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ABSTRACT
Graph clustering has many important applications in computing, but
due to growing sizes of graph, even traditionally fast clustering meth-
ods such as spectral partitioning can be computationally expensive
for real-world graphs of interest. Motivated partly by this, so-called
local algorithms for graph clustering have received significant inter-
est due to the fact that they can find good clusters in a graph with
work proportional to the size of the cluster rather than that of the
entire graph. This feature has proven to be crucial in making such
graph clustering and many of its downstream applications efficient
in practice. While local clustering algorithms are already faster than
traditional algorithms that touch the entire graph, they are sequential
and there is an opportunity to make them even more efficient via
parallelization. In this paper, we show how to parallelize many of
these algorithms in the shared-memory multicore setting, and we
analyze the parallel complexity of these algorithms. We present
comprehensive experiments on large-scale graphs showing that our
parallel algorithms achieve good parallel speedups on a modern
multicore machine, thus significantly speeding up the analysis of
local graph clusters in the very large-scale setting.

1 Introduction
Given a graph, the task of graph clustering is often described as that
of finding a set (or sets) of vertices that are more related, in some
sense, to each other than to other vertices in the graph. Applications
of graph clustering arise in many areas of computing, including in
community detection in social networks [20], load balancing paral-
lel computations [13], unsupervised learning [36], and optimizing
digital map databases [21].

There are a large number of algorithms for graph clustering, each
with different computational costs and producing clusters with differ-
ent properties (see [40] for a survey of graph clustering algorithms).
However, most traditional algorithms for graph clustering require
touching the entire graph at least once, and often many more times.
With the massive graphs that are available today, e.g., extremely
large graphs arising in social media, scientific, and intelligence
applications, these traditionally-fast algorithms can be very compu-
tationally expensive. A standard example of this can be found in the
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large-scale empirical analysis of Leskovec et al. [29, 30] and Jeub et
al. [23]. Therefore, there has been a surge of interest in local graph
clustering algorithms, or algorithms whose running time depends
only on the size of the cluster found and is independent of or de-
pends at most polylogarithmically on the size of the entire graph
(we refer to this as a local running time).

Local graph clustering was first used by Spielman and Teng [44]
to develop nearly linear-time algorithms for computing approximately-
balanced graph partitions and solving sparse linear systems. Since
then, there have been many improved local graph clustering algo-
rithms developed [2, 7, 15, 27], which we review in Section 5. Local
graph clustering algorithms have been used in many real-world ap-
plications. For example, Andersen and Lang [5] use a variant of the
algorithm of Spielman and Teng [44] to identify communities in net-
works. Leskovec et al. [29, 30] and Jeub et al. [23] use the algorithm
of Andersen et al. [2] as well as other graph clustering algorithms
to study the properties of clusters of different sizes in social and
Web graphs. A major conclusion of [29, 30, 23] was that large
social and information networks typically have good small clusters
as opposed to large clusters, thus indicating that local algorithms are
useful not only for computational efficiency, but also for identifying
clusters that are more meaningful or useful in practice. Mahoney et
al. [32] and Maji et al. [33] use local algorithms to obtain cuts for
image segmentation and community detection. These algorithms
have also been applied to find communities in protein networks [47,
31]. There have been many other papers applying local algorithms
to community detection, e.g., [4, 49, 24, 25, 48, 50, 18].

Existing clustering algorithms with local running times are de-
scribed for the sequential setting, which is not surprising since
meaningful local clusters in the small to medium-sized graphs stud-
ied in the past tend to be very small [29, 23], and hence algorithms
to find these local clusters terminate very quickly. Even for these
small to medium-sized graphs, these local algorithms have proven
to be very useful; and currently the applicability of these methods to
extremely large graphs, e.g., those with one billion or more vertices
or edges, is limited by large-scale implementations. Moreover, with
the massive graphs that are available today, one would like to test the
hypothesis that meaningful local clusters can be larger, and this will
lead to increased running times of local clustering algorithms. The
efficiency of these algorithms can be improved via parallelization.

A straightforward way to use parallelism is to run many local
graph computations independently in parallel, and this can be useful
for certain applications. However, since all of the local algorithms
have many input parameters that affect both the cluster quality and
computation time, it may be hard to know a priori how to set the
input parameters for the multiple independent computations. We
believe that these local algorithms are more useful in an interactive
setting, where a data analyst wants to quickly explore the properties



of local clusters found in a graph. In such a setting, an analyst would
run a computation, study the result, and based on that determine
what computation to run next. Furthermore, the analyst may want to
repeatedly remove local clusters from a graph for his or her applica-
tion. To keep response times low, it is important that a single local
computation be made efficient. If each run of the algorithm returns
nearly instantaneously rather than in tens of seconds to minutes, this
drastically improves user experience as well as productivity. The
goal of this paper is to achieve this via parallelism.

This paper develops parallel versions of several local graph clus-
tering algorithms—the Nibble algorithm of Spielman and Teng [44,
45], the PageRank-Nibble algorithm of Andersen et al. [2], the deter-
ministic heat kernel PageRank algorithm of Kloster and Gleich [24],
and the randomized heat kernel PageRank algorithm of Chung and
Simpson [10]. These algorithms all diffuse probability mass from
a seed vertex, and return an approximate PageRank (probability)
vector. The vector returned at the end is then processed by a sweep
cut procedure to generate a graph partition (the sweep cut sorts
the vertices in non-increasing order of degree-weighted probability
and returns the best partition among all prefixes of the ordering).
The approach that we take to parallelizing the diffusion process of
these algorithms is to iteratively process subsets of vertices and their
edges until a termination criteria is met. Each iteration processes
a possibly different subset of vertices/edges (determined from the
previous iteration) in parallel. We develop an efficient parallel al-
gorithm for performing the sweep cut as well. All of our parallel
algorithms return clusters with the same quality guarantees as their
sequential counterparts. In addition, we prove theoretical bounds
on the computational complexity of the parallel algorithms, show-
ing that their asymptotic work matches those of the corresponding
sequential algorithms (and thus have local running times) and that
most of them have good parallelism. The only other work on par-
allelizing local graph clustering algorithms that we are aware of is
a parallelization of the PageRank-Nibble algorithm of Andersen et
al. [2] in the distributed setting by Perozzi et al. [38]. However, their
algorithm does not have a local running time since it does work
proportional to at least the number of vertices in the graph.

We implement all of our parallel algorithms in the Ligra graph
processing framework for shared-memory [41]. Ligra is well-suited
for these applications because it only does work proportional to the
number of active vertices (and their edges) in each iteration, which
enables local implementations of the algorithms. In contrast, many
other systems (e.g., GraphLab [19] and Pregel [34]) require touching
all of the vertices in the graph on each iteration, which would lead
to inefficient implementations of local algorithms. Our implementa-
tions are all lock-free, and use only basic parallel primitives such as
prefix sums, filter, and sorting, as well as data-parallel functions in
Ligra that map computations over subsets of vertices or edges.

We present a comprehensive experimental evaluation of our par-
allel algorithms, and compare them to their sequential counterparts.
Our experiments on a modern 40-core machine show that our par-
allel implementations of the four diffusion methods achieve good
speedups with increasing core count. For PageRank-Nibble, we
describe an optimization that speeds up both the sequential and the
parallel algorithms. Our parallel sweep cut procedure also performs
very well in practice, achieving 23–28x speedup on 40 cores. Due
to the efficiency of our algorithms, we are able to generate network
community profile plots (a concept introduced in [29] and used
in [23] that quantifies the best cluster as a function of cluster size)
for some of the largest publicly-available real-world graphs.
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Figure 1: An example graph with n = 8 and m = 8. The conductance of several
clusters are shown.

2 Preliminaries
Graph Notation. We denote a graph by G(V,E), where V is the
set of vertices and E is the set of edges in the graph. All of the
graphs that we study in this paper are undirected and unweighted.
The number of vertices in a graph is n = |V |, and the number
of undirected edges is m = |E|. The vertices are assumed to be
indexed from 0 to n−1. We define d(v) to be the degree of a vertex
v (i.e., the number of edges incident on v). We define the volume of
a set of vertices S to be vol(S) =

∑
v∈S d(v), and the boundary

of S to be ∂(S) = {(x, y) ∈ E | x ∈ S, y 6∈ S} (the number of
edges leaving a set). The conductance of a cluster S in a graph is
defined to be φ(S) =

∣∣∂(S)∣∣/min(vol(S), 2m− vol(S)). This is
a widely-used metric to measure cluster quality. Intuitively, low-
conductance vertex sets tend to correspond to higher-quality clusters
because these sets are larger and have fewer edges to vertices outside
of the set. Figure 1 shows an example graph and the conductance of
several clusters in the graph.
Local Algorithms. Local graph clustering algorithms have the
guarantee that if there exists a cluster S with conductance φ, and
one picks a starting vertex in S then the algorithm returns a cluster
of conductance f(φ, n) with constant probability.1 They also have
a work bound (number of operations) that depends linearly on the
size of the cluster and at most polylogarithmically on the graph size.
Local algorithms have been used in theory as subroutines to obtain
nearly linear time graph partitioning algorithms [2, 1, 7, 45], which
in turn have applications in solving sparse linear systems [44].
Atomic Operations. A compare-and-swap is an atomic instruc-
tion supported on modern multicore machines that takes three
arguments—a memory location, an expected value, and a new value;
if the value stored at the location is equal to the expected value then
it atomically updates the location with the new value and returns
true, and otherwise returns false. A fetch-and-add (fetchAdd) takes
two arguments, a location x and a value y, and atomically adds y to
the value at location x. It can be implemented using a loop with a
compare-and-swap until the update is successful. In the paper, we
use the notation &x to denote the memory location of variable x.
Parallel Model. Algorithms in this paper are analyzed in the work-
depth model [22, 12], where work is equal to the number of oper-
ations required (equivalent to sequential running time) and depth
is equal to the number of time steps required (the longest chain
of sequential dependencies). The work-depth model is a natural
shared-memory parallel extension of the commonly-used sequential
RAM model [12] and has been used for decades to develop parallel
algorithms (see, e.g., [22, 12]).

