
32

Parallel Algorithms for Hierarchical Nucleus Decomposition

JESSICA SHI,MIT CSAIL, USA

LAXMAN DHULIPALA, University of Maryland, College Park, USA

JULIAN SHUN,MIT CSAIL, USA

Nucleus decompositions have been shown to be a useful tool for finding dense subgraphs. The coreness

value of a clique represents its density based on the number of other cliques it is adjacent to. One useful

output of nucleus decomposition is to generate a hierarchy among dense subgraphs at different resolutions.

However, existing parallel algorithms for nucleus decomposition do not generate this hierarchy, and only

compute the coreness values. This paper presents a scalable parallel algorithm for hierarchy construction, with

practical optimizations, such as interleaving the coreness computation with hierarchy construction and using

a concurrent union-find data structure in an innovative way to generate the hierarchy. We also introduce a

parallel approximation algorithm for nucleus decomposition, which achieves much lower span in theory and

better performance in practice. We prove strong theoretical bounds on the work and span (parallel time) of

our algorithms.

On a 30-coremachine with two-way hyper-threading, our parallel hierarchy construction algorithm achieves

up to a 58.84x speedup over the state-of-the-art sequential hierarchy construction algorithm by Sariyüce et al.

and up to a 30.96x self-relative parallel speedup. On the same machine, our approximation algorithm achieves

a 3.3x speedup over our exact algorithm, while generating coreness estimates with a multiplicative error of

1.33x on average.

ACM Reference Format:
Jessica Shi, Laxman Dhulipala, and Julian Shun. 2024. Parallel Algorithms for Hierarchical Nucleus Decompo-

sition. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 32 (February 2024), 27 pages. https://doi.org/10.1145/

3639287

1 Introduction
Dense subgraph and substructure detection is a fundamental tool in graph mining, with many appli-

cations in areas including social network analysis [13, 61], fraud detection [24], and computational

biology [3, 21]. Sariyüce et al. [52] introduced the nucleus decomposition problem, a generalization

of the 𝑘-core [45, 53] and 𝑘-truss [12] problems which better captures higher-order structures in

graphs. In this problem, a 𝑐-(𝑟, 𝑠) nucleus is defined to be the maximal induced subgraph such that

every 𝑟 -clique in the subgraph is contained in at least 𝑐 𝑠-cliques. The goal of the (𝑟, 𝑠) nucleus
decomposition problem is to (1) identify for each 𝑟 -clique in the graph, the largest 𝑐 such that it is

in a 𝑐-(𝑟, 𝑠) nucleus (known as the coreness value) and (2) generate a nucleus hierarchy over the

nuclei, where for 𝑐′ < 𝑐 a 𝑐′-(𝑟, 𝑠) nucleus𝐴 is a descendant of a 𝑐-(𝑟, 𝑠) nucleus 𝐵 if𝐴 is a subgraph

of 𝐵. Figure 1 shows the hierarchy for (1, 3) nucleus. The nucleus hierarchy is an unsupervised

method for revealing dense substructures at different resolutions in the graph. Since the hierarchy

is a tree, it is easy to visualize and explore as part of structural graph analysis tasks [49].

Authors’ addresses: Jessica Shi, MIT CSAIL, USA, jeshi@mit.edu; Laxman Dhulipala, University of Maryland, College Park,

USA, laxman@umd.edu; Julian Shun, MIT CSAIL, USA, jshun@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2024/2-ART32 $15.00

https://doi.org/10.1145/3639287

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

https://doi.org/10.1145/3639287
https://doi.org/10.1145/3639287
https://doi.org/10.1145/3639287

32:2 Jessica Shi, Laxman Dhulipala, and Julian Shun

Sariyüce and Pinar present the first algorithm for solving the nucleus decomposition problem [49].

