
Smaller and Faster: Parallel Processing of
Compressed Graphs with Ligra+∗

Julian Shun Laxman Dhulipala Guy E. Blelloch
Carnegie Mellon University

jshun@cs.cmu.edu, ldhulipa@andrew.cmu.edu, guyb@cs.cmu.edu

We study compression techniques for parallel in-memory graph algorithms, and
show that we can achieve reduced space usage while obtaining competitive or improved
performance compared to running the algorithms on uncompressed graphs. We integrate
the compression techniques into Ligra, a recent shared-memory graph processing
system. This system, which we call Ligra+, is able to represent graphs using about
half of the space for the uncompressed graphs on average. Furthermore, Ligra+ is
slightly faster than Ligra on average on a 40-core machine with hyper-threading. Our
experimental study shows that Ligra+ is able to process graphs using less memory,
while performing as well as or faster than Ligra.

1 Introduction
Graphs algorithms have many applications, such as in analyzing social networks, biological
networks and unstructured meshes in scientific simulations. Due to the recent growth in data
sizes, improving the running time and space usage of graph algorithms has become very
important. Recent work has focused on speeding up graph algorithms via parallelization,
with a number of programming frameworks appearing in recent years (see, e.g., [11, 14,
21, 22, 24] among many others). Processing graphs in shared memory can be significantly
faster than doing so in distributed memory, as recent work has shown [24]. However, this
requires the graphs to fit in the memory of a single node. While the largest publicly available
real-world graphs today can fit in the main memory of a single multicore machine, which can
be configured with over a terabyte of memory, the cost of machines increases with memory
size. Similarly, the cost of renting machines in the cloud increases with their memory sizes.
Therefore, reducing the sizes of graphs is crucial in reducing the cost of large-scale graph
analytics. Furthermore, it allows even larger real-world graphs that will become available
in the future to fit on a single node. As such, we are motivated to study compression in
large-scale graph algorithms as a means of reducing space. Additionally, we are interested
in knowing if using compression can speed up parallel graph algorithms.

As for previous work on using compression to reduce memory usage in graph algorithms,
Blandford et al. [2, 3] experiment with a variety of graph compression techniques, and
study the performance of graph algorithms on compressed graphs, which requires on-the-fly
decoding. Their techniques can reduce space usage by up to a factor of 3–6 compared to
normal adjacency arrays. However, they only study the techniques in a sequential setting,
and for only three specific algorithms—depth-first search, PageRank and bipartite matching.
They show that the algorithms on compressed graphs are about 25% slower. In this work,
we parallelize their compression techniques, and study the performance of a broad class
of parallel graph algorithms on much larger graphs than used in [2, 3]. We show that
sequentially, the algorithms on compressed graphs are indeed often slower, however in
parallel they become competitive with or faster than the algorithms on uncompressed graphs.

∗The formatting of Table 2 has been slightly modified from the conference proceedings version of the paper.

This is because graph algorithms are memory-bound, and memory is a larger bottleneck in
parallel due to multiple cores competing for bandwidth—therefore reducing the memory
footprint is more important, while at the same time decoding becomes less of an overhead
as it has better parallel scalability relative to the rest of the computation.

To experiment with a wide variety of graph applications, we parallelize and integrate
the compression and decoding techniques described by Blandford et al. [2, 3], as well as a
compression idea from the sparse matrix-vector multiplication literature [18], into the Ligra
shared-memory graph processing framework [24]. Our extended framework, which we call
Ligra+, uses less space than Ligra, while providing comparable or improved performance.

Ligra+ is able to represent a variety of synthetic and real-world graphs using 49–56%
of its original size on average, depending on the compression scheme. The performance
of the graph algorithms in Ligra+ ranges from 2.2x faster to 1.1x slower than the original
Ligra system. In many cases, Ligra+ outperforms Ligra due to its smaller memory footprint,
and is about 14% faster on average when using the fastest compression scheme. Using
compression, Ligra+ is able to process graphs using less memory, and fit larger graphs
in memory, while performing just as well as or better than Ligra. As the compression
techniques are part of a graph processing framework, users can easily work with compressed
graphs without worrying about the implementation details. Applications written in Ligra
can also be used in Ligra+, as the interfaces are the same.
Other Related Work. There has been a large amount of work on compressing graphs,
especially planar graphs and graphs with constant genus (see, e.g., [3] and the references
within). Recent work [13, 20] has used compression to reduce graph sizes in the MapReduce
setting. Their focus is on reducing the storage size on disk because a large portion of the
running time of MapReduce is from disk I/O’s, and they show performance improvements
for MapReduce graph algorithms. However, the techniques are not used to reduce the
in-memory space usage. In contrast, our work focuses on reducing the in-memory space
usage while maintaining or improving performance, so it becomes necessary to efficiently
decode on-the-fly.

Other work has focused mainly on compressing Web and social network graphs (see
e.g. [1, 5, 10]). Most of these works have not been used to improve the performance of
general graph algorithms. The techniques that have been applied to graph algorithms are
particular to the algorithm and compression scheme [7, 8, 12, 15, 23], and not used in a
general framework. The algorithms are also studied in the sequential setting.