By Brent’s theorem [8], an algorithm with work W and depth
D has overall running time W/P +D, where P is the number of
processors available. Concurrent reads and writes are allowed in
the model, with which a compare-and-swap can be simulated. A

1
f(φ, n) is a function of φ and n that determines the approximation guarantee of the

algorithm. We will plug in specific values when we discuss the individual algorithms.



fetch-and-add can be simulated in linear work and logarithmic depth
in the number of updates. A work-efficient parallel algorithm is one
whose work asymptotically matches that of the sequential algorithm,
which is important since in practice the W/P term in the running
time often dominates.
Parallel Primitives. We will use the basic parallel primitives, pre-
fix sum and filter [22]. Prefix sum takes an array X of length
N , an associative binary operator ⊕ (e.g., the addition operator
or the minimum operator), and returns the array (X[0], X[0] ⊕
X[1], . . . , X[0]⊕X[1]⊕ . . .⊕X[N − 1]).2 Filter takes an array
X of length N and a predicate function f , and returns an array X ′

of length N ′ ≤ N containing the elements in x ∈ X such that
f(a) is true, in the same order that they appear in X . Filter can
be implemented using prefix sum, and both require O(N) work
and O(logN) depth [22]. We also use parallel comparison sort-
ing, which for N elements can be done in O(N logN) work and
O(logN) depth [22], and parallel integer sorting, which can be done
in O(N) work and O(logN) depth with probability 1− 1/NO(1)

(we refer to this as a high probability bound) for N integers in the
range [1, . . . , O(N logO(1)N)] [39].
Sparse Sets. Our implementations use hash tables to represent a
sparse set to store data associated with the vertices touched in the
graph. This is because we can only afford to do work proportional to
those vertices (and their edges), and cannot initialize an array of size
|V | at the beginning. For sequential implementations we use the
unordered map data structure in STL. For parallel implementa-
tions, we use the non-deterministic concurrent hash table described
in [42], which allows for insertions and searches in parallel. The
hash table is a lock-free table based on linear probing, and makes
heavy use of compare-and-swap and fetch-and-add. For a batch of
N inserts and/or searches, parallel hashing takes O(N) work and
O(logN) depth with high probability [16]. We set the size of the
hash tables to be proportional to the number of the elements N that
we need to store, so that it can be initialized inO(N) work andO(1)
depth. All of the parallel algorithms that we present use sparse sets,
and so their complexity bounds will be high probability bounds.

In our pseudocode, we use sparse sets to store key-value pairs
where the key is the vertex ID and the value is the associated data.
We use the notation p[k] to denote the value in the sparse set p
associated with the key k. If we attempt to update data for a non-
existent key k in the sparse set, we assume that prior to updating,
a pair (k,⊥) will be created in the set, where ⊥ is a zero element
defined when creating the set. Both STL’s unordered map and
the concurrent hash table that we use support this functionality. For
all of our implementations, ⊥ = 0.
Ligra Framework. Our parallel implementations are written us-
ing Ligra, a graph processing framework for shared-memory ma-
chines [41]. Ligra is very well-suited for implementing local al-
gorithms since it only does work proportional to the vertices and
edges touched, whereas many other graph processing systems (e.g.,
GraphLab [19] and Pregel [34]) do work proportional to at least the
number of vertices in the graph on every iteration. This feature of
Ligra is crucial in obtaining running times proportional to just the
number of vertices and edges explored. Implementations in Ligra
have been shown to be simple and concise, with performance close
to hand-optimized implementations of the algorithms. We chose
to implement the graph algorithms in shared-memory because the
largest publicly-available real-world graphs can fit in the memory
of a single machine, and shared-memory graph processing has been
shown to be much more efficient than their distributed-memory

2This definition is for the inclusive version of prefix sum, in contrast to the exclusive
version of prefix sum, commonly used in parallel algorithms.

Figure 2: An example graph where the shaded vertices are in the vertexSubset U .
A VERTEXMAP applied to U applies a function to data associated with the shaded
vertices. An EDGEMAP applied to U applies a function to all of the edges incident
to U (indicated by dashed lines), and can modify the neighbors of U (indicated by
dashed circles).

counterparts [41, 35].
Ligra provides a vertexSubset data structure used for representing

a subset of the vertices, and two simple functions, one for mapping
over vertices and one for mapping over edges. We describe simpli-
fied versions of these functions, which suffices for implementing
the algorithms in this paper (see [41] for the more general versions).
VERTEXMAP takes as input a vertexSubset U and a boolean func-
tion F , and applies F to all vertices in U . F can side-effect data
structures associated with the vertices. EDGEMAP takes as input
a graph G(V,E), vertexSubset U , and boolean update function F ,
and applies F to all edges (u, v) ∈ E where u ∈ U . Again, F
can side-effect data structures associated with the vertices. The
programmer ensures the parallel correctness of the functions passed
to VERTEXMAP and EDGEMAP by using atomic operations where
necessary. An example graph is shown in Figure 2, where the shaded
vertices are in a vertexSubset; VERTEXMAP applies a function to
data associated with the shaded vertices in parallel, and EDGEMAP
applies a function to the incident edges (dashed lines) and neighbors
(dashed circles) of the shaded vertices in parallel. Note that in some
cases multiple shaded vertices have edges to the same neighbor, so
the function must be correct when run in parallel.

EDGEMAP is implemented by doing work proportional to the
number of vertices in its input vertexSubset and the sum of their
outgoing degrees, and processes the vertices and all of their edges in
parallel. VERTEXMAP is implemented by doing work proportional
to the number of vertices in its input vertexSubset, and processes
all of the vertices in parallel. Doing work proportional to only the
size of the input vertexSubset and its edges makes Ligra efficient
for implementing local graph algorithms that only need to touch
part of the graph. The Ligra code compiles with either Cilk Plus
or OpenMP for parallelism. We refer the reader to [41] for more
implementation details.

3 Parallel Algorithms
In this section, we review sequential local clustering algorithms and
show how to parallelize them. We describe our parallel algorithms
without any specific setting of parameters, which in prior literature
are often set to specific values for theoretical purposes. Additionally,
we assume the seed set contains just a single vertex, although all of
the algorithms extend to seed sets with multiple vertices.

At a high-level, our clustering algorithms are based on iteratively
processing subsets of vertices and their edges in parallel until a
termination criteria is met. For most of the algorithms, we use the
data-parallel VERTEXMAP and EDGEMAP functions in Ligra to
process each subset. One challenge in parallelizing the algorithms is
in guaranteeing a local running time. To address this challenge, we
ensure that each iteration only does work proportional to the size of
the subset of vertices and their edges through a careful representation
of sparse sets as well as formulating the algorithms to use Ligra’s
functions, which are local when used appropriately. The second
challenge is in identifying which sets of vertices can be processed in



parallel while guaranteeing work-efficiency and convergence. This
requires additional effort for some of the algorithms.

All of our clustering algorithms compute a vector p, which is
passed to a sweep cut rounding procedure to generate a cluster. Thus,
we first describe the sweep cut procedure and how to parallelize it
in Section 3.1, and then describe our main clustering routines in
Sections 3.2–3.5.

3.1 Sweep Cut
Often the solution vector p obtained by spectral partitioning algo-
rithms contains real numbers instead of being a binary vector that
represents a partition of the graph. Therefore, spectral algorithms
are combined with a rounding procedure which produces a parti-
tion from p that guarantees a good worst-case approximation to the
combinatorial minimum conductance problem.

The sweep cut procedure is commonly used, and takes as input
a graph G and a vector p (represented as a sparse set in a local
implementation). It first takes the vertices v with non-zero values in
p and sorts them in non-increasing order of p[v]/d(v). This gives
an ordered set {v1, . . . , vN}, whereN is the number of non-zeros in
p, p[vi] > 0, and p[vi]/d(vi) ≥ p[vi+1]/d(vi+1) for all i. It then
computes the conductance of clusters defined by Sj = {v1, . . . , vj}
for 1 ≤ j ≤ N and returns the set with smallest conductance. For
example, in the graph in Figure 1 if the ordered set is {A,B,C,D},
then the output set of the sweep cut procedure would be {A,B,C}
since it has the lowest conductance among the four sets considered.