However, their algorithm is sequential, and in order to scale to the large graph sizes of today, it

is important to design parallel algorithms that take advantage of modern parallel hardware. The

existing parallel algorithms for nucleus decomposition include those by Sariyüce et al. [51] and by Shi
et al. [55], but these algorithms only compute the coreness values. Importantly, they do not generate

the hierarchy, which limits their applicability and which is non-trivial to generate in parallel. In this

paper, we design the first work-efficient parallel algorithm for hierarchy construction in nucleus

decomposition, where the work, or the total number of operations, matches the best sequential time

complexity. Our algorithm runs in𝑂 (𝑚𝛼𝑠−2) expected work and𝑂 (𝑘 log𝑛+𝜌 (𝑟,𝑠) (𝐺) log𝑛+ log2 𝑛)
span w.h.p. (parallel time), where 𝛼 is the arboricity of the input graph 𝐺 , 𝜌 (𝑟,𝑠) (𝐺) is the (𝑟, 𝑠)
peeling complexity of 𝐺 , and 𝑘 is the maximum (𝑟, 𝑠)-clique core number in 𝐺 . The key to our

theoretical efficiency is our careful construction of subgraphs representing the 𝑠-clique-connectivity

of 𝑟 -cliques, that allows us to exploit linear-work graph connectivity instead of more expensive

union-finds as used in prior work. Our approach gives as a byproduct the most theoretically-

efficient serial algorithm for computing the hierarchy, improving upon the previous best known

serial bounds by Sariyüce and Pinar [49].

We also present a practical parallel algorithm that interleaves the hierarchy construction with the

computation of the coreness values. Prior work by Sariyüce and Pinar [49] also includes a (serial)

interleaved hierarchy algorithm. However, their algorithm requires storing all adjacent 𝑟 -cliques

with different coreness values, which could potentially be proportional to the number of 𝑠-cliques in

𝐺 (i.e., use 𝑂 (𝑚𝛼𝑠−2) space), and which results in sequential dependencies in their post-processing

step to construct the hierarchy. Our parallel algorithm fully interleaves the hierarchy construction

with the coreness computation, and uses only two additional arrays of size proportional to the

number of 𝑟 -cliques in𝐺 . Our algorithm uses a concurrent union-find data structure in an innovative

way. Also, our post-processing step to construct the hierarchy tree is fully parallel. Our main insight

is a technique to fully extract the connectivity information from adjacent 𝑟 -cliques with different

core numbers while computing the coreness values.

Note that the span of the above algorithms can be large for graphs with large peeling complexity

(𝜌 (𝑟,𝑠) (𝐺)). We introduce an approximate algorithm for nucleus decomposition and show that it

can achieve work efficiency and polylogarithmic span. Our algorithm relaxes the peeling order by

allowing all 𝑟 -cliques within a (
(
𝑠
𝑟

)
+ 𝜖) factor of the current value of 𝑘 to be peeled in parallel. We

show that our algorithm generates coreness estimates that are an (
(
𝑠
𝑟

)
+ 𝜖)-approximation of the

true coreness values.

We experimentally study our parallel algorithms on real-world graphs using different (𝑟, 𝑠) values,
for up to 𝑟 < 𝑠 ≤ 7. On a 30-core machine with two-way hyper-threading, our exact algorithmwhich

generates both the coreness numbers and the hierarchy achieves up to a 30.96x self-relative parallel

speedup, and a 3.76–58.84x speedup over the state-of-the-art sequential algorithm by Sariyüce and

Pinar [49]. In addition, we show that on the same machine our approximate algorithm is up to 3.3x

faster than our exact algorithm for computing coreness values, while generating coreness estimates

with a multiplicative error of 1–2.92x (with a median error of 1.33x). Our algorithms are able to

compute the (𝑟, 𝑠) nucleus decomposition hierarchy for 𝑟 > 3 and 𝑠 > 4 on graphs with over a

hundred million edges for the first time.

We summarize our contributions below:

• The first exact and approximate parallel algorithms for nucleus decomposition that generates

the hierarchy with strong theoretical bounds on the work, span, and approximation guarantees.

• A number of practical optimizations that lead to fast implementations of our algorithms.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:3

4a 4b 4c 4d

3a
2a

1a

4-(1,3)-𝗇𝗎𝖼𝗅𝖾𝗂

3-(1,3)-𝗇𝗎𝖼𝗅𝖾𝗂
2-(1,3)-𝗇𝗎𝖼𝗅𝖾𝗂
1-(1,3)-𝗇𝗎𝖼𝗅𝖾𝗂

3b 3c

Fig. 1. An example of the (1, 3) nucleus hierarchy.