Running algorithms on compressed inputs has been previously explored in the setting of
sparse matrix-vector (spMV) multiplication [4, 9, 17, 18, 25]. Like graph algorithms, spMV
is also a memory-bound computation, and so better improvements are observed in parallel.
These papers show promising results, but only study the specific spMV computation. In our
work, we study the impact of compression in a broad class of parallel graph algorithms.

2 Preliminaries
We denote a directed unweighted graph by G(V, E) where V is the set of vertices and E is the
set of (directed) edges in the graph. A weighted graph is denoted by G = (V, E,w), where w
is a function which maps an edge to a real value (its weight). The vertices are assumed to
be indexed from 0 to |V | − 1. N+(v) denotes the out-neighbors of vertex v in G and deg+(v)
denotes the out-degree of v in G. Similarly, N−(v) and deg−(v) denote the in-neighbors and

in-degree of v in G. We assume that there are no self-edges or duplicate edges in the graph.
The difference encoding scheme takes a vertex v’s adjacency list, {v0, v1, . . . , vdeg(v)−1},

given in increasing order and encodes the differences, {v0 − v, v1 − v0, . . . , vdeg(v)−1 − vdeg(v)−2}.
Blandford et. al [2] describe a class of variable-length codes, known as k-bit codes, which
encode (compress) an integer x as a series of k-bit blocks. Each block uses one bit as a
continue bit, which indicates if the following block is also a part of x’s encoded representa-
tion. To encode x, we first check if x < 2k−1. If this is the case, we simply write the binary
representation of x into a single block, and set the continue bit to 0. Otherwise, we write the
binary code for x mod 2k−1 in the block, set the continue bit to 1, and then encode bx/2k−1c

in the subsequent blocks. Decoding works by examining blocks until a block with a continue
bit of 0 is found. The decoded value in the ith examined block is multiplied by 2i(k−1), and
added to the result. For values that can be negative (e.g. the first edge of a vertex), an extra
bit in the first block is used as the sign bit, and decoding is modified accordingly.
2.1 Ligra Framework
In this section, we review the Ligra framework for shared-memory graph processing [24].
Ligra supplies a vertexSubset data structure used for representing a subset of the vertices.
Ligra provides two simple functions, one for mapping over vertices and one for mapping
over edges. vertexMap takes as input a vertexSubset U and a boolean function F, applies F
to all vertices in U, and returns a vertexSubset containing vertices U′ ⊆ U such that for all
u ∈ U′, F(u) = true. Note that F can side-effect data structures associated with the vertices,
and does so in applications in Ligra. edgeMap takes as input a graph G(V, E), vertexSubset
U, boolean update function F and boolean conditional function C; it applies F to all edges
(u, v) ∈ E such that u ∈ U and C(v) = true (call this set of edges Ea), and returns a vertex
subset U′ containing vertices v such that (u, v) ∈ Ea and F(u, v) = true. Again, F can
side-effect data structures associated with the vertices. The programmer must ensure the
parallel correctness of the functions passed to vertexMap and edgeMap.
vertexSubset Implementation. A vertexSubset U ⊆ V in Ligra can be represented either
sparsely or densely. If U is represented sparsely, then Ligra stores it as an array of size
|U | containing the vertex IDs (in any order). If U is represented densely, then Ligra uses a
boolean array of size |V |, where index i stores true if and only if i ∈ U.
vertexMap Implementation. In Ligra, vertexMap is implemented as a simple parallel
for-loop, applying the input function F over each element in the input vertexSubset, and
then a parallel filter is used to keep only the vertices such that applying F returned true.
edgeMap Implementation. While the Ligra programmer needs to call only edgeMap, two
versions of edgeMap are used under the hood—edgeMapSparse and edgeMapDense. For
performance reasons, Ligra switches between the two versions based on the size of the input
vertexSubset and the sum of the out-degrees of its vertices.
edgeMapSparse (pseudo-code shown in Figure 1) works as follows: for each vertex v in

the input vertexSubset U (in parallel), it loops through the out-neighbors ngh ∈ N+(v) (in
parallel) and if C(ngh) returns true it applies F(v, ngh); if F(v, ngh) returns true, then ngh
is added to the output vertexSubset. edgeMapSparse operates on the sparse representation
of a vertexSubset. As a vertex may be added to the output vertexSubset multiple times,
duplicates must be removed before returning the vertexSubset (however, for efficiency this
can be turned off by the programmer if the semantics of the F and C functions do not allow

1: procedure edgeMapSparse(G, U, F, C)
2: Out = {}

3: parfor v ∈ U do
4: parfor ngh ∈ N+(v) do
5: if (C(ngh) == 1 and F(v, ngh) == 1) then
6: Add ngh to Out
7: Remove duplicates from Out
8: return Out

