and a fast memory size of M.
par-iLCP—A Parallel Irreducible LCP algorithm. We de-
scribe a straightforward parallelization of the irreducible-LCP
algorithm described in Section II, which we call par-iLCP.
The pseudo-code is shown in Fig. 8. The parallel for-loops on
Lines 3–4 and 16–17 are the same as in par-PLCP, since the
algorithm first computes the PLCP array before converting it
to the LCP array. On Line 5, we compute all of the indices
i j, where PLCP[i j] corresponds to an irreducible lcp value (an
irreducible index). This is done with a parallel filter with the
predicate S[i j − 1] , S[Φ[i j] − 1], and requires O(n) work and
O(log n) depth.

Then for each irreducible index in parallel (Line 7), we
first compute its PLCP value by comparing characters one-
by-one (Lines 8–13). All of the indices after the irreducible
index i j and before the next irreducible index i j+1 correspond to
reducible lcp values, so we then apply the formula PLCP[l] =
PLCP[i j]− (l− i j) from [28, 19] for all i j < l < i j+1 in parallel
(Lines 14–15). The work of the main loop (Lines 7–15) is the
same as in the sequential irreducible-LCP algorithm, namely
O(n log n). The work for the rest of the algorithm is O(n). The
depth is O(lmax + log n) as computing the lcp values for the
irreducible indices requires O(lmax) depth and the parallel filter
requires O(log n) depth. This gives the following theorem:

Theorem 3.7: par-iLCP requires O(n log n) work and
O(log n + lmax) depth.

IV. Experiments
In this section, we present a detailed experimental evaluation
of LCP algorithms in a shared-memory setting. We first discuss
our implementations and the experimental setup. We then
discuss the performance of the standalone LCP implemen-
tations. Finally, we evaluate the implementations when used in
conjunction with suffix array code. Additional experiments can
be found in the Appendix.

ch
r2

2

et
ex

t9
9

H
G

18
.fa

st
a

ho
w

to

jd
k1

3c

pr
ot

ei
ns

rc
ta

il9
6

rf
c

sp
ro

t3
4

V
en

te
r0

w
3c

2

w
ik

is
am

p8

w
ik

is
am

p9

ra
nd

om

id
en

tic
al

sq
rt

n

size (MB) 34.6 105 3083 39.4 69.7 1184 115 116 110 427 104 100 1000 100 100 100
|Σ| 5 146 27 197 113 27 93 120 66 5 256 204 207 10 1 2

lmax 2 · 105 3 · 105 2 · 107 70720 37334 6 · 105 26597 3445 7373 1139 106 1265 2032 15 108 108

lavg 1979 1109 4 · 105 268 679 1422 282 93 89.1 44 42300 53.2 68 7.31 5 · 107 5 · 107

klaap-LCP (seq.) 2.34 6.67 315 2.16 2.94 76.7 5.69 6.09 5.71 31.8 4.27 4.8 56.1 7.39 0.522 1.86
kmp-LCP (seq.) 1.67 5.53 233 1.67 2.56 58.9 4.78 5.14 4.83 26.3 3.74 4.08 43.8 6.07 0.726 1.57
naive-LCP (T1) 51.9 93.5 – 10 43.6 1420 37.2 17.6 19.2 61.3 3250 12.9 191 5.37 – –
naive-LCP (T40) 2.11 2.82 – 0.326 1.32 45.5 0.965 0.403 0.373 1.41 119 0.256 4.01 0.169 – –

naive-LCP (T1/T40) 24.6 33.2 – 30.7 33 31.2 38.5 43.7 51.5 43.5 27.3 50.4 47.6 31.8 – –
skew-LCP (T1) 15.2 58.4 2610 18.5 45.6 887 91.7 82.2 67.3 257 69 63.4 784 34.1 18.9 34.9
skew-LCP (T40) 0.584 1.99 64 0.705 1.48 26.6 2.45 2.28 2.21 8.34 2.31 2.06 21.9 1.26 0.814 2.07

skew-LCP (T1/T40) 26 29.3 40.8 26.2 30.8 33.3 37.4 36.1 30.4 30.8 29.9 30.8 35.8 27.1 23.2 16.9
par-iLCP (T1) 2.97 9.27 407 2.5 3.11 87.2 6.68 7.8 6.79 49.3 4.64 5.57 62.7 11.3 0.976 1.81
par-iLCP (T40) 0.115 0.41 15.8 0.12 0.196 4.85 0.354 0.384 0.355 2.03 0.3 0.31 3.31 0.51 0.243 0.261

par-iLCP (T1/T40) 25.8 22.6 25.8 20.8 15.9 18 18.9 20.3 19.1 24.3 15.5 18 18.9 22.2 4 6.9
par-LCP (T1) 2.29 6.5 311 2.12 2.93 76.2 5.61 5.95 5.63 30.2 4.22 4.76 55.9 7.31 0.568 1.91
par-LCP (T40) 0.144 0.44 14.2 0.138 0.215 4.88 0.388 0.389 0.359 1.93 0.31 0.312 3.32 0.481 0.119 0.179