The sequential algorithm for the sweep cut first sorts the vertices,
and then iterates through the vertices vi in increasing order of i, in-
serts vi into a set S, maintaining the volume vol(S) and the number
of outgoing edges ∂(S) in each iteration. This also allows the con-
ductance to be computed in each iteration. The lowest conductance
as well as the iteration number i∗ that leads to the lowest conduc-
tance is stored, and the final set returned is Si∗ . If S is represented
as a sparse set, we can check in constant work if an endpoint of an
edge is in S. Thus, ∂(S) can be easily updated in each iteration
as follows: for each edge (vi, w) ∈ E, if w ∈ S then decrement
∂(S), and otherwise increment ∂(S). vol(S) is easily updated by
incrementing it by d(vi). The sorting costs O(N logN) work, and
the subsequent iterations costs O(vol(SN )) work, giving an overall
work of O(N logN + vol(SN )).

We now show that the sweep cut procedure can be parallelized
work-efficiently. The challenging part is in computing the con-
ductance of all of the sets Si in parallel without increasing the
asymptotic work. A naive approach would be to form all sets Si
for 1 ≤ i ≤ N , and compute ∂(Si) and vol(Si) for each one inde-
pendently. However, this leads to O(N logN +

∑N
i=1 vol(Si)) =

O(N logN +Nvol(SN )) work. The following theorem describes
a work-efficient solution, and we illustrate the algorithm with an
example afterward.
Theorem 1. A sweep cut can be implemented in O(N logN +
vol(SN )) work and O(log vol(SN )) depth with high probability.

Proof. The initial sort can be parallelized in O(N logN) work and
O(logN) depth [22]. We then create a sparse set, called rank,
indexed by the vertex identifiers, storing their rank in the sorted
set SN = {v1, . . . , vN}. We create an array Z of size 2vol(SN ),
and for each vertex v ∈ SN , we look at all edges (v, w) ∈ E and
if rank[w] > rank[v] (case (a)) we create two pairs (1, rank[v])
and (−1, rank[w]) in the two positions corresponding to (v, w) in
Z, and otherwise (case (b)) we create two pairs (0, rank[v]) and
(0, rank[w]). In either case, ranks can be looked up in O(1) work
and if w 6∈ SN , we give it a default rank of N + 1. The offsets into
Z can be obtained via a prefix sums computation over the degrees of
vertices in SN in sorted order. This also allows us to obtain vol(Si)

for each i. We then sort Z by increasing order of the second value
of the pairs (the order among pairs with equal second value does not
matter). Next, we apply a prefix sums over the sorted Z with the
addition operator on the first value of the pairs.

Since Z is sorted in increasing order of rank, the final prefix sums
gives the number of crossing edges for each possible cut. ∂(Si) for
each possible Si can be obtained by looking at entries Z[j] where
the second value of the pair Z[j] is i and the second value of the
pair Z[j + 1] is i+ 1. The first value of Z[j] stores the number of
crossing edges for the set Si. This is because case (a) corresponds to
the fact that v is before w in the ordering—so if they are not on the
same side of the cut, the edge (v, w) will contribute 1 to the prefix
sums of the cut at any u where rank(v) < rank(u) < rank(w); and
if they are on the same side of the cut, both the 1 and the −1 entries
of the edge will cancel out in the prefix sum, leading to an overall
contribution of 0 for that edge. Case (b) corresponds to a duplicate
edge, and so does not contribute to the number of crossing edges.

Since we have the volume of all possible sets Si, we can compute
the conductance of each possible cut. A prefix sums using the
minimum operator over theN conductance values gives the cut with
the lowest conductance.

The prefix sums used in the computation contribute O(vol(SN ))
to the work, andO(log vol(SN )) to the depth. SortingZ by the rank
of vertices using a parallel integer sort takes O(vol(SN )) work and
O(log vol(SN )) depth with high probability since the maximum
rank is N + 1 = O(vol(SN )). Creating the sparse set rank takes
O(N) work and O(logN) depth using a hash table. Including the
cost of the initial sort gives the bounds of the theorem.

Example. We now illustrate the parallel sweep cut algorithm de-
scribed in Theorem 1 with an example. Again, let us consider
the example graph in Figure 1, and the set {A,B,C,D}, which
we assume has already been sorted in non-increasing order of
p[v]/d(v). The sparse set rank stores the following mapping:
rank = [A → 1, B → 2, C → 3, D → 4]. To obtain the vol-
ume of each of the four possible sets, we first create an array with
the degree of the vertices ordered by rank, and then apply a prefix
sums over it. In the example, the array of degrees is [2, 2, 3, 4], and
the result of the prefix sums is [2, 4, 7, 11]. The array Z is of size
twice the volume of the set {A,B,C,D}, which is 22. The entries
of Z are shown below:

Z = [(1, 1), (−1, 2), (1, 1), (−1, 3),
(0, 2), (0, 1), (1, 2), (−1, 3),
(0, 3), (0, 1), (0, 3), (0, 2), (1, 3), (−1, 4),
(0, 4), (0, 3), (1, 4), (−1, 5), (1, 4), (−1, 5), (1, 4), (−1, 5)]

For clarity, we have placed the pairs for each vertex on separate
rows. As an example, let us consider the entries for vertex B, which
are on the second row. The first edge of B is to A, and the ranks
of B and A are 2 and 1, respectively. Since rank(A) < rank(B),
we are in case (b) and create the pairs (0, 2) and (0, 1). The second
edge of B is to C, whose rank is 3. Since rank(C) > rank(B), we
are in case (a) and create the pairs (1, 2) and (−1, 3). The pairs for
the other vertices are constructed in a similar fashion (note that the
rank of vertices not in the input set is 5).

Next, we sort Z by increasing order of the second value of the
pairs. The sorted array Zsorted is shown below, where pairs with the
same rank (second entry) are on the same row:

Zsorted = [(1, 1), (1, 1), (0, 1), (0, 1),
(−1, 2), (0, 2), (1, 2), (0, 2),
(−1, 3), (−1, 3), (0, 3), (0, 3), (1, 3), (0, 3),
(−1, 4), (0, 4), (1, 4), (1, 4), (1, 4),
(−1, 5), (−1, 5), (−1, 5)]

Next we apply a prefix sum over the first value of the pairs in
Zsorted. The resulting array Zsorted, summed is shown below:



Zsorted, summed = [(1, 1), (2, 1), (2, 1), (2, 1),
(1, 2), (1, 2), (2, 2), (2, 2),
(1, 3), (0, 3), (0, 3), (0, 3), (1, 3), (1, 3),
(0, 4), (0, 4), (1, 4), (2, 4), (3, 4),
(2, 5), (1, 5), (0, 5)]

With Zsorted, summed, we can obtain the number of crossing edges
for each of the sets. The number of crossing edges for the set {A} is
found by looking at the pair in Zsorted, summed whose second value is
rank[A] = 1 and whose next pair’s second value is rank[A]+1 = 2.
This is the 4’th entry of the array, (2, 1), and the first entry of the
pair is the number of crossing edges, which is 2. In general the
relevant pair containing the number of crossing edges is the last
pair with a given second value, and these pairs all appear as the last
pair of a row of Zsorted, summed shown above. We find the number of
crossing edges for the set {A,B} to be 2, {A,B,C} to be 1, and
{A,B,C,D} to be 3.

With the number of crossing edges and the volume of each possi-
ble set, we can compute the conductance of each possible set, and
take the one with the lowest conductance using prefix sums. In the
example, the conductance of each set is shown in Figure 1, and the
set with the lowest conductance is {A,B,C}.
3.2 Nibble
Spielman and Teng [44] present the first local algorithm for graph
clustering, called Nibble, which gives an approximation guarantee of
f(φ, n) = O(φ1/3 log2/3 n) and requires O(|S|polylog(n)/φ5/3)

work.3 It was later improved to f(φ, n) = O(
√
φ log3 n) with

O(|S|polylog(n)/φ2) work [45]. Their algorithm is based on com-
puting the distribution of a random walk starting at the seed vertex,
but at each step truncating small probabilities to zero. The sweep
cut procedure is then applied on the distribution to give a partition.

The Nibble algorithm [45] takes as input the maximum number of
iterations T , an error parameter ε, a target conductance φ, and a seed
vertex x. On each iteration (for up to T iterations) Nibble computes a
weight vector, computes a sweep cut on the vector, and either returns
the cluster if its conductance is below φ or continues running. Let p0

be the initial weight vector, and pi denote the vector on iteration i.
p0 is initialized with weight 1 on the seed vertex and 0 everywhere
else. pi represents the weights generated by a lazy random walk
with truncation from the seed vertex after i steps, where on each step
pi(v) is truncated to 0 if pi(v) < d(v)ε. Computing pi+1 from
pi simply requires truncating all pi(v) < d(v)ε to 0 and for each
remaining non-zero entry pi(v), sending half of its mass to pi+1(v)
and the remaining to its neighbors, evenly distributed among them.

In practice, computing the sweep cut on each iteration of the algo-
rithm is unnecessary if one does not know what target conductance
is desirable for the particular graph. As such, we modify the Nibble
algorithm so that it runs for T iterations, returning pT, unless there
are no vertices on some iteration i such that pi(v) ≥ d(v)ε, in
which case we return pi−1.