Figure 1: edgeMapSparse implementation

1: procedure edgeMapDense(G, U, F, C)
2: Out = {}

3: parfor v ∈ {0, . . . , |V | − 1} do
4: if (C(v) == 1) then
5: for ngh ∈ N−(v) do
6: if (ngh ∈ U and F(ngh, v) == 1) then
7: Add v to Out
8: if (C(v) == 0) then break
9: return Out

Figure 2: edgeMapDense implementation
for duplicates).
edgeMapDense (pseudo-code shown in Figure 2) works as follows: for each vertex

v ∈ V , it checks if C(v) returns true; if so, it loops through the in-neighbors N−(v), checks if
ngh ∈ U and if so, applies F(ngh, v). The vertices v such that F(ngh, v) returned true are
added to the resulting vertexSubset. edgeMapDense works on the dense representation of a
vertexSubset. It uses an optimization where each vertex stops looping over its in-neighbors
once C(v) becomes f alse (Line 8 in the pseudo-code). Note that the outer loop is parallel,
but the inner loop is sequential to enable the optimization which breaks out of the loop early.
However for vertices with high in-degree, Ligra loops over the in-neighbors in parallel, and
does not check C(v) for early termination.

The edgeMap function provided to the programmer calls edgeMapDense or edgeMapSparse
based on the number of vertices and outgoing edges in the vertexSubset. When the number
is greater than some threshold, then edgeMapDense is used, and otherwise edgeMapSparse
is used. By default, the threshold is set to |E|/20, but if desired, the programmer can provide
another threshold value. The input vertexSubset is automatically converted to sparse or
dense representation based on whether edgeMapSparse or edgeMapDense is used.
Graph Representation. Ligra represents graphs using the adjacency array format. Two
edge arrays, one for in-edges and one for out-edges, are kept for the entire graph (for
symmetric graphs, only one edge array is kept). Each vertex stores a pointer to the start of
its edges in each array, as well as its in-degree and out-degree.

3 Ligra+ Implementation
We now describe how we develop Ligra+ to support processing of compressed graphs.
Encoding. We use two types of k-bit codes in Ligra+—byte codes and nibble codes,
which correspond to 8-bit and 4-bit codes, respectively. Byte codes are fast to decode, as
compressed blocks lie on byte-aligned boundaries. Nibble codes lie on 4-bit boundaries, and
are slower to decode due to the extra bit arithmetic required. Blandford et al. [2] show that
2-bit codes and gamma codes (effectively 1-bit codes) do not provide much additional space
savings compared to nibble codes, while being more expensive to decode, so we opted not
to use them.

For byte codes, we also use an idea from the spMV compression literature [18] which
reduces the decoding time. Instead of storing a variable-length code for each value, we
find consecutive groups of elements that require the same number of bytes (1 to 4 bytes) to
store. For each group we store an 8-bit header indicating the number of bytes each element
requires (2 bits of the header) and the size of the group (6 bits of the header, which allows
for groups of up to size 64). This technique slightly increases the space usage, but decreases
the decoding time as there is no longer a continue bit which needs to be checked to figure
out when to stop decoding. This allows us to unroll the decoding loop for an element as we
know how many bytes it requires, and therefore reduces branch mispredictions. We refer to

this scheme as run-length encoded byte codes. Note that with this scheme, each byte can
use all 8 bits for data, as it no longer needs to store a continue bit.

We implement an encoder program that generates a binary file representing a compressed
graph using one of the coding schemes. The encoding is parallelized over the vertices. For
each vertex in the graph, we first sort the edges in ascending order, and then compress the
edge set of each vertex by encoding the differences between consecutive edges. For the
first edge of each vertex, we encode the difference between the source and the target vertex
(which can be negative), with an additional sign bit in the first block. The run-length encoded
byte codes do this as well for the first edge of each vertex (the discussion in the previous
paragraph is only applied to the remaining edges). We maintain a single array of compressed
edge values, and store the vertex offsets into the array. To process the vertices in parallel in
the applications, vertex degrees must be known before decoding so that appropriate offsets
into shared arrays can be computed. In Ligra+, the vertex degrees are not implicit from
the offsets, while in Ligra they are. Hence we store the vertex degrees as well. We do
not compress the vertex offsets and degrees, since for many real-world graphs the number
of edges is much larger than the number of vertices, so the space savings are low. For
asymmetric input graphs, the in-edges for each vertex are also generated and encoded.
Decoding. The vertexSubset and vertexMap implementations in Ligra+ are the same as in
Ligra, since vertices are not compressed. We modify the two implementations of edgeMap,
so that the neighbors of a vertex are decoded using a special function. In particular, Lines 4–6
of the edgeMapSparse pseudo-code in Figure 1 and Lines 5–8 of the edgeMapDense pseudo-
code in Figure 2 are replaced by a call to decodeSparse and decodeDense, respectively.