par-LCP (T1/T40) 15.9 14.8 21.9 15.4 13.6 15.6 14.5 15.3 15.7 15.6 13.6 15.3 16.8 15.2 4.8 10.7
par-PLCP (T1) 1.68 5.51 233 1.66 2.56 58.8 4.78 5.16 4.84 25.1 3.85 4.07 44.1 6.98 0.767 1.58
par-PLCP (T40) 0.083 0.31 10.7 0.095 0.173 3.89 0.293 0.31 0.287 1.42 0.268 0.251 2.73 0.343 0.143 0.186

par-PLCP (T1/T40) 20.2 17.8 21.8 17.5 14.8 15.1 16.3 16.6 16.9 17.7 14.4 16.2 16.2 20.3 5.4 8.5
dk-LCP (T1) 3.25 9.32 384 2.98 4.01 106 7.76 8.37 7.83 55.1 5.83 6.63 76.4 10.5 1.06 3.1
dk-LCP (T40) 0.195 0.606 20.1 0.185 0.265 6.51 0.523 0.535 0.495 2.7 0.389 0.406 4.56 0.663 0.212 0.301

dk-LCP (T1/T40) 16.7 15.4 19.1 16.1 15.1 16.3 14.8 15.6 15.8 20.4 15 16.3 16.8 15.8 5 10.3
dk-PLCP (T1) 2.06 6.78 328 1.99 2.99 71.7 5.68 6.23 5.81 31 4.35 4.79 52.1 7.55 1.14 1.98
dk-PLCP (T40) 0.107 0.386 13.3 0.117 0.196 4.47 0.34 0.358 0.335 1.77 0.302 0.306 3.16 0.446 0.227 0.236

dk-PLCP (T1/T40) 19.3 17.6 24.7 17 15.3 16 16.7 17.4 17.3 17.5 14.4 15.7 16.5 16.9 5 8.4

TABLE II: Running times (seconds) of the LCP algorithms on different inputs on a 40-core machine with hyper-threading. Our new algorithms are shown in
bold font. T1 is the time using a single thread, T40 is the time using 40 cores (80 hyper-threads), and T1/T40 is the parallel speedup . The numbers in bold
indicate the fastest parallel LCP running time for an input among all implementations. The entries labeled “–” indicate that the experiment did not finish running
in a reasonable amount of time.

We implement all of the algorithms listed in Table I, and
as a reminder, among the parallel LCP algorithms compared,
par-LCP, par-PLCP, dk-PLCP and skew-LCP, and par-iLCP are
new, and naive-LCP, dk-LCP and skew-SA+LCP are existing
algorithms. We list the main findings of our experimental study:
1) On a 40-core machine with two-way hyper-threading, par-

PLCP achieves the best parallel running times for most real-
world inputs. It is 1.5–2.3x faster than our implementation
of the existing parallel LCP algorithm of Deo and Keely [6].

2) While skew-LCP has better worst-case theoretical guarantees
than par-PLCP, it is 6–11x slower in parallel.

3) For real-world inputs, the performance of par-LCP, par-
PLCP, dk-LCP and dk-PLCP is quite robust to the choice
of the parameter K as long as K is not too extreme.

4) par-PLCP achieves good parallel speedup relative to kmp-
LCP, the fastest sequential LCP algorithm.

5) All of the parallel algorithms achieve good self-relative
speedup on most inputs.

6) In parallel, computing the SA and LCP arrays separately
is faster than computing them together with the skew
algorithm.

7) Comparing the two parallel LCP algorithms which require
O(n) work and poly-logarithmic depth, in parallel skew-LCP
is 1.4–2x times faster than the original skew algorithm.

Implementations. We implement the parallel algorithms in
Cilk Plus [25] using the cilk_for construct to express parallel
for-loops.

In our implementation of par-LCP and par-PLCP, we set
K equal to the number of available threads P (except for
the experiment in Fig. 10). Therefore the interval size is at
most bn/Pc and number of intervals is either P or P + 1. In
practice, we found this to give the best balance between the

extra work spent in computing the lcp values for the first
element of each chunk and the amount of parallelism. We also
implemented the modified versions of par-LCP and par-PLCP
using random shifting as discussed in Lemma 3.2, but did
not find an improvement over the original versions. This is
because in the original versions, the work for computing the
first element of each interval is usually much lower than lmax
in practice.

We implement the dk-LCP and dk-PLCP algorithms using
the parallel filter code (which uses prefix sum) from the Problem
Based Benchmark Suite (PBBS) [40]. We set K = 2P (except
for the experiment in Fig. 10) and split each interval with size
greater than bn/Kc into sub-intervals of size bn/Kc, except for
the last sub-interval, which may be smaller. For single-threaded
execution we set K = 1. We found this setting to give the best
performance across all inputs. Note that the value of K here is
higher than in par-LCP and par-PLCP. This is because the sizes
of the intervals and sub-intervals in dk-LCP and dk-PLCP vary
more, and creating more parallel tasks gives more flexibility
to the run-time scheduler to achieve better load-balancing.

Our implementation of par-iLCP uses the parallel filter
code from the PBBS, and the for-loop over the indices between
two irreducible values is only parallelized when the size is
greater than 1000 (to avoid the overhead of a parallel for-loop
for smaller sizes). We also implement the naive parallel LCP
algorithm (naive-LCP) from Fig. 2.