Our implementations use sparse sets to represent the p vector of
the current and previous iteration (vectors from prior iterations can
be safely discarded), so that the work is local. For the sequential
implementation, the update procedure simply follows the descrip-
tion above. Our parallel implementation uses a VERTEXMAP and
EDGEMAP on each iteration to update the p vector of the next it-
eration. The pseudocode is shown in Figure 3. As discussed in
Section 2, we assume that the size of a sparse set is proportional to
the number of elements it represents, and furthermore when access-
ing a non-existing element v, the entry (v, 0) will be automatically
created in the set. Initially, the seed vertex is placed on the fron-
tier and in the weight vector p (Lines 8–9). On each iteration the
algorithm clears p′, used to store the next weight vector, applies a
3We use the notation polylog(n) to mean logO(1) n.

1: sparseSet p = {}
2: sparseSet p′ = {}
3: procedure UPDATENGH(s, d) . passed to EDGEMAP
4: fetchAdd(&p′[d],p[s]/(2d(s)))

5: procedure UPDATESELF(v) . passed to VERTEXMAP
6: p′[v] = p[v]/2

7: procedure NIBBLE(G, x, ε, T )
8: p = {(x, 1)}
9: vertexSubset Frontier = {x} . seed vertex
10: for t = 1 to T do
11: p′ = {}
12: VERTEXMAP(Frontier, UPDATESELF)
13: EDGEMAP(G, Frontier, UPDATENGH)
14: Frontier = {v | p′[v] ≥ d(v)ε} . using filter
15: if (size(Frontier) == 0) then break
16: else p = p′

17: return p

Figure 3: Pseudocode for parallel Nibble.

VERTEXMAP to send half of the mass of each vertex to itself (Line
12), and then an EDGEMAP to send the remaining half of the mass
evenly among all neighbors (Line 13). In Line 14, the frontier is up-
dated to contain just the vertices that have enough mass (equivalent
to the thresholding operation described in [45]), and only needs to
check the vertices in the frontier at the beginning of the iteration and
their neighbors. The algorithm breaks on Line 15 if the frontier is
empty, and otherwise updates p to be the new vector p′ on Line 16.

For concreteness, if the input graph is the graph from Figure 2,
and the shaded vertices represent the frontier, then the VERTEXMAP
on Line 12 would apply the function UPDATESELF to the p and p′

entries of the shaded vertices, and the EDGEMAP on Line 13 would
apply the function UPDATENGH to the dashed edges, reading from
the p entries of the shaded vertices and writing to the p′ entries of
the dashed vertices. Line 14 would find a new set of shaded vertices
(vertexSubset) to represent the next frontier.

Spielman and Teng [45] show that each iteration of the algo-
rithm processes O(1/ε) vertices and edges, and so takes O(1/ε)
work (O((1/ε) log(1/ε)) work if including the per-iteration sweep
cut). We can parallelize the updates across all vertices and edges
in each iteration, and for N updates, the fetch-and-adds together
take O(logN) depth and O(N) work. The filter performs O(1/ε)
work since we only check the vertices on the frontier and their neigh-
bors. This gives a work-efficient parallelization of each iteration in
O(log(1/ε)) depth, and gives an overall depth of O(T log(1/ε)).
Including the sweep cut on each round, as done in [45], does not
increase the depth as it can be parallelized in logarithmic depth as
shown in Theorem 1.
Theorem 2. The parallel algorithm for Nibble requires O(T/ε)
work (O((T/ε) log(1/ε)) work if performing a sweep cut per itera-
tion) and O(T log(1/ε)) depth with high probability.

3.3 PR-Nibble
Andersen, Chung, and Lang [2] give an improved local cluster-
ing algorithm, PageRank-Nibble (PR-Nibble), with f(φ, n) =
O(
√
φ logn) and work O(|S|polylog(n)/φ). Their algorithm gen-

erates an approximate PageRank vector based on repeatedly pushing
mass from vertices that have enough residual. Again a sweep cut is
applied to the resulting vector to give a partition.

The PR-Nibble algorithm [2] takes as input an error parameter
ε, a teleportation parameter 0 < α < 1, and a seed vertex x. The
algorithm maintains two vectors, p (the PageRank vector) and r
(the residual vector). At the end of the algorithm, p is returned to be
used in the sweep cut procedure. Initially, p is set to 0 everywhere
(i.e., the sparse set representing it is empty), and r is set to store a
mass of 1 on x and 0 everywhere else (i.e., the sparse set contains
just the entry (x, 1)).

On each iteration, a vertex v with r(v) ≥ d(v)ε is chosen to
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Figure 4: Running times of the original version of sequential PR-Nibble versus the
optimized version with α = 0.01 and ε = 10−7. The running times are normalized
to that of original PR-Nibble. See Section 4 for more information about the graphs
and machine specifications.

perform a push operation. Following the description in [2], a push
operation on vertex v will perform the following three steps:

1. p[v] = p[v] + αr[v]

2. For each w such that (v, w) ∈ E:

r[w] = r[w] + (1− α)r[v]/(2d(v))
3. r[v] = (1− α)r[v]/2

The PR-Nibble simply repeatedly applies the push operation on a
vertex until no vertices satisfy the criterion r(v) ≥ d(v)ε, at which
point it returns p and terminates. The work of the algorithm has
been shown to be O(1/(αε)) in [2].

Again, our sequential implementation simply follows the above
procedure, and uses sparse sets to represent p and r to obtain the
local work bound. As described in [2], we use a queue to store the
vertices with r(v) ≥ d(v)ε, and whenever we apply a push on v,
we check if any of its neighbors satisfy the criterion, and if so we
add it to the back of the queue. We repeatedly push from v until it
is below the threshold.
An Optimization. We implement an optimization to speed up the
code in practice. In particular, we use a more aggressive implemen-
tation of the push procedure as follows:

1. p[v] = p[v] + (2α/(1 + α))r[v]

2. For each w such that (v, w) ∈ E:

r[w] = r[w] + ((1− α)/(1 + α))r[v]/d(v)

3. r[v] = 0

This rule can be shown to approximate the same linear system as
the original rule [2], and the solution generated can be shown to
have the same asymptotic conductance guarantees as the original
PR-Nibble algorithm. The work of this modified algorithm can be
shown to also be O(1/(αε)) by using the same proof as in Lemma
2 of [2] and observing that at least (2αε/(1 + α))d(v) ≥ αεd(v)
mass is pushed from r per iteration.

Figure 4 shows the normalized running times of the original PR-
Nibble algorithm versus our modified version with the optimized
update rule for α = 0.01 and ε = 10−7 on various input graphs. In
the experiment, both versions return clusters with the same conduc-
tance for the same input graph. We see that the optimized version
always improves the running time, and by a factor of 1.4–6.4x for
the graphs that we experimented with.

We also tried using a priority queue instead of a regular queue
to store the vertices, where the priority of a vertex v is the value
of r(v)/d(v) when it is first inserted into the queue (with a higher
value corresponding to a higher priority). We did not find this to
help much in practice, and sometimes performance was worse due
to the overheads of priority queue operations.
Parallel Implementation. The PR-Nibble algorithm as described
above is sequential because each iteration performs a push on only
one vertex. To add parallelism, instead of selecting a single vertex

1: sparseSet p = {}
2: sparseSet r = {}
3: sparseSet r′ = {}
4: procedure UPDATENGH(s, d) . passed to EDGEMAP
5: fetchAdd(&r′[d], (1− α)r[s]/(2d(s)))

6: procedure UPDATESELF(v) . passed to VERTEXMAP
7: p[v] = p[v] + αr[v]
8: r′[v] = (1− α)r[v]/2

9: procedure PR-NIBBLE(G, x, ε, α)
10: r = {(x, 1)}
11: vertexSubset Frontier = {x} . seed vertex
12: while (size(Frontier) > 0) do
13: VERTEXMAP(Frontier, UPDATESELF)
14: EDGEMAP(G, Frontier, UPDATENGH)
15: r = r′

16: Frontier = {v | r[v] ≥ d(v)ε} . using filter
17: return p

Figure 5: Pseudocode for parallel PR-Nibble with the original update rule.

1: procedure UPDATENGH(s, d) . passed to EDGEMAP
2: fetchAdd(&r′[d], ((1− α)/(1 + α))r[s]/d(s))

3: procedure UPDATESELF(v) . passed to VERTEXMAP
4: p[v] = p[v] + (2α/(1 + α))r[v]
5: r′[v] = 0

Figure 6: Update functions for the optimized version of parallel PR-Nibble. The rest
of the code is the same as in Figure 5.

in an iteration, we select all vertices v where r(v) ≥ d(v)ε, and
perform pushes on them in parallel. This idea was described by
Perozzi et al. [38], who implemented it for the distributed setting.
Unfortunately their algorithm does not have a local running time
since it does work proportional to at least the number of vertices in
the graph. Here we develop a work-efficient parallel algorithm (and
thus with local running time) in the shared-memory setting based
on this idea.