We first describe our sequential implementations of decodeSparse and decodeDense for
the variable-length codes, and then discuss how to parallelize them in the next sub-section.
The implementations use two decoding functions FirstEdge and NextEdge. FirstEdge takes
as input a pointer into the compressed edge array, and decodes one value representing the
difference between the edge and source vertex (which can be negative). It then modifies
the pointer to point to the start of the next value in the compressed edge array. NextEdge
takes as input a pointer into the compressed edge array, decodes one value representing the
difference between consecutive edges (which can only be positive), and modifies the pointer
to point to the start of the next value in the compressed edge array. The decoding functions
decode byte codes or nibble codes following the procedure described in Section 2.

The pseudo-code for decodeSparse is shown in Figure 3. It takes as input the source
vertex v, its degree (deg), a pointer to the start of its out-neighbors in the compressed array
of out-edges (outEdges), the functions F and C, and a pointer to the output vertexSubset of
edgeMapSparse (Out). It decodes the first neighbor by calling the function FirstEdge, which
returns the difference between the source and target vertex, and then adds the value of the
source vertex v to the result to obtain the value of the neighbor (Lines 4–5). The result is
assigned to the variable prevEdge to allow for decoding of subsequent edges (Line 8). In
later iterations, the difference between the previous edge and current edge is obtained by
calling the function NextEdge; the edge value is obtained by adding the difference to the
value of prevEdge (Lines 6–7), and then subsequently assigned to prevEdge (Lines 8). As
in edgeMapSparse, we apply the function C to ngh, and if it returns true, we apply F to
(v, ngh); if F returns true then we add the neighbor to the output vertexSubset (Lines 9–10).

1: procedure decodeSparse(v, deg, outEdges, F, C, Out)
2: prevEdge = −1
3: for j = 0 to deg−1 do . Loop over out-neighbors
4: if j == 0 then
5: ngh = FirstEdge(outEdges) + v
6: else
7: ngh = NextEdge(outEdges) + prevEdge
8: prevEdge = ngh
9: if (C(ngh) == 1 and F(v, ngh) == 1) then
10: Add ngh to Out

Figure 3: decodeSparse implementation

1: procedure decodeDense(v, deg, inEdges, F, C, Out, U)
2: prevEdge = −1
3: for j = 0 to deg−1 do . Loop over in-neighbors
4: if j == 0 then
5: ngh = FirstEdge(inEdges) + v
6: else
7: ngh = NextEdge(inEdges) + prevEdge
8: prevEdge = ngh
9: if (ngh ∈ U and F(ngh, v) == 1) then
10: Add v to Out
11: if (C(v) == 0) then break

Figure 4: decodeDense implementation

The pseudo-code for decodeDense is shown in Figure 4. It takes the same arguments as
decodeSparse, except that the compressed edge array is for the in-edges (inEdges) instead
of the out-edges, and it also takes the input vertexSubset U to edgeMapDense. Decoding
the edges is done in the same way as in decodeSparse. When decodeDense is called with
vertex v, it is assumed that C(v) is true. As in the original edgeMapDense, it checks if an
in-neighbor ngh is in the input vertexSubset U, and if so applies F to (v, ngh); if F returns
true then v is added to the resulting vertexSubset (Lines 9–10). The optimization of breaking
early is done on Line 11.

For run-length encoded byte codes, we modify the decoding procedures to process
groups of edges after reading the header. Lines 9–10 of decodeSparse and Lines 9–11 of
decodeDense are applied immediately after each neighbor ID is decoded.
Parallel Decoding. Although for most graphs, decoding the edges sequentially for each
vertex gives performance competitive with Ligra, we found that for some applications on
certain graphs, it was up to 2 times slower. In these cases, parallelizing over the vertices was
not sufficient due to the highly skewed distributions of degrees. Therefore we designed a
parallel decoding scheme, where vertices with degree greater than some threshold T split
their edges into chunks each containing T edges (except for possibly the last chunk), and
the first edge of each chunk is difference encoded with respect to the source vertex. For
each vertex, offsets into its chunks of edges are stored, except for the first chunk. Thus,
for vertices with only one chunk (degree at most T), no extra storage is required. For each
vertex, the different chunks of the edge array are decoded in parallel, as we have the offset
to the start of each chunk. For decodeDense, the optimization of breaking early is applied
inside each chunk. The threshold T represents a trade-off between parallelism and space
overhead. In our experiments we set the threshold T to be 1,000, which we found to work
best overall, although we found the performance to be similar across a wide range of T (from
100 to 10,000). We found that the storage required for the additional offsets is minimal for
this range of T , as there are at most |E|/T − |V | offsets needed for the graph. We note that the
papers describing compression in parallel spMV do not perform parallel decoding within
rows of the matrix (analogously, the edges of a vertex).
Graph Storage. Two arrays for edges are used—one for the compressed in-edges and one
for the compressed out-edges. Vertex offsets into the edge arrays and their degrees are stored
in a separate array, uncompressed. For symmetric graphs, only one edge array is required,
and for asymmetric graphs, both the in-edges and out-edges are required.
Weighted Graphs. For weighted graphs, we encode the edge weights using difference
encoding with respect to the value 0, and use a bit in the first block as the sign bit. Decoding
is done in the same manner as decoding the first edge of a vertex, but relative to the value 0.
The edge targets and weights are interleaved to improve cache locality. The FirstEdge and