Since the loops in the above algorithms are so simple, the
performance is mainly determined by the number of cache
misses. We did not see any way to further optimize the code.

We implement skew-LCP, the standalone LCP algorithm
described in Section III, by making the necessary modifications
to the parallel implementation of the skew algorithm from the

PBBS [40]. Our implementations of the sequential klaap-LCP
and kmp-LCP algorithms follow the pseudo-code shown in
Fig. 3 and 4, respectively.

We note that Gog and Ohlebusch [10] describe a sequential
LCP algorithm that requires the Burrows-Wheeler transform
array as input. Its implementation [9] uses compressed integers
and are semi-external, leading to lower space usage but higher
running time, and hence it is difficult to perform a direct
comparison with our internal memory implementations that do
not use compressed integers.
Experimental Setup. We run our experiments on a 40-core
(with two-way hyper-threading) machine with 4× 2.4GHz Intel
10-core E7-8870 Xeon processors (with a 1066MHz bus and
30MB L3 cache), and 256GB of main memory. We run all
parallel experiments with two-way hyper-threading enabled, for
a total of 80 threads. We compile the code with g++ version
4.8.0 (which supports Cilk Plus) with the -O2 flag. The times
that we report are based on a median of three trials.

For running the experiments we use a variety of strings avail-
able online4, XML code from Wikipedia samples (wikisamp8
and wikisamp9), human genomic data5 (HG18.fasta), protein
data6 (proteins), short reads of a DNA sequence7 (Venter0) and
artificial inputs. Our artificial inputs are all of size 108 and
include a random string with an alphabet size of 10 (random),
an all identical string (identical), and a binary string where
every 104’th position contains one character and all other
positions contain the other character (sqrtn). We use one byte
to represent each character for all inputs. Table II shows the file
size, alphabet size (|Σ|), maximum lcp value (lmax) and average
lcp value (lavg) for each input.
Comparison of LCP algorithms. Table II shows the single-
threaded (T1), 40-core (T40) times, and parallel speedups
(T1/T40) for all of the standalone LCP implementations. The
fastest parallel time per input in Table II is shown in bold.

Firstly, we look at the performance of naive-LCP, the brute-
force parallel algorithm. As expected, naive-LCP performs
relatively well for inputs with small average lcp values, but
significantly worse for inputs with large lcp values. For Venter0
and the random string, naive-LCP performs the best among all
implementations due to the small lcp values. For several inputs
we do not report numbers for naive-LCP as it did not finish in
a reasonable amount of time due to large lcp values.

Fig. 9 shows a bar chart comparing the running times for
the parallel implementations using 80 hyper-threads on several
inputs (for clarity of presentation, naive-LCP is not included
as it is an order of magnitude slower on some inputs). From
Table II and Fig. 9, we see that par-PLCP performs the fastest
on most of the inputs. We do see some exceptions, however.
For the identical and sqrtn strings, par-LCP performs the best.
This is because most contiguous suffixes in the suffix array
also appear contiguously in the original string, and thus most
memory accesses are cache-friendly. par-PLCP is designed to
reduce random accesses at the cost of an extra phase to convert
the PLCP array into the LCP array so this makes it slower than
par-LCP for these two strings. For Venter0, which has small lcp
values, par-PLCP performs almost as fast as naive-LCP. For the
random string, which has even smaller lcp values, par-PLCP is

4http://people.unipmn.it/manzini/lightweight/corpus/
5http://webhome.cs.uvic.ca/~thomo/HG18.fasta.tar.gz
6http://pizzachili.dcc.uchile.cl/texts/protein/
7ftp://ftp.ncbi.nih.gov/pub/TraceDB/Personal_Genomics/Venter/

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

e
te

x
t9

9

rc
ta

il9
6

rf
c

sp
ro

t3
4

w
3

c2

ra
n
d
o
m

id
e
n
ti

ca
l

sq
rt

n

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Comparison of parallel LCP algorithms on different inputs

skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

Fig. 9: Comparison of running times of parallel LCP algorithms using 40
cores (80 hyper-threads).

about two times slower than naive-LCP. However, even though
par-PLCP is not the fastest on these inputs, it still performs
reasonably well. For all of the other inputs, par-PLCP is the
fastest in parallel, so without prior knowledge about an input,
par-PLCP will likely give the best performance.

We see that skew-LCP is 6–11 times slower than par-PLCP
in parallel, even though it has a better worst-case complexity
than par-PLCP. This is because the constants in its work bound
are higher than for par-PLCP, and the extra work in computing
the first element of each interval in par-PLCP (the O(Klmax)
term) is not high in practice. For par-iLCP, although it is not
the fastest on any input, it is at most 3 times slower than
the fastest implementation in parallel. Furthermore, it always
outperforms skew-LCP. This is likely because for most inputs,
the amount of work performed is less than its worst-case bound
of O(n log n).

We note that par-PLCP is overall faster than par-LCP, and
dk-PLCP is overall faster than dk-LCP. This is consistent with
the study of sequential LCP implementations by Kärkkäinen
et al. [19], showing that kmp-LCP is faster than klaap-LCP.