• Experiments showing that our new exact algorithm achieves 3.7–58.8x speedups over state of

the art on a 30-core machine with two-way hyper-threading.

• Experiments showing that our new approximate algorithm achieves up to 3.3x speedups over

our exact algorithm, while generating coreness estimates with a multiplicative error of 1–2.9x

(with a median error of 1.3x).

Our code is publicly available at https://github.com/jeshi96/arb-nucleus-hierarchy.

2 Related Work
The 𝑘-core [45, 53] and 𝑘-truss problems [12, 65, 68] are classic problems relating to dense substruc-

tures in graphs. Many algorithms have been developed for 𝑘-cores and 𝑘-trusses in the static [5, 8,

9, 14, 16, 17, 20, 23, 33–35, 42, 46, 58, 62, 64, 69] and dynamic [1, 2, 26–28, 32, 38, 39, 41, 43, 44, 48,

59, 64, 66, 67] settings. Similar ideas have been studied in bipartite graphs [29, 36, 40, 50, 57, 63].

A related problem is the 𝑘-clique densest subgraph problem [60], which defines the density

of subgraphs based on the number of 𝑘-cliques in it, rather than the number of edges. Fang et
al. [19] further generalize this notion to arbitrary fixed-sized subgraphs (although they only present

experiments for cliques). Similar to 𝑘-core and 𝑘-truss, algorithms for approximating the 𝑘-clique

densest subgraph are based on iteratively peeling (removing) elements from the graph. Shi et al. [54]
present efficient parallel algorithms for solving the 𝑘-clique densest subgraph problem.

Sariyüce et al. define the (𝑟, 𝑠) nucleus decomposition problem and show that it can be used to

find higher quality dense substructures in graphs that previous approaches. They provide efficient

sequential [49, 52] and parallel algorithms [51] for this problem. Sariyüce et al. [51] present two
parallel algorithms for the nucleus decomposition problem: (1) a global peeling-based algorithm

and (2) a local update model that iterates until convergence. They also introduce a sequential

algorithm for constructing the nucleus decomposition hierarchy [49], but as far as we know there

are no parallel algorithms for constructing this hierarchy. Their algorithm is not work-efficient as

it uses union-find. We also note that their space-usage can in theory be as large as 𝑂 (𝑛𝛼𝑠−2), i.e.,
proportional to the number of 𝑠-cliques in the graph. Chu et al. [11] present a parallel algorithm for

generating the 𝑘-core decomposition hierarchy, which is a special case of nucleus decomposition

for 𝑟 = 1 and 𝑠 = 2, but their algorithm does not trivially generalize to higher 𝑟 and 𝑠 . Their

serial and parallel algorithms both use union-find and run in 𝑂 (𝑚𝛼 (𝑛)) work (where 𝛼 (𝑛) is the
inverse Ackermann function), which is not work-efficient, and their parallel algorithm has depth

that depends on the peeling-complexity of the input. Shi et al. [55] present an improved parallel

algorithm for nucleus decomposition, with good theoretical guarantees and practical performance,

but it does not generate the hierarchy. Their algorithm is work-efficient, in that it runs in work

proportional to enumerating all 𝑠-cliques, i.e., 𝑂 (𝑚𝛼𝑠−2) work. They leverage a work-efficient

parallel clique counting algorithm [54], along with a multi-level hash table structure to store

data associated with cliques space efficiently, and techniques for traversing this structure in a

cache-friendly manner. More recently, Sariyüce generalizes the 𝑟 -cliques and 𝑠-cliques in nucleus

decomposition to any pair of subgraphs [47]. There has also been work on nucleus decomposition

in probabilistic graphs [18].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

https://github.com/jeshi96/arb-nucleus-hierarchy

32:4 Jessica Shi, Laxman Dhulipala, and Julian Shun

3 Preliminaries

Model of Computation.We use the work-span model of computation for our theoretical analysis,

which is a standard model for shared-memory parallel algorithms [15, 30]. The workW of an

algorithm is the total number of operations, and the span (parallel time) S of an algorithm is the

longest dependency path. Using a randomized work-stealing scheduler [7] on P processors, we

can obtain a running time ofW/P +𝑂 (S) in expectation. Our goal is to develop work-efficient
parallel algorithms under this model, or algorithms with a work complexity that asymptotically

matches the best-known sequential time complexity for the given problem.