Input Graph Num. Num. Ligra Ligra+ Ligra+ Ligra+

Vertices Directed Edges (byte) (byte-RLE) (nibble)

randLocal 10,000,000 98,201,048 433 MB 228 MB 246 MB 221 MB
3D-grid 9,938,375 59,630,250 278 MB 219 MB 209 MB 209 MB
soc-LJ 4,847,571 85,702,474 362 MB 188 MB 204 MB 178 MB

cit-Patents 6,009,555 33,037,894 156 MB 107 MB 117 MB 105 MB
com-LJ 4,036,538 69,362,378 294 MB 152 MB 166 MB 143 MB

com-Orkut 3,072,627 234,370,166 950 MB 440 MB 466 MB 421 MB
nlpkkt240 27,993,601 746,478,752 3.1 GB 1.06 GB 1.16 GB 815 MB

Twitter 41,652,231 1,468,365,182 12.08 GB 6.17 GB 6.46 GB 5.95 GB
uk-union 133,633,041 5,507,679,822 45.9 GB 15.5 GB 16.2 GB 10.9 GB

Yahoo 1,413,511,391 12,869,122,070 62.8 GB 37.9 GB 39.3 GB 34.4 GB

Table 1: Graph input sizes and storage sizes, including both vertices and
edges.

 0

 5

 10

 15

 20

 25

 30

 35

 40

ra
nd

L
oc

al

3D
-g

ri
d

so
c-

L
J

ci
t-

Pa
te

nt
s

co
m

-L
J

co
m

-O
rk

ut

nl
pk

kt
24

0

T
w

itt
er

uk
-u

ni
on

Y
ah

oo

A
ve

ra
ge

 n
um

be
r o

f b
its

 p
er

 e
dg

e original Ligra
byte

byte-RLE
nibble

Figure 5: Average number of bits per edge required
for the different coding schemes.

NextEdge functions are modified to decode the target of an edge along with its weight.
For run-length encoded byte codes, we find groups of edges that require at most x bytes

for the difference with the previous edge and y bytes for the weight, where x ∈ {1, 2, 3, 4}
and y ∈ {1, 4}. The header byte uses 3 bits to store the (x, y) combination and 5 bits for
the size of the group (allowing for groups of up to size 32). The decoding functions are
modified accordingly to decode groups of edge targets/weights after reading the header.
Comparison to Ligra. The user interface to Ligra+ is the same as in Ligra, so applications
developed using Ligra are compatible with Ligra+. Only the graph representation and the
implementations of edgeMap have changed, and the user is not exposed to this.

4 Experiments
In this section, we analyze the effect of compression on the space usage and running time of
a variety of graph applications using a collection of large-scale graphs. We experiment with
six graph applications developed in the original Ligra framework (see [24] for details on the
implementations): breadth-first search (BFS), betweenness centrality computation from a
source vertex (BC), graph radii estimation (Radii), connected components (Components),
PageRank (one iteration) and Bellman-Ford shortest-paths. The first five applications run
on unweighted graphs, while Bellman-Ford runs on weighted graphs. In this paper, we only
compare Ligra+ with Ligra as the goal of our experimental study is to observe the impact of
graph compression on running time and space usage, while keeping other factors the same.
We note that Ligra has been compared with several other graph processing systems in [24],
and shown to often outperform them on a per-core basis.
Experimental Setup. We run our experiments on a 40-core Intel machine (with two-way
hyper-threading) with 4× 2.4GHz Intel 10-core E7-8870 Xeon processors (with a 1066MHz
bus and 30MB L3 cache) and 256GB of main memory. The programs use Cilk Plus to
express parallelism and are compiled with the icpc compiler (version 12.1.0) with the -O3
flag. The reported times are based on a median of three trials.
Input Graphs. We use a set of synthetic and real-world graphs, whose sizes are shown in
Table 1. randLocal is a random graph where every vertex has five edges to neighbors chosen
with probability proportional to the difference in the neighbor’s ID value from the vertex’s
ID. 3D-grid is a grid graph in 3-dimensional space where every vertex has six edges, each
connecting it to its 2 neighbors in each dimension. For the real-world graphs, we obtained
the soc-LJ, cit-Patents, com-LJ and com-Orkut graphs from http://snap.stanford.edu/,
and we symmetrized the graphs. nlpkkt240 is a graph obtained from http://www.cise.ufl.
edu/research/sparse/matrices/. Twitter is a graph of the Twitter network [19]. uk-union
is a graph generated from snapshots of a subset of the UK web network [6]. Yahoo is a web

Input BFS BC Radii
Graph orig. byte byte-RLE nibble orig. byte byte-RLE nibble orig. byte byte-RLE nibble