In our parallel algorithm, we maintain an additional vector r′,
which is set to r at the beginning of an iteration, and during the
iteration vertices read values from r and write values to r′. At the
end of the iteration, r is set to r′. Thus, the pushes use information
in the r vector computed from previous iterations, and do not take
into account updates that occur within the current iteration. We
also tried an asynchronous version which only maintains a single
r vector, with updates always going to that vector, but found that
mass would leak when running in parallel due to race conditions,
and it was unclear what the meaning of the solution at the end was.
Developing an asynchronous version that preserves mass and works
well in practice is a direction for future work.

We implement a parallel version of PR-Nibble with the original
update rule (Figure 5) as well as a version with the optimized update
rule, which requires changing only the update functions passed to
EDGEMAP (Figure 6). The implementations are very similar to that
of Nibble—the main differences are in the update rules and the fact
that PR-Nibble runs until the size of the frontier becomes empty
whereas Nibble will stop after at most T iterations.

Unlike Nibble, the amount of work performed in the parallel
versions of PR-Nibble can differ from the sequential version as
the parallel version pushes from all vertices above the threshold
with their residual at the start of an iteration. In particular, the
sequential version selects and pushes a single vertex based on the
most recent value of r whereas the parallel version selects and
pushes vertices based on the value of r before any of the vertices in
the same iteration have been processed. The residual of the vertex
when it is pushed in the parallel version can be lower than when it is
pushed in the sequential version, causing less progress to be made
towards termination, and leading to more pushes overall. However,
the following theorem shows that the asymptotic work complexity
of the parallel versions match that of the sequential versions.
Theorem 3. The work of the parallel implementations of PR-Nibble
using either update rule is O(1/(αε)) with high probability.



Input Graph Num. Pushes Num. Pushes Num. Iterations
(sequential) (parallel) (parallel)

soc-LJ 475,815 535,418 66
cit-Patents 4,154,752 5,323,710 139

com-LJ 763,213 917,798 77
com-Orkut 516,787 803,038 166

Twitter 125,478 127,625 44
com-friendster 1,731,670 2,086,491 65

Yahoo 740,410 830,457 96
Table 1: Number of pushes and number of iterations for PR-Nibble on several graphs
using α = 0.01 and ε = 10−7. More information about the graphs can be found in
Table 2 of Section 4.

Proof. The proof is very similar to how the work is bounded in the
sequential algorithm [2] and involves showing that the l1 norm (sum
of entries) of the residual vector r sufficiently decreases in each
iteration. This idea is also used in [38].

Our proof will be for PR-Nibble using the optimized update
rule, but the proof is similar when using the original rule. Denote
the residual vector r at the beginning of iteration i by ri. In the
pseudocode, each iteration will generate ri+1 by moving mass from
ri into r′. Denote the set of active vertices in iteration i by Ai.
Any vertex v processed in the iteration will have ri(v) ≥ εd(v)
(as the frontier is defined by vertices that satisfy this property)
and do O(d(v)) work to perform the push. It will also contribute
O(d(v)) work towards the filter on Line 17. The work of an iteration
is thus

∑
v∈Ai O(d(v)), and the total work of the algorithm is∑T

i=1

∑
v∈Ai O(d(v)) if it runs for T iterations.

A push from vertex v will first set r′[v] to 0, and then add a
total of ((1 − α)/(1 + α))ri(v) mass to its neighbors’ entries in
the r′[v] vector. Thus the total contribution to |ri|1 − |ri+1|1 of
vertex v is (1 − (1 − α)/(1 + α))ri[v] = (2α/(1 + α))ri[v] ≥
(2α/(1 + α))εd(v) ≥ αεd(v). Parallel updates to r′ will be cor-
rectly reflected due to the use of the atomic fetch-and-add function,
and so all vertices v that are on the frontier in iteration i will con-
tribute at least αεd(v) to the difference |ri|1 − |ri+1|1.

We know that |r1|1 = 1 and |rT |1 ≤ 1, and so 1 ≥ |r1|1 −
|rT |1 =

∑T
i=1(|ri|1 − |ri+1|1) ≥

∑T
i=1

∑
v∈Ai αεd(v). Rear-

ranging, we have
∑T
i=1

∑
v∈Ai d(v) ≤ 1/(αε). Thus, the total

work of the algorithm is
∑T
i=1

∑
v∈Ai O(d(v)) ≤ O(1/(αε)).

Note that this bound is independent of T .

We also note that both versions of parallel PR-Nibble can be
shown to satisfy the same asymptotic conductance guarantees as the
sequential algorithm of [2].

In practice we found that the parallel versions do more work
than the corresponding sequential versions, but benefit from a fewer
number of iterations, each of which can be parallelized. Table 1
shows the number of pushes for both the sequential and parallel
versions of PR-Nibble with the optimized update rule on several real-
world graphs. The table also shows the number of iterations required
for parallel PR-Nibble (the number of iterations for sequential PR-
Nibble is equal to the number of pushes). We see that the number of
pushes of the parallel version is higher by at most a factor of 1.6x
and usually much less. The number of iterations is significantly
lower than the number of pushes, indicating that on average there
are many pushes to do in an iteration, so parallelism is abundant.

We also implemented a parallel version which in each iteration
processes the top β-fraction (0 < β ≤ 1) of the vertices in the
set {v | r[v] ≥ d(v)ε} with the highest r[v]/d(v) values. The β
parameter trades off between additional work and parallelism. We
found that this optimization helped in practice for certain graphs, but
not by much. Furthermore the best value of β varies among graphs.
We do not report the details of the performance of this variant in this
paper due to space constraints.

3.4 Deterministic Heat Kernel PageRank
Kloster and Gleich [24] present an algorithm for approximating the
heat kernel PageRank distribution of a graph, a concept that was
first introduced in [9]. For a seed vector s, random walk matrix
P = AD−1 (A is the adjacency matrix corresponding to the graph,
and D is the diagonal matrix with D[i, i] containing d(i)) and
parameters k and t, the heat kernel PageRank vector is defined to be
h = e−t(

∑∞
k=0

tk

k!
(P)k)s.

The algorithm of Kloster and Gleich, which we refer to as HK-PR,
takes as input parameters N , ε, t, and a seed vertex x. It approxi-
mates h by approximating

∑∞
k=0

tk

k!
(P)k with its degree-N Taylor

polynomial
∑N
k=0

tk

k!
(P)k, which can be cast as a linear system.

Their algorithm first computes values ψk =
∑N−k
m=0

k!
(m+k)!

tm for
k = 0, . . . , N . It uses a vector r, indexed by integer pairs and
initialized with r[(s, 0)] = 1, a vector p initialized to contain all
0’s, and a queue initialized to contain just (s, 0). Both r and p are
represented using sparse sets. Each iteration removes an entry (v, j)
from the front of the queue, and performs the following update:

1. p[v] = p[v] + r[(v, j)]

2. M = t · r[(v, j)]/((j + 1)d(v))

3. for each w such that (v, w) ∈ E:

if j + 1 == N : then p[w] = p[w] + r[(v, j)]/d(v)

else:
if r[(w, j + 1)] < e−tεd(w)

2Nψj+1
and r[(w, j + 1)] +M ≥

e−tεd(w)
2Nψj+1

: then add (w, j + 1) to the queue

r[(w, j + 1)] = r[(w, j + 1)] +M

The vector p is output when the queue becomes empty, and a sweep
cut is applied on it to obtain a cluster. The algorithm is deterministic
in that it will generate the same p every time given the same inputs.

Our sequential implementation follows the procedure above. We
observe that this algorithm can be parallelized by applying the above
procedure on all queue entries (v, j) with the same j value in order
of increasing j because processing these entries only causes updates
to entries (w, j +1) in r, and can only possibly add entries with the
same form to the queue. Conflicting updates can be resolved with
fetch-and-add. Except for when j = N − 1, the queue entries (v, j)
only update p[v], so there will be no conflicting updates to the p
vector among different vertices v. For j = N − 1, we can use a
fetch-and-add to correctly update the p vector.

The pseudocode for our parallel implementation is shown in
Figure 7. We no longer need to index r with the second integer
j, since this is now implicitly captured by the iteration number of
the algorithm. We use r to store the values for the current iteration
and r′ to store the values for the next iteration. We initialize r and
the frontier to contain just the seed vertex (Lines 12–13). On each
iteration we apply a VERTEXMAP to update the p values of the
frontier vertices (Line 16). If it is not the last round (j + 1 < N ),
we apply an EDGEMAP to update the r′ values of the neighbors of
the frontier using the update rule with fetch-and-add (Line 19), and
generate a new frontier for the next round based on the threshold
specified in the sequential algorithm using a filter (Line 21). For
the last round, we apply an EDGEMAP to update the p values of the
neighbors of the frontier (Line 24). This parallel algorithm applies
the same updates as the sequential algorithm and thus the vector
returned is the same.