Graph Notation and Definitions. We consider simple and undirected graphs 𝐺 = (𝑉 , 𝐸). We

let 𝑛 = |𝑉 | and𝑚 = |𝐸 |. For analysis, we assume𝑚 = Ω(𝑛). The arboricity (𝜶) of a graph is the

minimum number of spanning forests needed to cover the graph. 𝛼 is upper bounded by 𝑂 (
√
𝑚)

and lower bounded by Ω(1) [10]. An 𝑘-clique is a set of vertices such that all

(
𝑘
2

)
edges exist

among them. Enumerating 𝑘-cliques can be done in 𝑂 (𝑚𝛼𝑘−2) work and 𝑂 (log2 𝑛) span with high

probability (w.h.p.) [54].
1

A 𝑐-(𝑟, 𝑠) nucleus is a maximal subgraph 𝐻 of an undirected graph formed by the union of

𝑠-cliques 𝑆 , such that each 𝑟 -clique 𝑅 in 𝐻 has induced 𝑠-clique degree at least 𝑐 (i.e., each 𝑟 -clique

is contained within at least 𝑐 induced 𝑠-cliques). The goal of the (𝑟, 𝑠) nucleus decomposition
problem is to compute the following: (1) the (𝑟, 𝑠)-clique core number of each 𝑟 -clique 𝑅, or the
maximum 𝑐 such that 𝑅 is contained within a 𝑐-(𝑟, 𝑠) nucleus and (2) a hierarchy over the nuclei,

where for 𝑐′ < 𝑐 , a 𝑐′-(𝑟, 𝑠) nucleus 𝐴 is a descendant of a 𝑐-(𝑟, 𝑠) nucleus 𝐵 if 𝐴 is a subgraph of 𝐵.

In this paper, similar to all prior work on nucleus computations, we take 𝑟 and 𝑠 to be constants

and ignore constants depending on these values in our bounds. The 𝑘-core and 𝑘-truss problems

correspond to the 𝑘-(1, 2) and 𝑘-(2, 3) nucleus, respectively. Figure 1 shows the hierarchy for

(1, 3) nucleus. We call two 𝑟 -cliques 𝑠-clique-adjacent if there exists an 𝑠-clique 𝑆 such that both

𝑟 -cliques are subgraphs of 𝑆 . We also define the 𝑠-clique-degree of a 𝑟 -clique 𝑅 to be the number of

𝑠-cliques that 𝑅 is contained within.

We also consider approximate nucleus decompositions in this paper. If the true (𝑟, 𝑠)-clique core
number of an 𝑟 -clique 𝑅 is 𝑘𝑅 , then a 𝛾-approximate (𝑟, 𝑠)-clique core number of 𝑅 is a value

that is at least 𝑘𝑅 and at most 𝛾𝑘𝑅 , where 𝛾 > 1.

An 𝑎-orientation of an undirected graph is a total ordering on the vertices such that when edges

in the graph are directed from vertices lower in the ordering to vertices higher in the ordering,

the out-degree of each vertex is bounded by 𝑎. Shi et al. and Besta et al. [4] provide parallel work-

efficient algorithms for computing an 𝑂 (𝛼)-orientation, which take 𝑂 (𝑚) work and 𝑂 (log2 𝑛)
span.

A connected component in an undirected graph is a maximal subgraph such that all vertices in

the subgraph are reachable from one another. Computing the connected components in a graph

can be done in 𝑂 (𝑚) work and 𝑂 (log𝑛) span w.h.p. [22].