(T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40)

randLocal 1.46 0.055 1.93 0.056 1.8 0.054 3.23 0.08 4.82 0.152 6.36 0.167 5.33 0.159 7.95 0.228 9.22 0.286 10.7 0.295 9.82 0.284 17.1 0.433
3D-grid 1.47 0.214 1.3 0.216 1.26 0.214 1.66 0.233 4.75 0.559 4.64 0.572 5.36 0.558 5.78 0.588 135 5.23 173 5.57 139 5.25 244 7.73
soc-LJ 0.634 0.028 0.677 0.027 0.676 0.026 0.902 0.031 2.6 0.093 3.37 0.108 3.11 0.1 5.08 0.139 8.06 0.22 10.6 0.233 10.6 0.218 15 0.363

cit-Patents 0.639 0.029 0.758 0.03 0.752 0.03 1.08 0.037 2.1 0.086 2.59 0.091 2.49 0.091 3.62 0.115 4.75 0.149 6.91 0.16 5.81 0.157 8.61 0.224
com-LJ 0.523 0.023 0.539 0.023 0.54 0.023 0.708 0.026 2.12 0.082 2.89 0.091 2.57 0.087 4.14 0.121 7.75 0.212 8.73 0.222 8.23 0.213 14 0.343

com-Orkut 0.663 0.029 0.899 0.031 0.789 0.029 1.65 0.049 4.38 0.14 5.98 0.163 4.94 0.142 9.59 0.268 13.2 0.355 14.4 0.367 12.3 0.323 26.1 0.645
nlpkkt240 10.3 0.489 9.41 0.463 8.74 0.466 14.2 0.517 33.3 1.34 33.3 1.28 28.1 1.23 35.7 1.39 897 22.6 1120 24.4 906 21.1 1820 39.1

Twitter 6.91 0.27 8.79 0.274 8.33 0.268 13 0.347 40.1 4.62 47.4 3.16 44.9 3.53 75.2 3.78 172 7.46 193 7.26 172 7.13 392 10.2
uk-union 48.5 2.29 45.9 1.48 37.6 1.34 60.4 1.99 128 5.4 131 4.05 101 3.46 177 5.47 664 32 462 16.7 383 14.5 718 25.6

Yahoo 124 4.68 113 3.98 128 3.8 161 4.81 458 13.8 510 13.6 438 12.4 767 19 1390 36.4 1440 35.2 1250 32.7 2280 53.7

Components PageRank Bellman-Ford
orig. byte byte-RLE nibble orig. byte byte-RLE nibble orig. byte byte-RLE nibble

(T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40) (T1) (T40)

randLocal 2.03 0.074 2.87 0.08 2.51 0.074 4.94 0.116 1.74 0.062 1.87 0.062 1.79 0.062 3 0.082 9.64 0.329 10.1 0.325 10.1 0.326 15.6 0.432
3D-grid 1.02 0.635 1.36 0.772 1.06 0.68 2 1.21 0.871 0.04 0.799 0.039 0.823 0.036 1.2 0.048 24.7 1.36 23.4 1.14 23.2 1.16 31.5 1.31
soc-LJ 2.37 0.074 3.32 0.083 2.84 0.075 5.5 0.132 1.85 0.059 1.88 0.061 1.79 0.055 3.11 0.088 3.63 0.139 4.87 0.141 4.38 0.138 6.99 0.203

cit-Patents 1.16 0.044 1.66 0.05 1.52 0.046 2.61 0.069 0.884 0.032 0.857 0.034 0.849 0.032 1.33 0.042 3.28 0.14 3.97 0.145 4.05 0.145 6.02 0.179
com-LJ 1.87 0.061 2.63 0.067 2.26 0.062 4.47 0.108 1.51 0.049 1.5 0.045 1.42 0.041 2.46 0.068 4.02 0.124 3.59 0.127 3.62 0.128 6.65 0.181

com-Orkut 3.7 0.108 4.31 0.119 3.74 0.094 8.52 0.223 4.53 0.158 4.16 0.146 3.98 0.144 7.44 0.236 5.55 0.241 6.26 0.246 5.78 0.228 13.2 0.427
nlpkkt240 10.6 0.547 14 0.596 10.5 0.49 23 0.927 7.36 0.24 6.89 0.224 8.09 0.226 9.2 0.269 142 4.88 144 4.46 141 4.43 265 6.91

Twitter 76.4 3.35 82.2 2.42 72.3 2.27 147 3.83 48.6 2.68 73.5 2.74 70.5 2.66 95.2 3.15 41.3 1.14 50.2 1.11 34.9 1.06 65.7 1.68
uk-union 71.1 5.57 53.2 2.73 45.7 2.61 76.1 3.9 74.4 4.89 56.9 2.26 52.3 2.24 64.8 2.65 42.9 2.9 45.1 1.74 42.8 1.53 63.8 2.34

Yahoo 307 12.1 309 10.7 271 9.84 500 15.8 263 8.2 258 7.73 238 7.39 347 9.79 176 6.28 225 6.54 210 6.11 331 8.92

Table 2: Sequential (T1) and parallel (T40) times (seconds) on a 40-core machine with hyper-threading on different applications for the
original Ligra (orig.), Ligra+ using byte coding (byte), byte coding with run-length encoding (byte-RLE) and nibble coding (nibble).

graph obtained from http://webscope.sandbox.yahoo.com/catalog.php?datatype=g and we
symmetrized it to get a larger graph. Twitter and uk-union are asymmetric, and the rest of
the graphs are symmetric. We remove all self and duplicate edges from the graphs.
Compression Quality. We experiment with several graph reordering schemes (e.g. [3,
16]) to improve the locality (i.e. renumber vertices such that the IDs of vertices and their
neighbors are close), and hence compression of the graphs. While for most graphs, applying
the best reordering algorithm improves compression, the locality of our real-world graphs is
already quite good without reordering. In our experiments, we use the best ordering for each
graph, but confirmed that reordering is not always necessary to obtain good compression.