As shown in [24], the sequential algorithm explores O(Net/ε)
edges, leading to an overall work of O(Net/ε). Our parallel al-
gorithm only does a constant factor more work (the work of the



1: sparseSet p = {}
2: sparseSet r = {}
3: sparseSet r′ = {}
4: procedure UPDATENGH(s, d) . passed to EDGEMAP on all rounds but the last
5: fetchAdd(&r′[d], t · r[s]/((j + 1)d(s)))

6: procedure UPDATENGHLAST(s, d) . passed to EDGEMAP on the last round
7: fetchAdd(&p[d], r[s]/d(s))

8: procedure UPDATESELF(v) . passed to VERTEXMAP
9: p[v] = p[v] + r[v]

10: procedure HK-PR(G, x,N , ε, t)
11: precompute ψk =

∑N−k
m=0

k!
(m+k)!

tm for k = 0, . . . , N

12: r = {(x, 1)}
13: vertexSubset Frontier = {x} . seed vertex
14: j = 0
15: while (size(Frontier) > 0) do
16: VERTEXMAP(Frontier, UPDATESELF)
17: if j + 1 == N then
18: r′ = {}
19: EDGEMAP(G, Frontier, UPDATENGH)
20: r = r′

21: Frontier = {v | r[v] ≥ etεd(v
2Nψj+1(t)

} . using filter

22: j = j + 1
23: else . last round
24: EDGEMAP(G, Frontier, UPDATENGHLAST)
25: break
26: return p

Figure 7: Pseudocode for parallel HK-PR.

filter is proportional to the number of edges processed in the itera-
tion), and so also has a work bound of O(Net/ε). The depth for
iteration j is O(logUj) for the fetch-and-adds and filter, where
Uj is the number of vertices and edges processed in the itera-
tion, and

∑N
j=0 Uj = O(Net/ε). This gives an overall depth

of
∑N
j=0O(logUj) = O(Nt log(1/ε)), where we use the fact

that the logarithm is a concave function and the sum is maximized
when all Uj’s are equal. The initialization on Line 11 can be done
in O(N2) work and O(logN) depth using prefix sums, which is
work-efficient. This gives the following theorem.
Theorem 4. The parallel algorithm for HK-PR requires O(N2 +
Net/ε) work and O(Nt log(1/ε)) depth with high probability.

As noted in [24], in practice N is set to at most 2t log(1/ε), so
the O(N2) term in the work is a lower-order term.

3.5 Randomized Heat Kernel PageRank
Chung and Simpson [10] describe a randomized algorithm for ap-
proximating the heat kernel PageRank based on running a sample
of random walks and computing the distribution of the last vertices
visited in the random walks. We refer to this algorithm as rand-HK-
PR. The algorithm takes as input parameters x, N , K, and t, where
x is the seed vertex, N is the number of random walks to perform,
K is the maximum length of a random walk, and t is a parameter
to the heat kernel PageRank equation, as defined in Section 3.4.
Rand-HK-PR runs N random walks starting from x, where each
step of the walk visits a neighbor of the current vertex with equal
probability, and the walk length is k with probability e−ttk/k!. The
maximum walk length is set to K. It maintains a vector p, where
p[v] stores the number of random walks that ended on vertex v.
The sequential algorithm stores p as a sparse set, initialized to be
empty, and executes one random walk at a time for N times, each
time incrementing p[v] by 1 where v is the last vertex visited in
the random walk. The vector returned and passed to the sweep cut
procedure is (1/N)p.

The algorithm is easily parallelizable by running all of the ran-
dom walks in parallel and incrementing p using a fetch-and-add.
However, we found that naively implementing this approach led
to poor speed up since many random walks end up on the same
vertex causing high memory contention when using fetch-and-adds
to update that location. Instead, we keep an array A of length N

Input Graph Num. Vertices Num. Edges†

soc-LJ 4,847,571 42,851,237
cit-Patents 6,009,555 16,518,947

com-LJ 4,036,538 34,681,189
com-Orkut 3,072,627 117,185,083
nlpkkt240 27,993,601 373,239,376

Twitter 41,652,231 1,202,513,046
com-friendster 124,836,180 1,806,607,135

Yahoo 1,413,511,391 6,434,561,035
randLocal (synthetic) 10,000,000 49,100,524
3D-grid (synthetic) 9,938,375 29,815,125

Table 2: Graph inputs used in experiments. †Number of unique undirected edges.

and have the i’th random walk store its destination vertex into A[i].
Afterward we sort A, and compute the number of random walks
ending on each vertex using prefix sums and filter. In particular, we
create an auxiliary array B, and for all locations i in the sorted A
array such thatA[i] 6= A[i−1],B[i] = i, and otherwiseB[i] = −1.
Filtering out all −1 entries in B gives the offsets where the entries
in A differ, and the difference between consecutive offsets gives
the number of random walks ending at a particular value, which
allows us to compute p. The prefix sums and filter take O(N) work
and O(logN) depth. To perform the sorting in O(N) work and
O(logN) depth, we compute a mapping from each last-visited ver-
tex to an integer in [0, . . . , N ] using a parallel hash table, so that the
maximum value is bounded by N , and then use a parallel integer
sort [39] on the mapped values.

The sequential algorithm takes O(NK) work since N random
walks of length O(K) are executed. The parallel algorithm takes
O(NK) work andO(K+logN) depth, as all random walks are run
in parallel and each takes O(K) steps. This gives a work-efficient
parallel algorithm, and we have the following theorem:

Theorem 5. The parallel algorithm for rand-HK-PR takesO(NK)
work and O(K + logN) depth with high probability.

In contrast to the previous three algorithms, we do not need to
use the Ligra functions for this algorithm since the random walks
are independent and only process a single vertex in each iteration.

We note that Chung and Simpson describe a distributed version of
their algorithm [11]. This work differs from ours in that it assumes
the input graph is the network of processors and studies how to
compute local clusters with limited communication. In contrast,
we study the setting where the input graph is independent of the
number of processors or their layout, and our goal is to speed up the
computation by taking advantage of parallel resources.

4 Experiments
We present an experimental study of both parallel and sequential
implementations of the local clustering algorithms described in Sec-
tion 3 on large-scale undirected graphs. All of our implementations
are available at https://github.com/jshun/ligra/.
Input Graphs. We use a set of unweighted undirected real-world
and synthetic graphs, whose sizes are shown in Table 2. We obtained
the soc-LJ, cit-Patents, com-LJ, com-Orkut, and com-friendster
real-world graphs from http://snap.stanford.edu/. nlp-
kkt240 is a graph derived from a matrix of a constrained optimiza-
tion problem from http://www.cise.ufl.edu/research/
sparse/matrices/. Twitter is a symmetrized version of a snap-
shot of the Twitter network [26]. Yahoo is a symmetrized version
of a Web graph from http://webscope.sandbox.yahoo.
com. randLocal is a random graph where every vertex has five
edges to neighbors chosen with probability proportional to the dif-
ference in the neighbor’s ID value from the vertex’s ID. 3D-grid is a
synthetic grid graph in 3-dimensional space where every vertex has
six edges, each connecting it to its 2 neighbors in each dimension.
We remove all self and duplicate edges from the graphs.



Algorithm soc-LJ cit-Patents com-LJ com-Orkut nlpkkt240 Twitter com-friendster Yahoo randLocal 3D-grid
T1 T40 T1 T40 T1 T40 T1 T40 T1 T40 T1 T40 T1 T40 T1 T40 T1 T40 T1 T40

Parallel Nibble 19.20 0.664 3.06 0.195 15.30 0.566 3.83 0.290 0.02 0.047 1.60 0.167 4.53 0.297 1.88 0.214 2.47 0.196 0.01 0.040
Sequential Nibble 24.90 – 4.16 – 17.80 – 8.26 – 0.02 – 7.93 – 8.40 – 1.97 – 5.88 – 0.01 –
Parallel PR-Nibble 6.08 0.350 21.50 0.978 7.59 0.436 9.86 0.572 1.82 0.530 2.50 0.177 8.62 0.492 6.16 0.623 28.90 1.250 1.90 0.502

Sequential PR-Nibble 2.17 – 8.92 – 2.74 – 1.94 – 2.21 – 0.70 – 7.97 – 3.56 – 9.46 – 1.41 –
Parallel HK-PR 56.60 1.710 11.00 0.430 39.70 1.230 28.80 0.918 0.02 0.049 7.55 0.434 20.40 0.866 6.40 0.377 11.90 0.479 0.01 0.049

Sequential HK-PR 241.00 – 24.20 – 156.00 – 93.40 – 0.03 – 28.60 – 68.30 – 11.30 – 32.00 – 0.02 –
Parallel rand-HK-PR 129.00 2.080 23.10 0.634 117.00 1.610 83.90 1.390 23.70 0.568 75.70 1.390 45.30 0.825 42.40 0.901 33.90 0.744 21.20 0.496

Sequential rand-HK-PR 195.00 – 43.20 – 154.00 – 121.00 – 18.90 – 160.00 – 85.60 – 67.10 – 51.70 – 19.10 –
Parallel Sweep 4.37 0.189 1.98 0.075 5.10 0.217 6.73 0.285 0.01 0.003 75.00 3.180 5.00 0.221 43.10 1.550 2.24 0.083 0.01 0.01

Sequential Sweep 2.57 – 1.51 – 3.20 – 3.40 – 0.01 – 40.10 – 3.66 – 6.43 – 1.72 – 0.01 –

Table 3: Running times (seconds) of sequential and parallel local graph clustering algorithms and the sweep cut procedure. T1 is the single-thread time and T40 is the parallel time
using 40 cores with hyper-threading. The parameters are set as follows: T = 20 and ε = 10−8 for Nibble; α = 0.01 and ε = 10−7 for PR-Nibble; t = 10, N = 20, and
ε = 10−7 for HK-PR; and t = 10,K = 10, andN = 108 for rand-HK-PR. The running times for the sweep cut are based on using the output of Nibble.