A union-find data structure is used to represent collections of sets and supports the following

two operations: unite(𝑥 ,𝑦) joins the sets that contain 𝑥 and 𝑦 and find(𝑥) returns the identifier
of the set containing 𝑥 . Trees are used to implement union-find data structures, where elements

have a parent pointer, and the root of a tree corresponds to the representative of the set. Path

compression can be done during unite and find operations to shortcut the pointers of elements

traversed to point to the root of the set. We use the concurrent union-find data structure by Jayanti

et al. [31].

We use the notation [𝑛] to refer to the range of integers [1, . . . , 𝑛].
1
We say𝑂 (𝑓 (𝑛)) with high probability (w.h.p.) to indicate𝑂 (𝑐 𝑓 (𝑛)) with probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1, where

𝑛 is the input size.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:5

Parallel Primitives. We use the following parallel primitives in our algorithms. We use parallel
hash tables, which support 𝑛 insertion, deletion, and membership queries, in 𝑂 (𝑛) work and

𝑂 (log𝑛) span w.h.p. [25]. List ranking takes a linked list as input and returns the distance of each

element to the end of the linked list. For a linked list of 𝑛 elements, list ranking can be solved in

𝑂 (𝑛) work and 𝑂 (log𝑛) span [30]. In our algorithms, we use list ranking to compute a unique

identifier for each element in a linked list so that we can write them to an array in parallel.

Compare-and-swap(𝑥, 𝑜𝑙𝑑, 𝑛𝑒𝑤) attempts to atomically write the value 𝑛𝑒𝑤 into memory

location 𝑥 if 𝑥 current stores the value 𝑜𝑙𝑑 ; it returns true if the write succeeds and false otherwise

(meaning the value of 𝑥 was changed by another thread after it was read into 𝑜𝑙𝑑). We assume

compare-and-swaps take 𝑂 (1) work and span.

A parallel bucketing structure maintains a mapping from identifiers to buckets, which we use

to group 𝑟 -cliques according to their incident 𝑠-clique counts [16]. The buckets can change, and

the structure can efficiently update these buckets. We take identifiers to be values associated with

𝑟 -cliques, and use the structure to repeatedly extract all 𝑟 -cliques in the minimum bucket, which

can cause the buckets of other 𝑟 -cliques to change (other 𝑟 -cliques sharing vertices with extracted

𝑟 -cliques in our algorithm).

4 Overview of Contributions
We present several novel algorithms for efficient parallel hierarchy construction for (𝑟, 𝑠) nucleus
decomposition. The prior state-of-the-art work on parallel (𝑟, 𝑠) nucleus decomposition, arb-

nucleus [55], only computes the (𝑟, 𝑠)-clique core numbers and does not construct the hierarchy,

which is non-trivial to accomplish. We first present in Section 5 a new theoretically efficient

parallel hierarchy construction algorithm, arb-nucleus-hierarchy, that given the (𝑟, 𝑠)-clique
core numbers from [55], constructs the full hierarchy. In this two-phase algorithm, the hierarchy

construction is entirely separate from the computation of the core numbers. The main innovation

is a clever technique to store subgraphs corresponding to each (𝑟, 𝑠)-clique core, such that the each

subgraph only needs to be materialized when processing the corresponding level in the hierarchy

tree. This limits the number of times we must iterate over each 𝑟 -clique, and allows us to use a

linear-work connectivity subroutine, giving us our theoretically efficient bounds.

We also present in Section 6 a new parallel approximation algorithm, approx-arb-nucleus, that

computes approximate (𝑟, 𝑠)-clique core numbers in polylogarithmic span without increasing the

work. Notably, our parallel approximation algorithm is the first to achieve the dual guarantees of

work-efficiency and polylogarithmic span. We then combine approx-arb-nucleus with our theo-

retically efficient hierarchy construction subroutine, to form an approximate hierarchy algorithm,

arb-approx-nucleus-hierarchy.

We observe that it is often not practically efficient to conduct a two-phase hierarchy algorithm

(separating the hierarchy construction from the computation of the core numbers), and it is instead

faster to construct the hierarchy directly while computing the core numbers. However, this presents

a new series of challenges, where core numbers obtained later in the algorithm given by [55] may

affect all levels of the hierarchy tree, causing significant global changes in the tree structure as core

numbers are computed. We present practical solutions in Section 7 limiting the cascading effects

of these changes by compactly storing the tree using two simple data structures, a union-find

structure and a hash table, and grouping 𝑟 -cliques on-the-fly to reduce the propagating changes. We

then introduce an efficient parallel post-processing step, to explicitly construct the final hierarchy

tree from the two data structures.