Figure 5 compares the average bits per edge required for byte coding (byte), run-length
encoded byte coding (byte-RLE), and nibble coding (nibble) using the best reordering
algorithm for each graph. For reference, we also show that the uncompressed graph in Ligra
requires 32 bits per edge. For the input graphs, all three coding schemes use many fewer
bits per edge than in Ligra (at most 19 bits per edge). Among the three coding schemes,
nibble codes require the least space, followed by byte codes, and finally byte-RLE codes.

In Table 1, we list the size required to store each graph in Ligra, Ligra+ with byte
coding, run-length encoded byte coding, and nibble coding. This includes the edges, vertex
offsets, and vertex degrees (for Ligra+). For graphs that have a high vertex-to-edge ratio (i.e.
3D-grid) the space savings of Ligra+ compared to Ligra are smaller, since Ligra+ does not
compress vertices. However, for graphs with good compression and/or low vertex-to-edge
ratio, such as nlpkkt240 and uk-union, the space savings are up to 3x for byte and byte-RLE
coding and 4x for nibble coding. On average, byte codes, byte-RLE codes and nibble codes
reduce the space to about 53%, 56% and 49% of the uncompressed size, respectively.
Running Time. In Table 2, we report the times using a single-thread (T1) and times using
40 cores with hyper-threading (T40) for each application on each input graph. The time for
encoding graphs is not included in the running times, as this process only needs to be done
once per graph and is hence the cost is amortized across all subsequent computations on the
graph. However, we note that the encoding step is quite efficient as it essentially amounts to a

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on a single thread

original Ligra
byte

byte-RLE
nibble

 0.8

 1

 1.2

 1.4

 1.6

 1.8

BFS
BC Radii

Components

PageRank

Bellman-Ford

R
un

ni
ng

 ti
m

e
(n

or
m

al
iz

ed
 to

 L
ig

ra
)

Average performance on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

BFS
BC Radii

Components

PageRank

Bellman-Ford

Average self-relative speedup on 40 cores with hyper-threading

original Ligra
byte

byte-RLE
nibble

Figure 6: Average performance of Ligra+ relative to Ligra for each application on a single-thread (left) and on 40 cores with hyper-
threading (center). Average self-relative speedup over all inputs for each application on 40 cores with hyper-threading (right).

 0

 200

 400

 600

 800

 1000

 1200

 1400

BFS
BC Radii

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

com-LJ

original Ligra
byte

byte-RLE
nibble

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

BFS
BC Radii

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

com-Orkut

original Ligra
byte

byte-RLE
nibble

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

BFS
BC Radii

Components

PageRank

Bellman-Ford

M
em

or
y

U
sa

ge
 (M

B
)

nlpkkt240

original Ligra
byte

byte-RLE
nibble

Figure 7: Peak memory usage of graph algorithms on com-LJ (left), com-Orkut (center) and nlpkkt240 (right).

scan over each vertex’s edges, and is done in parallel. We also plot the average performance
per application of Ligra+ with each encoding scheme relative to Ligra in Figure 6 (left
and center). We see that sequentially, Ligra+ is slower on average than Ligra for all of
the applications except PageRank, but in parallel, Ligra+ with byte-RLE or byte codes is
faster on all applications. In parallel, Ligra+ using nibble codes is still generally slower than
Ligra due to the high overhead of decoding, but not by as much as on a single thread (see
Figure 6). Decoding nibble codes is slower than decoding byte and byte-RLE codes because
the operations are not on byte-aligned memory addresses. Ligra+ with byte-RLE codes is
generally faster than with byte codes because there is a lower decoding overhead.

Graph algorithms are memory-bound, and the reason for the improvement in the parallel
setting is because memory is more of a bottleneck in parallel than in the sequential case,
and so the reduced memory footprint of Ligra+ is important in reducing the effect of the
memory bottleneck. In addition, the decoding overhead is lower in parallel than sequentially
because it gets better parallel speedup relative to the rest of the computation.

Overall, Ligra+ is at most 1.1x slower and up to 2.2x faster than Ligra on 40 cores with
hyper-threading. On average, over all applications and inputs, Ligra+ using byte-RLE codes
is about 14% faster than Ligra in parallel and about 8% faster using byte codes. In parallel,
Ligra+ using nibble codes is about 35% slower than Ligra on average. The graphs with
better compression (e.g. nlpkkt240 and uk-union) tend to have better performance in Ligra+.
For the larger graphs, Ligra+ outperforms Ligra in most cases because vertices tend to have
higher degrees and neighbors no longer fit on a cache line, making the reduced memory
footprint a more significant benefit. Sequentially, Ligra+ is slower than Ligra by about 3%,
13% and 73% on average when using byte-RLE, byte, and nibble codes, respectively.