Experimental Setup. We run our experiments on a 40-core Intel
machine (with two-way hyper-threading4) with 4 × 2.4GHz Intel
10-core E7-8870 Xeon processors (with a 1066MHz bus and 30MB
L3 cache) and 256GB of main memory. The parallel programs
are compiled with Cilk Plus from the g++ compiler (version 4.8.0)
with the -O3 flag (they can also be compiled with OpenMP with
similar performance). Our parallel implementations are all written
in Ligra [41], with the exception of rand-HK-PR, which does not
need Ligra’s functionality. The parallel implementations of prefix
sum, filter, comparison sort, and integer sort that we use are from the
Problem Based Benchmark Suite [43]. The concurrent hash table
for representing sparse sets is from [42]. For both sequential and
parallel PR-Nibble, we report performance of the versions using the
optimized update rule as described in Section 3.3.
Parameter setting versus algorithm performance. We first study
how the setting of the various parameters in Nibble, PR-Nibble, HK-
PR, and rand-HK-PR affect their running time and the conductance
of the cluster generated. Figure 8 shows the results of this study on
the Yahoo graph, the largest graph in this paper. All experiments
start from the same seed vertex, which was chosen by sampling
104 vertices and picking the one that gave the lowest-conductance
clusters. The trends are the same for both sequential and parallel
implementations, and the reported results are for the sequential
implementations.

As expected, for Nibble (Figures 8(a) and 8(b)), we see that in-
creasing T and/or decreasing ε leads to higher running time and
improved conductance. The same thing happens for HK-PR (Fig-
ures 8(e) and 8(f)) when increasing N and/or decreasing ε. For
PR-Nibble, we see that decreasing ε leads to higher running time
and lower conductance (Figures 8(c) and 8(d)). Finally, for rand-
HK-PR, we see that increasing K and/or increasing N leads to
higher running time and lower conductance (Figures 8(g) and 8(h)) .
Parallel Performance of Local Clustering. Here we study the
parallel scalability of our implementations of Nibble, PR-Nibble,
HK-PR, and Rand-HK-PR. Table 3 shows the parallel (T40) and
single-thread (T1) running times of our parallel implementations,
as well as the running time of the sequential implementation, for
a setting of the parameters described in the table caption. All of
the experiments start from a single arbitrary vertex in the largest
component.5 The parameters were set so that for most graphs at least
tens of thousands of vertices were touched; otherwise the algorithms
finish in milliseconds, and there is not enough work to benefit from
parallelism. For all graphs except for nlpkkt240 and 3D-grid, we
see reasonable parallel speedup over the single-thread times. For
nlpkkt240 and 3D-grid, not many vertices are touched as the graphs
are not well-connected, and so the experiments terminated quickly.

4A form of simultaneous multithreading developed by Intel in which there are two
logical processors per physical core.
5Our codes can easily be modified to take as input a seed set with multiple vertices.
This would increase the frontier sizes at each iteration, leading to more parallelism.
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Figure 10: Running time (seconds) versus core count in log-log scale of sweep cut
on a cluster with 1.3 million vertices and 566 million edges. On 40 cores, 80 hyper-
threads are used.

For these types of graphs, there are no good local clusters, and so it
may not be useful to run a local clustering algorithm. We note that
the running times of the algorithms depend highly on the seed vertex
and parameter settings, but we believe that our parallel algorithms
are useful in cases where at least tens of thousands of vertices are
touched (which is a small number for massive graphs). For Nibble,
HK-PR, and rand-HK-PR we see that the parallel version on a single
thread actually outperforms the sequential version in most cases.
For Nibble and HK-PR, we believe this is because our concurrent
hash table (used to represent the sparse sets) is more efficient than
STL’s unordered map, even on one thread. For rand-HK-PR,
the parallel method uses sorting to obtain the vector rather than
maintaining it in a sparse set as in the sequential case, and this
seems to be more efficient even on a single thread in most cases.

Figure 9 shows the self-relative speedups (relative to the algo-
rithm’s single-thread time T1) of the four algorithms versus thread
count on several input graphs. Nibble, PR-Nibble, and HK-PR
get reasonable parallel speedup (9–35x on 40 cores), although the
speedup is not perfect due to memory contention when running in
parallel and also due to some frontiers being too small to benefit
from parallelism. rand-HK-PR gets even better speedup as most of
the algorithm is embarrassingly parallel (over 40x on 40 cores due
to two-way hyper-threading).
Sweep Cut Performance. Here we study the performance of our
parallel sweep cut algorithm. Table 3 shows the running time of
our parallel sweep cut implementation and the standard sequential
implementation on the output of Nibble. The performance trends
for sweep cut were similar when applied to outputs of the other
clustering algorithms. Except for nlpkkt240 and 3D-grid, where
the input cluster was too small to benefit from parallelism, the self-
relative speedup of parallel sweep ranges from 23 to 28 on 40 cores
with hyper-threading. On a single thread, parallel sweep is slower
than sequential sweep due to overheads of the parallel algorithm
(e.g., scanning over the edges several times instead of just once).

Figure 10 shows the running time of sweep cut as a function of
thread count (log-log scale). The input cluster was generated by
running Nibble on the Yahoo graph with T = 20 and ε = 10−9.
The number of vertices in the cluster is 1.3 million and its volume is
566 million. We see that the the parallel implementation scales well



(a) Nibble running time (b) Nibble conductance (c) PR-Nibble running time

(d) PR-Nibble conductance (e) HK-PR running time (f) HK-PR conductance

(g) rand-HK-PR running time (h) rand-HK-PR conductance

Figure 8: Running time (seconds) and conductance of algorithms as a function of parameter settings on the Yahoo graph. (Best viewed in color.)
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Figure 9: Parallel self-relative speedup versus cores count for the four parallel algorithms on several input graphs. On 40 cores, 80 hyper-threads are used. (Best viewed in color.)

(almost linearly) with the number of threads, and outperforms the
sequential implementation with 4 or more threads.

Figure 11 shows the running time of the parallel sweep cut on
40 cores versus the volume of the input set, generated by running
Nibble with different parameter settings on the Yahoo graph. We see
that the running time scales nearly linearly, which is expected since
the time is dominated by linear-work operations (the only part that

scales super-linearly is the initial sort, which takes a small fraction
of the total time).

From Table 3, we can see that the sweep cut takes a significant
fraction of (in some cases dominating) the overall time of running
Nibble followed by a sweep cut procedure. This was also true for
the other local clustering algorithms. Thus parallelizing the sweep
cut procedure is important in achieving good overall performance.
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Figure 11: Running time (seconds) versus cluster volume for parallel sweep cut on 40
cores with hyper-threading.

Network Community Profiles. Due to the efficiency of our parallel
algorithms we are able to quickly generate network community
profile (NCP) plots for large graphs, which show the (approximate)
best conductance for clusters of a given size in the graph versus
the cluster size [29]. Figure 12 shows the NCPs for several graphs
with at least a billion edges, larger than any of the graphs whose
NCP has been studied before [29, 23]. The data was collected by
running PR-Nibble from 105 random seed vertices and by varying
α and ε. For Twitter and com-friendster, the curves are downwards
sloping with increasing cluster size until around 10–100 vertices,
and then upwards sloping, which is consistent with the observation
by Leskovec et al. [29], that good communities are relatively small.
For Yahoo, although there are low-conductance clusters with small
size, there also seems to be many low-conductance clusters at larger
sizes (tens of thousands of vertices).

5 Other Related Work
Andersen and Lang [5] developed a variant of the Nibble algorithm
with multiple starting vertices for finding communities in graphs.
The PR-Nibble algorithm has been extended to directed graphs [3].
A variant of PR-Nibble has also been used to obtain clusters with
better guarantees when the cluster is internally well-connected [51].
Finally, statistical/optimization perspectives on the PR-Nibble algo-
rithm have been proposed [17, 14].

Andersen and Peres [7] present an algorithm called evolving
sets, where f(φ, n) = O(

√
φ logn) and that has a work bound of

O(|S|polylog(n)/
√
φ). The algorithm maintains the position of a

random walk starting at the seed vertex. Starting with a single vertex
in a set S, each iteration of the algorithm adds or deletes vertices
from S based on whether the probability of transitioning to a given
vertex from the current set is above some randomly chosen threshold.
If in any iteration the conductance of S is at most f(φ, n), then the
algorithm returns S. We implemented this algorithm but found the
behavior of the algorithm to vary widely as the random choices
in each iteration can lead to very different sets. We note that the
algorithm can be parallelized work-efficiently by using data-parallel
operations but we omit the discussion in this paper due to space
constraints. Subsequent to the work of Andersen and Peres, there
have been other local clustering algorithms developed with stronger
guarantees [15, 27, 28].

Mahoney et al. [32] describe a spectral algorithm for finding clus-
ters that are locally-biased towards a seed set in terms of satisfying
an additional “locality” constraint in the spectral optimization pro-
gram. However, the algorithm itself is not local as it requires work
at least linear in the graph size.