Finally, we implement all of our algorithms, and present a comprehensive experimental evaluation

in Section 8.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:6 Jessica Shi, Laxman Dhulipala, and Julian Shun

Algorithm 1 Parallel (𝑟, 𝑠) nucleus hierarchy algorithm

1: Initialize 𝑟 , 𝑠 ⊲ 𝑟 and 𝑠 for (𝑟, 𝑠) nucleus decomposition

2: procedure arb-nucleus-hierarchy(𝐺 = (𝑉 , 𝐸))
3: 𝑁𝐷 ← arb-nucleus(𝐺) ⊲ Compute the nucleus core numbers, where 𝑁𝐷 maps 𝑟 -cliques to their core numbers

4: 𝑘 ← maximum core number in 𝑁𝐷

5: For each 𝑖 ∈ [𝑘], let 𝐿𝑖 denote a hash table, where the keys are 𝑟 -cliques and the values are linked lists

6: parfor all 𝑠-cliques 𝑆 in𝐺 do
7: parfor all pairs of 𝑟 -cliques 𝑅, 𝑅′ in 𝑆 where 𝑁𝐷 [𝑅′] ≤ 𝑁𝐷 [𝑅] do
8: Add 𝑅′ to the linked list keyed by 𝑅 in 𝐿𝑁𝐷 [𝑅′]

9: Initialize the hierarchy tree𝑇 with leaves corresponding to each 𝑟 -clique

10: For each 𝑖 ∈ [𝑘], let 𝐼𝐷𝑖 denote a hash table, where the keys are 𝑟 -cliques and the values are 𝑟 -cliques

11: Initialize each 𝐼𝐷𝑖 to contain each key in 𝐿𝑖 , mapped to itself

12: for 𝑖 ∈ {𝑘, 𝑘 − 1, . . . , 1} do
13: Relabel each 𝑟 -clique in each linked list in 𝐿𝑖 with its corresponding value in 𝐼𝐷𝑖

14: Apply parallel list ranking to transform the linked lists in 𝐿𝑖 into arrays, which forms a graph 𝐻 (where the

edges are given by each key paired with each element in its corresponding linked list)

15: Run parallel linear-work connectivity on 𝐻

16: parfor each connected component C = {𝑅1, . . . , 𝑅𝑐 } in 𝐻 where | C | ≥ 2 do
17: Construct a new parent in𝑇 for all of the nodes corresponding to each 𝑅ℓ (for ℓ ∈ [𝑐]), and represent the

parent as the 𝑟 -clique 𝑅1

18: parfor each 𝑗 < 𝑖 do
19: Concatenate in parallel the linked lists corresponding to all 𝑅ℓ (for ℓ ∈ [𝑐]) in 𝐿𝑗 , as the updated value

for the key 𝑅1 in 𝐿𝑗

20: For each 𝑅ℓ (for ℓ ∈ [𝑐]), update the value of 𝑅ℓ in 𝐼𝐷 𝑗 to be 𝑅1

21: return𝑇

Fig. 2. An example of the 𝐿𝑖 data structures maintained by arb-nucleus-hierarchy while computing the
(1, 3)-nucleus hierarchy on the graph in Figure 1. For each round 𝑖 of the hierarchy construction, the connected
components of 𝐻 and the 𝐼𝐷𝑖 table used to construct 𝐻 is shown (except 𝐼𝐷4, which maps every 𝑟 -clique to
itself).