We also observe that in parallel par-LCP outperforms dk-
LCP by 23–78%, and par-PLCP outperforms dk-PLCP by 13–
59%. dk-LCP and dk-PLCP guarantee that the elements with
an lcp value of 0 are at the beginning of intervals with the goal
of performing less wasted work compared to the corresponding
sequential algorithm. However, it requires a pre-processing
phase to identify the indices of elements for which the lcp
value is 0 using a parallel filter. Therefore the overall time
becomes slower than that of par-LCP and par-PLCP, which
simply work on equal-sized chunks. Compared to dk-LCP, our
implementation of the only existing parallel standalone LCP
algorithm, our fastest LCP algorithm par-PLCP is 1.5–2.3x
faster on 40 cores with hyper-threading.

For further analysis, in the Appendix, we show breakdowns
of the parallel running times for par-LCP, par-PLCP, dk-LCP
and dk-PLCP for several inputs, and also discuss the space
usage of the parallel LCP algorithms.
Varying K. In the complexity bounds of par-LCP, par-PLCP,
dk-LCP and dk-PLCP, the parameter K represents a trade-
off between work and parallelism. To see how it affects
performance in practice, we measure the parallel running times
as we vary K. Fig. 10 shows the running time of the four
implementations using 40 cores (80 hyper-threads) as a function
of K for etext99 and wikisamp8. For par-LCP and par-PLCP,
the interval size is bn/Kc, except for possibly the last interval.
For dk-LCP and dk-PLCP, the number of intervals beginning
with an lcp value of 0 is fixed (at most |Σ|), but we divide each

 0.1

 1

 10

 100

 1 10 100 1000 104 105 106 107 108

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

K

Times for different algorithms with varying K on etext99

par-LCP
par-PLCP

dk-LCP
dk-PLCP

 0.1

 1

 10

 1 10 100 1000 104 105 106 107 108

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

K

Times for different algorithms with varying K on wikisamp8

par-LCP
par-PLCP

dk-LCP
dk-PLCP

Fig. 10: Parallel running times versus K for different algorithms on etext99 (left) and wikisamp8 (right). The y-axis is in log-scale.

interval larger than size bn/Kc into sub-intervals of size bn/Kc,
except for possibly the last sub-interval.

For small values of K, dk-LCP and dk-PLCP are faster
than par-LCP and par-PLCP, respectively, as they exhibit more
parallelism due to having separate intervals starting at all indices
corresponding to an lcp value of 0. For larger values of K there
is enough parallelism and par-LCP and par-PLCP are faster
due to not requiring a parallel filter. We see that for these
inputs, the performance of the algorithms is quite robust across
different values of K as long as it is not too small or too large.
We observed similar behavior for the other real-world inputs.
Comparing to sequential. As shown in Table II, on a single
thread, par-LCP and par-PLCP do just as well as klaap-LCP and
kmp-LCP, respectively. This is because in our implementations,
when there is only a single thread, only one interval is used
(K = 1) and the parallel implementations do the same amount
of work as their sequential counterparts. The speedup curves
of par-PLCP with respect to kmp-LCP for several inputs are
plotted in Fig. 11. Compared to the sequential kmp-LCP code,
par-PLCP achieves a speedup of 14.4–20.3x for the inputs in
Fig. 11 (and 21.8x for HG18.fasta). For the identical and sqrtn
strings, the speedups are only 5.4x and 8.5x, respectively, since
the parallel version does much more work than the sequential
version due to the large lcp values; the speedup comes from
the parallelism in generating the Φ array and converting the
PLCP array to the LCP array.

Note that since we vary K based on the number of threads
available, the amount of work done at each data point is
not the same. In particular, with more threads we have more
intervals, leading to more work compared to a single-threaded
execution. Adjusting K is done to minimize the work, while
taking advantage of all of the available parallelism. For inputs
with high lcp values (e.g. HG18.fasta, identical and sqrtn), this
leads to lower speedup than if we had fixed K for different
thread counts. For the other inputs, we found this effect to be
minimal for our modest values of K (between 1 and 80) as the
extra work done (the O(Klmax) term) is small.
Self-relative speedup. All of the parallel implementations
achieve good self-relative speedup on the real-world inputs.
For the implementations whose work is independent of the
number of threads, on 80 hyper-threads, naive-LCP, skew-LCP
and par-iLCP achieve speedups of up to 51.5x, 40.8x and 25.8x
respectively (see Table II). par-iLCP does not achieve good
speedups on the identical and sqrtn strings as the available
parallelism is low due to the large lcp values. As for the
implementations whose work varies with thread count (par-LCP,
par-PLCP, dk-LCP and dk-PLCP), the self-relative speedups
are lower, ranging from 13.6x to 24.7x on the real-world inputs.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 4 8 16 24 32 40 40h

S
p
e
e
d
u
p

Number of threads

Speedup of par-PLCP

chr22
etext99
rctail96

rfc
w3c2

wikisamp8
random

Fig. 11: Speedup of par-PLCP with respect to kmp-LCP. (40h) indicates 80
hyper-threads.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2⋅108 4⋅108 6⋅108 8⋅108 109

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Input size

Running time of par-PLCP versus input size

Fig. 13: Running time versus input size of random text for par-PLCP using
40 cores (80 hyper-threads).