We plot the average parallel self-relative speedups (T1/T40) over all inputs of each of
the coding schemes per application in Figure 6 (right). Both Ligra and Ligra+ achieve
good speedups on the applications—at least a factor of 20 for Ligra and 25 for Ligra+. The
three compression schemes all achieve better speedup than Ligra. Again, this is because
compression alleviates the memory bottleneck which is a bigger issue in parallel, and the
overhead of decoding is lower because it has better parallel scalability relative to the rest of
the computation.
Memory Usage. In Figure 7, we plot the peak memory usage of the applications using Ligra

and Ligra+ for several graphs. For all graphs, Ligra+ has a lower peak memory usage than
Ligra. Since the applications use auxiliary data structures of size proportional to the number
of vertices, for graphs with a low vertex-to-edge ratio (i.e. com-Orkut and nlpkkt240), we
see a significant saving in memory usage with Ligra+ compared to Ligra, and for other
graphs the saving is lower.

5 Conclusion
In this work, we develop Ligra+ by integrating compression techniques into Ligra, a
large-scale shared-memory graph processing framework that supports a broad set of graph
algorithms. Using Ligra+, we are able to process graphs in parallel faster and using less
memory than Ligra. This makes Ligra+ attractive for processing large graphs in shared
memory. Ideas for future work include integrating other compression schemes into Ligra+

and exploring the performance of compression methods in other graph processing systems.
Acknowledgments. This work is supported by the National Science Foundation under grant
number CCF-1314590, the Intel Labs Academic Research Office for the Parallel Algorithms
for Non-Numeric Computing Program, and a Facebook Graduate Fellowship.
References

[1] M. Adler and M. Mitzenmacher. “Towards Compressing Web Graphs”. In DCC. 2001.
[2] D. K. Blandford et al. “An Experimental Analysis of a Compact Graph Representation”. In ALENEX.

2004.
[3] D. K. Blandford et al. “Compact Representations of Separable Graphs”. In SODA. 2003.
[4] G. E. Blelloch et al. “Hierarchical Diagonal Blocking and Precision Reduction Applied to Combinatorial

Multigrid”. In SC. 2010.
[5] P. Boldi and S. Vigna. “The webgraph framework I: compression techniques”. In WWW. 2004.
[6] P. Boldi et al. “A Large Time-Aware Graph”. In SIGIR. 2008.
[7] N. Brunelle et al. “Algorithms for Compressed Inputs”. In DCC. 2013.
[8] G. Buehrer and K. Chellapilla. “A scalable pattern mining approach to web graph compression with

communities”. In WSDM. 2008.
[9] A. Buluç et al. “Reduced-Bandwidth Multithreaded Algorithms for Sparse Matrix-Vector Multiplica-

tion”. In IPDPS. 2011.
[10] F. Chierichetti et al. “On Compressing Social Networks”. In KDD. 2009.
[11] J. Gonzalez et al. “PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs”. In OSDI.

2012.
[12] D. Hannah et al. “Analysis of Link Graph Compression Techniques”. In European Conference on

Advances in Information Retrieval. 2008.
[13] U. Kang et al. “GBASE: an efficient analysis platform for large graphs”. VLDB J. (2012).
[14] U. Kang et al. “PEGASUS: mining peta-scale graphs”. Knowl. Inf. Syst. (2011).
[15] C. Karande et al. “Speeding Up Algorithms on Compressed Web Graphs”. In WSDM. 2009.
[16] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular

Graphs”. SIAM J. Sci. Comput. (1998).
[17] K. Kourtis et al. “CSX: an extended compression format for spmv on shared memory systems”. In

PPOPP. 2011.
[18] K. Kourtis et al. “Exploiting compression opportunities to improve SpMxV performance on shared

memory systems”. TACO (2010).
[19] H. Kwak et al. “What is Twitter, a social network or a news media?” In WWW. 2010.
[20] Y. Lim et al. “SlashBurn: Graph Compression and Mining beyond Caveman Communities”. TKDE

(2014).
[21] A. Lugowski et al. “A Flexible Open-Source Toolbox for Scalable Complex Graph Analysis”. In SDM.

2012.
[22] G. Malewicz et al. “Pregel: a system for large-scale graph processing”. In SIGMOD. 2010.
[23] K. H. Randall et al. “The Link Database: Fast Access to Graphs of the Web”. In DCC. 2002.
[24] J. Shun and G. E. Blelloch. “Ligra: A Lightweight Graph Processing Framework for Shared Memory”.

In PPoPP. 2013.
[25] J. Willcock and A. Lumsdaine. “Accelerating sparse matrix computations via data compression”. In

ICS. 2006.