5 Nucleus Decomposition Hierarchy
We now describe our theoretically efficient parallel nucleus decomposition hierarchy algorithm,

arb-nucleus-hierarchy. arb-nucleus-hierarchy computes the hierarchy by first running an

efficient parallel nucleus decomposition algorithm, arb-nucleus [55], in order to obtain the (𝑟, 𝑠)-
clique core numbers corresponding to each 𝑟 -clique. It then constructs a data structure consisting

of 𝑘 levels, where 𝑘 is the maximum (𝑟, 𝑠)-clique core number. Each level is represented by a

hash table mapping sets of 𝑟 -cliques to a linked list of 𝑟 -cliques, which is used to efficiently store

𝑠-clique-adjacent 𝑟 -cliques. arb-nucleus-hierarchy proceeds in levels through this data structure

to construct the hierarchy tree from the bottom up, by performing linear-work connectivity on

each level and updating the connectivity information in prior levels as a result.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:7

Fig. 3. An example of the intermediate hierarchy trees𝑇 after each round 𝑖 in arb-nucleus-hierarchy, while
computing the (1, 3)-nucleus hierarchy on the graph in Figure 1.

Our Algorithm.We now provide a more detailed description of our algorithm. The pseudocode

is in Algorithm 1. Note that we have highlighted in blue the parts that derive directly from prior

work; the remaining pseudocode is novel to this paper. We refer to the example of (1, 3)-nucleus
decomposition in Figure 1. For simplicity, we have omitted labeling some of the vertices in the

graph, and do not include them in our discussion. The number in front of each vertex label is its

core number.

arb-nucleus-hierarchy first calls arb-nucleus on Line 3, to compute the (𝑟, 𝑠)-clique core
numbers of each 𝑟 -clique. Note that this is the only instance where arb-nucleus-hierarchy uses

a subroutine from the prior work [55], and the rest of the pseudocode is novel. It stores these

values in a hash table, 𝑁𝐷 , keyed by the 𝑟 -cliques. Then, it constructs a data structure consisting

of 𝑘 hash tables on Line 5, where 𝑘 is the maximum (𝑟, 𝑠)-clique core number. Each hash table, 𝐿𝑖 ,

maps 𝑟 -cliques to a linked list of 𝑟 -cliques, where 𝑖 corresponds to a core number. The first stage of

arb-nucleus-hierarchy inserts all 𝑠-clique-adjacent 𝑟 -cliques into the hash tables on Lines 6–8.

Specifically, for adjacent 𝑟 -cliques 𝑅 and 𝑅′ where 𝑁𝐷 [𝑅′] ≤ 𝑁𝐷 [𝑅], we insert 𝑅′ into the hash

table corresponding to 𝑅′’s core number, 𝐿𝑁𝐷 [𝑅′] , with {𝑅} as the key. If an entry for {𝑅} already
exists in 𝐿𝑁𝐷 [𝑅′] , we append 𝑅

′
to the existing linked list. The hash tables are shown in Figure 2.

For instance, 𝑅′ = 1𝑎 is adjacent to 𝑅 = 3𝑎, so we add 1𝑎 to the linked list keyed by 3𝑎 in 𝐿1. In order

to iterate in parallel over all 𝑟 -cliques and over all 𝑠-cliques containing each 𝑟 -clique, our algorithm

uses a 𝑠-clique enumeration algorithm based on previous work by Shi et al. [54], which recursively

finds and lists 𝑐-cliques in parallel and which can efficiently extend given 𝑟 -cliques to find the

𝑠-cliques they are contained within. arb-nucleus-hierarchy then takes all combinations of 𝑟

vertices in each discovered 𝑠-clique to find adjacent 𝑟 -cliques in Lines 7–8. Note that this 𝑠-clique

enumeration subroutine is already used in arb-nucleus in order to compute the (𝑟, 𝑠)-clique core
numbers of each 𝑟 -clique, and in practice, we construct the hash tables 𝐿𝑖 while computing the core

numbers in arb-nucleus (rather than running the 𝑠-clique enumeration subroutine twice).