Again, these implementations do not get good speedup on the
identical and sqrtn strings due to the large lcp values. Since the
implementations perform many random memory accesses, the
speedups are also likely limited by the memory bandwidth of
the machine and the latency associated with memory contention.
Varying thread count. Fig. 12 shows the running time as a
function of thread count for the different LCP implementations
on etext99 and wikisamp8. Except for naive-LCP and skew-
LCP, all of the parallel implementations outperform the best
sequential implementation (kmp-LCP) with 4 or more threads.
Varying input size. To show scalability with increasing input
size, we ran par-PLCP on random strings of varying sizes
(|Σ| = 10). In Fig. 13 we plot the 40-core running time of
par-PLCP as a function of input size. We observe that the
running time scales linearly with the input size.
A. Performance of suffix array and LCP construction
In addition to studying the performance of the LCP algorithms
on their own, we also study the overall performance of suffix
array and LCP construction. We show that in the parallel
setting, separating suffix array and LCP construction leads to
performance improvements in practice over constructing both
arrays together. We first discuss the suffix array algorithms that

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Number of threads

Times for different LCP algorithms on etext99

kmp-LCP
naive-LCP
skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 40 40h

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Number of threads

Times for different LCP algorithms on wikisamp8

kmp-LCP
naive-LCP
skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP

Fig. 12: Running times versus number of threads of LCP algorithms on etext99 (left) and wikisamp8 (right) in log-log scale. (40h) indicates 80 hyper-threads.
ch

r2
2

et
ex

t9
9

H
G

18
.fa

st
a

ho
w

to

jd
k1

3c

pr
ot

ei
ns

rc
ta

il9
6

rf
c

sp
ro

t3
4

V
en

te
r0

w
3c

2

w
ik

is
am

p8

w
ik

is
am

p9

ra
nd

om

id
en

tic
al

sq
rt

n

divsufsort-SA (seq.) 4.21 17.3 † 4.65 8.48 268.5 16.6 15 15.7 83.7 13.2 14.6 190.9 20.7 0.62 1.69
range-SA (T1) 6.67 38.5 1120 12.2 33.6 533 51.4 42.7 39.4 97 74 36.3 411 16 130 119
range-SA (T40) 0.738 3.01 95 1.05 2.45 34.6 3.82 3.22 3.09 7.62 5.01 3.19 32.2 1.26 9.01 6.81
skew-SA (T1) 15.2 57.8 2020 19.5 34.6 736 59.4 60.9 57.7 214 55.1 50.4 555 34 14.6 19.8
skew-SA (T40) 0.931 3.26 97.4 1.16 1.98 39.3 3.41 3.48 3.31 12.7 3.22 2.99 32.8 1.99 1.07 1.63

divsufsort-SA + kmp-LCP (seq.) 5.88 22.8 † 6.32 11 327.4 21.4 20.1 20.5 110 16.9 18.7 234.7 26.7 1.35 3.26
skew-SA+LCP (T40) 1.15 4.01 122 1.44 2.71 50.8 4.56 4.48 4.28 16 4.34 3.98 43.1 2.48 1.45 2.84

parallel-SA + par-PLCP (T40) 0.82 3.32 105.7 1.15 2.15 38.5 3.7 3.53 3.38 9.04 3.49 3.24 34.9 1.6 1.21 1.82

TABLE III: Top: Running times (seconds) of SA algorithms on a single thread (T1) and on 40 cores with hyper-threading (T40). The numbers in bold indicate
the fastest parallel SA running time for an input. Bottom: Running times (seconds) of the various SA+LCP combinations. The numbers in bold indicate the fastest
parallel SA+LCP running time for an input. Note: The entries labeled † indicate that the implementation failed to run. (Refer to Table II for input statistics.)

we use and then discuss the performance when combined with
LCP algorithms.
Performance of suffix array algorithms. In Table III, we
report the times for suffix array computation using the fastest
available parallel algorithms, skew-SA and range-SA, which are
part of the PBBS [40]. skew-SA is the parallel implementation
of the skew algorithm that does not compute the LCP array.
range-SA is a parallel algorithm based on the prefix-doubling
idea of sorting prefixes of suffixes with the prefix sizes
increasing in powers of two. This idea has been used in several
sequential suffix array algorithms [33] and also in parallel
suffix tree algorithms [16]. range-SA requires O(n log n) work
in the worst-case and does not generate the LCP array. We
also report the times for standalone suffix array construction
in Table III using the fastest available sequential algorithm
(divsufsort-SA) implemented by Mori [29]. Mori also provides
a parallel implementation of divsufsort-SA using OpenMP [29],
however we were unable to obtain any speedup compared to
the corresponding sequential implementation.