Finally, there have been algorithms developed that take as input
a local cluster and return a nearby local cluster with better conduc-
tance [6, 32, 37, 46].

6 Conclusion
We have presented work-efficient parallel algorithms for local graph
clustering and our experiments demonstrated that the algorithms
achieve good performance and scalability, significantly improving

the efficiency of the exploration of local graph clusters in massive
graphs. We have performed experiments studying the output cluster
conductance versus running time of the four local algorithms but did
not find any one algorithm that always dominated the others. Since
all of our parallel algorithms are efficient, data analysts can use any
of them for graph cluster exploration, or even use all of them to find
slightly different clusters of similar size from the same seed set.

We believe that our algorithms are extremely useful in the inter-
active setting where a graph is loaded once into memory and many
local cluster computations are executed on it. In the setting where
one only wants to run a few queries, our algorithms are still very ef-
ficient but the cost of loading the graph will not be amortized across
the queries. To improve the performance in this setting, we are inter-
ested in developing efficient methods for traversing graphs locally
from disk. We are also interested in parallelizing local flow-based
algorithms [37, 46] for improving cluster quality.
Acknowledgements. Shun is supported by the Miller Institute for
Basic Research in Science at UC Berkeley. Roosta-Khorasani, Foun-
toulakis, and Mahoney are supported by the DARPA XDATA and
GRAPHS programs. We thank the Intel Labs Academic Research
Office for the Parallel Algorithms for Non-Numeric Computing
Program for providing the machine for our experiments. We thank
Guy Blelloch for early discussions on efficiently computing the
conductance of sets in parallel.

7 References
[1] R. Andersen and F. Chung. Detecting sharp drops in PageRank and a

simplified local partitioning algorithm. In International Conference on
Theory and Applications of Models of Computation, pages 1–12, 2007.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using
PageRank vectors. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 475–486, 2006.

[3] R. Andersen, F. R. K. Chung, and K. J. Lang. Local partitioning for
directed graphs using PageRank. Internet Mathematics, 5(1):3–22,
2008.

[4] R. Andersen, D. F. Gleich, and V. Mirrokni. Overlapping clusters for
distributed computation. In ACM International Conference on Web
Search and Data Mining (WSDM), pages 273–282, 2012.

[5] R. Andersen and K. J. Lang. Communities from seed sets. In
International Conference on World Wide Web (WWW), pages 223–232,
2006.

[6] R. Andersen and K. J. Lang. An algorithm for improving graph
partitions. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 651–660, 2008.

[7] R. Andersen and Y. Peres. Finding sparse cuts locally using evolving
sets. In ACM Symposium on Theory of Computing (STOC), pages
235–244, 2009.

[8] R. P. Brent. The parallel evaluation of general arithmetic expressions.
J. ACM (JACM), 21(2):201–206, 1974.

[9] F. Chung. A local graph partitioning algorithm using heat kernel
Pagerank. Internet Mathematics, 6(3):315–330, 2009.

[10] F. Chung and O. Simpson. Computing heat kernel Pagerank and a
local clustering algorithm. In International Workshop on
Combinatorial Algorithms (IWOCA), pages 110–121, 2015.

[11] F. Chung and O. Simpson. Distributed algorithms for finding local
clusters using heat kernel Pagerank. In International Workshop on
Algorithms and Models for the Web Graph (WAW), pages 177–189,
2015.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[13] K. D. Devine, E. G. Boman, and G. Karypis. Partitioning and load
balancing for emerging parallel applications and architectures. In
Parallel Processing for Scientific Computing, chapter 6, pages 99–126.

[14] K. Fountoulakis, X. Cheng, J. Shun, F. Roosta-Khorasani, and M. W.
Mahoney. Exploiting optimization for local graph clustering. arXiv,
1602.01886, 2015.

[15] S. O. Gharan and L. Trevisan. Approximating the expansion profile
and almost optimal local graph clustering. In IEEE Symposium on



10-3

10-2

10-1

100

100 101 102 103 104 105

C
on

du
ct

an
ce

Cluster size
(a) Twitter

10-3

10-2

10-1

100

100 101 102 103 104 105

C
on

du
ct

an
ce

Cluster size
(b) com-friendster

10-5
10-4
10-3
10-2
10-1
100

100 101 102 103 104 105

C
on

du
ct

an
ce

Cluster size
(c) Yahoo

Figure 12: Network community profile (NCP) plots for billion-edge graphs.

Foundations of Computer Science (FOCS), pages 187–196, 2012.
[16] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant

time parallel algorithms. In Foundations of Computer Science (FOCS),
pages 698–710, 1991.

[17] D. F. Gleich and M. W. Mahoney. Anti-differentiating approximation
algorithms: A case study with min-cuts, spectral, and flow. In
International Conference on Machine Learning (ICML), pages
1018–1025, 2014.

[18] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community methods. In
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 597–605, 2012.

[19] J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed graph-parallel computation on natural
graphs. In Symposium on Operating Systems Design and
Implementation (OSDI), pages 17–30, 2012.

[20] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay,
K. Padmanabhan, and N. Samatova. Community detection in
large-scale networks: a survey and empirical evaluation. Wiley
Interdisciplinary Reviews: Computational Statistics, 6(6):426–439,
2014.

[21] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Effective graph
clustering for path queries in digital map databases. In International
Conference on Information and Knowledge Management (CIKM),
pages 215–222, 1996.

[22] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley
Professional, 1992.

[23] L. G. S. Jeub, P. Balachandran, M. A. Porter, P. J. Mucha, and M. W.
Mahoney. Think locally, act locally: Detection of small,
medium-sized, and large communities in large networks. Physical
Review E, 91:012821, 2015.

[24] K. Kloster and D. F. Gleich. Heat kernel based community detection.
In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1386–1395, 2014.

[25] I. M. Kloumann and J. M. Kleinberg. Community membership
identification from small seed sets. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages
1366–1375, 2014.

[26] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social
network or a news media? In International Conference on World Wide
Web (WWW), pages 591–600, 2010.

[27] T. C. Kwok and L. C. Lau. Finding small sparse cuts by random walk.
In International Workshop on Approximation, Randomization, and
Combinatorial Optimization (APPROX), pages 615–626, 2012.

[28] T. C. Kwok, L. C. Lau, and Y. T. Lee. Improved Cheeger’s inequality
and analysis of local graph partitioning using vertex expansion and
expansion profile. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1848–1861, 2016.

[29] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[30] J. Leskovec, K. J. Lang, and M. Mahoney. Empirical comparison of
algorithms for network community detection. In International
Conference on World Wide Web (WWW), pages 631–640, 2010.

[31] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger. Isorankn:
spectral methods for global alignment of multiple protein networks.
Bioinformatics, 25(12):253–258, 2009.

[32] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral
method for graphs: with applications to improving graph partitions
and exploring data graphs locally. Journal of Machine Learning

Research (JMLR), 13:2339–2365, 2012.
[33] S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2057–2064, 2011.

[34] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In ACM International Conference on Management of Data
(SIGMOD), pages 135–146, 2010.

[35] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what
COST? In USENIX Conference on Hot Topics in Operating Systems
(HotOS), 2015.

[36] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing
Systems (NIPS), pages 849–856, 2001.

[37] L. Orecchia and Z. A. Zhu. Flow-based algorithms for local graph
clustering. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1267–1286, 2014.

[38] B. Perozzi, C. McCubbin, and J. T. Halbert. Scalable graph clustering
with parallel approximate PageRank. Social Network Analysis and
Mining, 4(1):1–11, 2014.

[39] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time
randomized parallel sorting algorithms. SIAM J. Comput., pages
594–607, 1989.

[40] S. E. Schaeffer. Survey: Graph clustering. Comput. Sci. Rev.,
1(1):27–64, Aug. 2007.

[41] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 135–146, 2013.

[42] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for
determinism. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 96–107, 2014.

[43] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan. Brief announcement: the Problem
Based Benchmark Suite. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 68–70, 2012.

[44] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems. In
ACM Symposium on Theory of Computing (STOC), pages 81–90,
2004.

[45] D. A. Spielman and S.-H. Teng. A local clustering algorithm for
massive graphs and its application to nearly linear time graph
partitioning. SIAM J. Comput., 42(1):1–26, 2013.

[46] L. Veldt, D. Gleich, and M. Mahoney. A simple and strongly-local
flow-based method for cut improvement. In International Conference
on Machine Learning (ICML), pages 1938–1947, 2016.

[47] K. Voevodski, S.-H. Teng, and Y. Xia. Finding local communities in
protein networks. BMC Bioinformatics, 10(1):1–14, 2009.

[48] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community
detection using seed set expansion. In ACM International Conference
on Information and Knowledge Management (CIKM), pages
2099–2108, 2013.

[49] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community detection:
On free rider effect and its elimination. Proc. VLDB Endow.,
8(7):798–809, Feb. 2015.

[50] J. Yang and J. Leskovec. Defining and evaluating network
communities based on ground-truth. Knowledge and Information
Systems, 42(1):181–213, 2013.

[51] Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni. A local algorithm for
finding well-connected clusters. In International Conference on
Machine Learning (ICML), pages 396–404, 2013.