The fastest parallel suffix array time per input is shown
in bold in Table III, and we see that in parallel there is no
clear winner between range-SA and skew-SA. Compared to
the sequential divsufsort-SA, the best parallel implementation
achieves a speedup of 4.1–11x on the real-world inputs. On the
random string, it achieves a 16.4 fold speedup over divsufsort-
SA, while for the identical and sqrtn strings, it performs about
the same or worse, as the two parallel implementations are not
well-suited for inputs with a lot of repeated structure. divsufsort-
SA is faster than both range-SA and skew-SA on a single thread
for all inputs except HG18.fasta, on which it failed to run, and
the random string, on which it loses to range-SA.
Generating both the suffix array and LCP array. In
Table III, we report the times for computing both the suffix array
and the LCP array. For sequential times, we report the time
for divsufsort-SA followed by kmp-LCP (divsufsort-SA + kmp-

LCP). We also tried the implementation of Fischer’s sequential
algorithm [8, 30] which generates both the suffix array and LCP
array, but found it to be slower than divsufsort-SA followed by
kmp-LCP for all of our inputs. For parallel times, we report the
time for the parallel skew algorithm from the PBBS [40] that
generates both the suffix array and LCP array (skew-SA+LCP)
and also the time for running the fastest parallel suffix array
algorithm for the input followed by par-PLCP (parallel-SA +
par-PLCP).

In parallel, the faster parallel SA algorithm followed by
par-PLCP always outperforms skew-SA+LCP, with a speedup
factor ranging from 1.1 to 1.8, confirming that separating
LCP construction from the suffix array construction leads to
improved performance in the parallel setting. Separating the
construction of the two arrays allows us to use a faster parallel
SA algorithm that does not compute the lcp values followed
by a fast LCP algorithm. Furthermore, improvements in either
parallel SA algorithms or parallel LCP algorithms leads to an
overall performance improvement in the construction process.

The improvement in the parallel running time of SA and
LCP array construction improves the overall running time of
parallel applications that require SA and LCP, such as suffix
tree construction [38] and Lempel-Ziv factorization [39]. The
improvements are significant as the SA + LCP computation is
the dominant part of the computation in these applications (at
least 80% of the total running time).

Compared to the sequential method of applying divsufsort-
SA followed by kmp-LCP, applying the faster parallel suffix
array algorithm followed by par-PLCP achieves a speedup of
4.8–12.2x on 40 cores for the real-world inputs. For the random
string, the speedup is 16.7x, which is higher than for the real-
world inputs, due to the good performance of the parallel suffix
array algorithm. For the identical and sqrt strings, the speedup
is less than 2x mostly due to the poor performance of the
parallel suffix array algorithm.

Linear work and poly-logarithmic depth algorithms. We
also compare skew-SA+LCP and skew-LCP, the two LCP
algorithms with linear work and poly-logarithmic depth without
dependence on the lcp values of the suffixes of the input. From
Tables II and III, we see that in parallel, skew-LCP outperforms
skew-SA+LCP by 1.8–2x for the real-world inputs and 1.4–2x
for the artificial inputs.

V. Conclusion
We have presented and analyzed new parallel algorithms
for computing the longest common prefix of a string given
its suffix array. We have also presented a comprehensive
experimental analysis of various LCP algorithms on a collection
of real-world and artificial texts, showing that our fastest
algorithm is faster than the previous parallel algorithms for
LCP computation [6, 17]. Directions for future work include
designing LCP algorithms with improved work/depth bounds,
and experimenting on a machine with a much larger number of
cores where non-uniform memory accesses would be a bigger
concern. We are also interested in extending our LCP algorithms
to the external-memory or distributed-memory settings. For
example, our par-PLCP algorithm could be used in conjunction
with a recent external-memory PLCP algorithm [18] to obtain
a parallel disk-based algorithm. To adapt the algorithms to a
distributed-memory setting, the main challenge would be to
reduce the number of random accesses to the various arrays,
as communication would likely be expensive.

Acknowledgments
This work is supported by a Facebook Graduate Fellowship, the
National Science Foundation under grant number CCF-1314590,
and the Intel Labs Academic Research Office for the Parallel
Algorithms for Non-Numeric Computing Program. We thank
Guy Blelloch for helpful discussions and numerous suggestions
to help improve the paper, including the randomization idea
discussed in Lemma 3.2. We also thank Simon Gog and Timo
Beller for explaining the details of the LCP implementations
of [9, 10]. In addition, we thank Harsha Simhadri for helpful
discussions regarding the skew algorithm. Finally, we are grate-
ful for the helpful comments from the anonymous reviewers.

References
[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing suffix trees

with enhanced suffix arrays,” J. of Discrete Algorithms, vol. 2, no. 1, pp.
53–86, Mar. 2004.

[2] M. J. Bauer, A. J. Cox, G. Rosone, and M. Sciortino, “Lightweight LCP
construction for next-generation sequencing datasets,” in Workshop on
Algorithms in Bioinformatics (WABI), 2012, pp. 326–337.

[3] T. Beller, S. Gog, E. Ohlebusch, and T. Schnattinger, “Computing the
longest common prefix array based on the Burrows-Wheeler transform,”
J. of Discrete Algorithms, vol. 18, pp. 22–31, 2013.

[4] T. Bingmann, J. Fischer, and V. Osipov, “Inducing suffix and LCP arrays in
external memory,” in Algorithm Engineering and Experiments (ALENEX),
2013, pp. 88–102.

[5] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression
algorithm,” HP Labs, Tech. Rep., 1994.

[6] M. Deo and S. Keely, “Parallel suffix array and least common prefix for
the GPU,” in Principles and Practice of Parallel Programming (PPoPP),
2013, pp. 197–206.

[7] M. Farach and S. Muthukrishnan, “Optimal logarithmic time randomized
suffix tree construction,” in International Colloquium on Automata,
Languages and Programming (ICALP), 1996, pp. 550–561.

[8] J. Fischer, “Inducing the LCP-array,” in International Conference on
Algorithms and Data Structures (WADS), 2011, pp. 374–385.

[9] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug
and play with succinct data structures,” in Symposium on Experimental
Algorithms (SEA 2014), 2014, pp. 326–337.

[10] S. Gog and E. Ohlebusch, “Fast and lightweight LCP-array construction

algorithms,” in Algorithm Engineering and Experiments (ALENEX), 2011,
pp. 25–34.

[11] ——, “Compressed suffix trees: Efficient computation and storage of
LCP-values,” J. Exp. Algorithmics, vol. 18, May 2013.

[12] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider, “Information retrieval,”
1992, ch. New Indices for Text: PAT Trees and PAT Arrays, pp. 66–82.

[13] D. Gusfield, Algorithms on Strings, Trees and Sequences. Cambridge
University Press, 1997.

[14] T. Hagerup and R. Raman, “Waste makes haste: tight bounds for loose
parallel sorting,” in Foundations of Computer Science (FOCS), 1992, pp.
628–637.

[15] R. Hariharan, “Optimal parallel suffix tree construction,” in Symposium
on Theory of Computing (STOC), 1994, pp. 290–299.

[16] J. Jaja, Introduction to Parallel Algorithms. Addison-Wesley Professional,
1992.

[17] J. Kärkkäinen and P. Sanders, “Simple linear work suffix array con-
struction,” in International Colloquium on Automata, Languages and
Programming (ICALP), 2003, pp. 943–955.

[18] J. Kärkkäinen and D. Kempa, “LCP array construction in external
memory,” in Symposium on Experimental Algorithms (SEA), 2014, pp.
412–423.

[19] J. Kärkkäinen, G. Manzini, and S. J. Puglisi, “Permuted longest-common-
prefix array,” in Combinatorial Pattern Matching (CPM), 2009, pp. 181–
192.

[20] J. Kärkkäinen, P. Sanders, and S. Burkhardt, “Linear work suffix array
construction,” J. ACM, vol. 53, no. 6, pp. 918–936, Nov. 2006.

[21] S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn, “New approaches
for computer analysis of nucleic acid sequences,” Natl. Acad. Sci. USA,
vol. 80, pp. 5660–5664, 1993.

[22] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, “Linear-time
longest-common-prefix computation in suffix arrays and its applications,”
in Combinatorial Pattern Matching (CPM), 2001, pp. 181–192.

[23] D. Kim, J. Sim, H. Park, and K. Park, “Linear-time construction of suffix
arrays,” in Combinatorial Pattern Matching (CPM), 2003, pp. 186–199.

[24] P. Ko and S. Aluru, “Space efficient linear time construction of suffix
arrays,” in J. of Discrete Algorithms, vol. 3, 2005, pp. 143–156.

[25] C. E. Leiserson, “The Cilk++ concurrency platform,” The Journal of
Supercomputing, vol. 51, no. 3, 2010.

[26] F. A. Louza, G. P. Telles, and C. D. D. A. Ciferri, “External memory
generalized suffix and LCP arrays construction,” in Combinatorial Pattern
Matching (CPM), 2013, pp. 201–210.

[27] U. Manber and E. W. Myers, “Suffix arrays: A new method for on-line
string searches,” SIAM J. Comput., vol. 22, no. 5, pp. 935–948, 1993.

[28] G. Manzini, “Two space saving tricks for linear time LCP array
computation,” in Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT), 2004, pp. 372–383.

[29] Y. Mori, “libdivsufsort: A lightweight suffix-sorting library,” 2010, http:
//code.google.com/p/libdivsufsort.

[30] ——, “sais: An implementation of the induced sorting algorithm,” 2010,
http://sites.google.com/site/yuta256/sais.

[31] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in Programming Language Design and
Implementation (PLDI), 2007, pp. 89–100.

[32] G. Nong, S. Zhang, and W. H. Chan, “Linear suffix array construction by
almost pure induced-sorting,” in Data Compression Conference (DCC),
2009, pp. 193–202.

[33] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, “A taxonomy of suffix
array construction algorithms,” ACM Computing Surveys, vol. 39, no. 2,
Jul. 2007.

[34] S. J. Puglisi and A. Turpin, “Space-time tradeoffs for longest-common-
prefix array computation,” in International Symposium on Algorithms
and Computation (ISAAC), 2008, pp. 124–135.

[35] S. Rajasekaran and J. H. Reif, “Optimal and sublogarithmic time
randomized parallel sorting algorithms,” SIAM J. Comput., vol. 18, no. 3,
pp. 594–607, 1989.

[36] K. Sadakane, “Succinct representations of lcp information and improve-
ments in the compressed suffix arrays,” in Symposium on Discrete
Algorithms (SODA), 2002, pp. 225–232.

[37] S. Sahinalp and U. Vishkin, “Symmetry breaking for suffix tree con-
struction,” in Symposium on Theory of Computing (STOC), 1994, pp.
300–309.

[38] J. Shun and G. E. Blelloch, “A simple parallel cartesian tree algorithm and
its application to parallel suffix tree construction,” in ACM Transactions
on Parallel Computing (TOPC), 2014.

[39] J. Shun and F. Zhao, “Practical parallel Lempel-Ziv factorization,” in

Data Compression Conference (DCC), 2013, pp. 123–132.
[40] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.

Simhadri, and K. Tangwongsan, “Brief announcement: the Problem Based
Benchmark Suite,” in Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2012, pp. 68–70.

[41] J. Sirén, “Sampled longest common prefix array,” in Combinatorial
Pattern Matching (CPM), 2010, pp. 227–237.

[42] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, Aug. 1990.

Appendix
Timing breakdowns. To understand where the running times
of par-LCP, par-PLCP, dk-LCP and dk-PLCP come from, we
show breakdowns of the parallel running times for the four
implementations on several inputs in Fig. 14. For the real-world
inputs, par-LCP spends about 25–40% of its time in computing
the Rank array (Lines 2–3 of Fig. 6), which performs n random
writes. However for the identical string, only 14% of the time
is spent in this loop since the suffix array stores the indices
in reverse order and hence the writes are cache-friendly. For
the real-world inputs, par-PLCP spends about 40–50% of its
time in computing the Φ array (Lines 3–4 of Fig. 7), which
also performs n random writes. Again, for the identical string,
the writes are cache-friendly so this phase takes only 12% of
the time. The main loop of par-PLCP (Lines 5–16 of Fig. 7)
is relatively cheap for the real-world inputs and the random
string (10–33% of the total time). For the identical string, it
takes two-thirds of the time since the other two phases are very
cheap due to good locality of the suffix ordering, and the main
loop does much more work due to the large lcp values.

For dk-LCP and dk-PLCP, computing the indices corre-
sponding to an lcp value of 0 takes about 15–30% of the
total time, and this step is not needed by par-LCP and par-
PLCP. Without including the time for computing the indices,
the breakdowns of dk-LCP and dk-PLCP are similar to those
of par-LCP and par-PLCP, respectively. We found that the
improvement in the main loop from identifying the indices
corresponding to an lcp value of 0 was insignificant. Therefore,
overall dk-LCP and dk-PLCP are slower than par-LCP and
par-PLCP, respectively.
Space Usage. The space usage of par-LCP and par-PLCP are
the same as the corresponding sequential implementations. In
particular, assuming that n < 232 (the integer arrays use 4 bytes
per element), par-LCP requires 13n bytes—4n bytes for each
of LCP, SA and Rank and n bytes for the string S. par-PLCP
also requires 13n bytes—4n bytes for each of LCP, SA and Φ
and n bytes for S. The array Φ can be reused to store PLCP.
dk-LCP and dk-PLCP require an array to store the indices with
a corresponding lcp value of 0, in addition to the 13n bytes
of the corresponding sequential implementation. The parallel
filter code of the PBBS [40] uses two integer arrays (one array
stores the indices computed) and a boolean array of size n.
The integer array not storing the indices can be reused as the
LCP array, so the peak space usage is 18n bytes (the other
arrays need to be computed before and used during the filter).
par-iLCP also uses 18n bytes, as it uses a parallel filter to
compute and store the indices of the irreducible lcp values,
in addition to arrays used in par-PLCP. naive-LCP requires
the least space, as it only needs S, SA and LCP for a total
of 9n bytes. skew-LCP uses significantly more space than the
other implementations as it uses several additional arrays for
auxiliary information, some of which are kept during recursion,
and also a range minima data structure. In Fig. 15, we report

the actual space usage of the LCP algorithms on several inputs,
measured using the massif program from Valgrind [31]. The
results are consistent with our analysis of space usage above.
Improving the space usage of the algorithms is a direction for
future work.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

etext99 rctail96 rfc wikisamp8 random identical

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Breakdown of running times for par-LCP

Computing Rank array
Computing LCP array

 0

 0.1

 0.2

 0.3

 0.4

 0.5

etext99 rctail96 rfc wikisamp8 random identical

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Breakdown of running times for par-PLCP

Computing Φ array
Computing PLCP array

Converting to LCP array

 0

 0.2

 0.4

 0.6

 0.8

 1

etext99 rctail96 rfc wikisamp8 random identical

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Breakdown of running times for dk-LCP

Computing Rank array
Computing indices with lcp of 0

Computing LCP array

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

etext99 rctail96 rfc wikisamp8 random identical

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d
s)

Breakdown of running times for dk-PLCP

Computing Φ array
Computing indices with lcp of 0

Computing PLCP array
Converting to LCP array

Fig. 14: Breakdown of running times on 40 cores with hyper-threading.

 0

 1000

 2000

 3000

 4000

 5000

e
te

x
t9

9

rc
ta

il9
6

rf
c

sp
ro

t3
4

w
3

c2

ra
n
d
o
m

Pe
a
k

m
e
m

o
ry

 u
sa

g
e
 (

M
B

)

Peak memory usage of LCP algorithms on different inputs

skew-LCP
par-iLCP
par-LCP

par-PLCP
dk-LCP

dk-PLCP
naive-LCP

Fig. 15: Peak memory usage (megabytes) of LCP algorithms.