After constructing the initial set of hash tables, arb-nucleus-hierarchy proceeds to construct

the nucleus decomposition hierarchy on Lines 9–20. The broad idea is to construct the hierarchy

starting at the leaf nodes, each of which correspond to an 𝑟 -clique, and to merge tree nodes from

the bottom up (i.e., in decreasing order of core number). The algorithm begins by considering only

connected components formed by 𝑟 -cliques with the greatest core number, 𝑘 , which dictate the

leaf nodes to be merged into super-nodes at the second-to-last level of the hierarchy tree based on

their 𝑠-clique connectivity. In subsequent rounds, when processing core number 𝑖 , the algorithm

considers connected components formed by 𝑟 -cliques with core numbers ≥ 𝑖 , which similarly

dictate the merges to be performed in the next level of the hierarchy tree. arb-nucleus-hierarchy

efficiently maintains connected components from higher core numbers when computing connected

components at lower core numbers, by concatenating the relevant linked lists in the hash tables

corresponding to the lower core numbers when processing higher core numbers. Figure 3 shows

the construction of this hierarchy throughout the different rounds (for 𝑖 = 4, . . . , 1), and Figure 2

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:8 Jessica Shi, Laxman Dhulipala, and Julian Shun

lists the connected components computed in each round. In our example, since we omit the other

vertices in the 4-(1, 3)-nucleus besides 4𝑎, 4𝑏, 4𝑐 , and 4𝑑 (for simplicity), we begin with singleton

leaf nodes after processing round 𝑖 = 4.

In more detail, on Line 9, we begin with a hierarchy tree 𝑇 consisting only of leaf nodes cor-

responding to each 𝑟 -clique. We also initialize a data structure consisting of 𝑘 hash tables on

Lines 10–11, where each hash table 𝐼𝐷𝑖 maps 𝑟 -cliques to 𝑟 -cliques. The idea is to maintain a

mapping of each 𝑟 -clique to the component that it is contained within in 𝐿𝑖 , for the corresponding

level. Initially, each 𝐼𝐷𝑖 maps each key in 𝐿𝑖 to itself.

Then, arb-nucleus-hierarchy considers each core number 𝑖 , starting from 𝑘 and going down to

1 (Line 12). For each 𝑖 , we relabel each 𝑟 -clique in each linked list in 𝐿𝑖 with its corresponding value

in 𝐼𝐷𝑖 (Line 13). Then, it uses parallel list ranking to convert all linked lists in 𝐿𝑖 to arrays, forming

a graph 𝐻 , where edges are given by each key paired with each element in its corresponding linked

list (Line 14). Note that the edges actually denote 𝑠-clique-adjacent 𝑟 -cliques (or components of

𝑟 -cliques). The vertices correspond to 𝑟 -cliques, which represent components of 𝑟 -cliques in𝐺 . In

our example, we note that there is nothing to be done for round 𝑖 = 4, since 𝐿4 is empty. Therefore,

we begin by processing the hash table 𝐿3 in round 𝑖 = 3. 𝐼𝐷3 maps every vertex to itself, so we do

not relabel any of the labels in 𝐿3. The graph 𝐻 that we construct consists of the vertices 3𝑎, 3𝑏, 3𝑐 ,

4𝑎, 4𝑏, and 4𝑐 , with edges given by {3𝑎, 3𝑏, 3𝑐} × {4𝑎, 4𝑏, 4𝑐}.
arb-nucleus-hierarchy proceeds by running a linear-work parallel connectivity algorithm on

𝐻 (Line 15), and processes the given connected components. Note that each connected component

𝐶 consists of a set of vertices in 𝐻 , which represents a set of 𝑟 -cliques, say {𝑅1, . . . , 𝑅𝑐 }. In our

example, in round 𝑖 = 3, we have a single connected component in𝐻 consisting of all of the vertices,

3𝑎, 3𝑏, 3𝑐 , 4𝑎, 4𝑏, and 4𝑐 . Then, for each such connected component representing more than one

𝑟 -clique, in the hierarchy tree 𝑇 , we construct a new parent for the nodes corresponding to each

𝑅ℓ for ℓ ∈ [𝑐] (Line 17). Note that each 𝑅ℓ could correspond to a subtree containing multiple tree

nodes, owing to parent nodes constructed in previous steps. We represent the new parent by the

𝑟 -clique 𝑅1, which we designate arbitrarily as the representative for the connected component 𝐶 .

In Figure 3, under 𝑖 = 3, we construct a new parent node labeled by 3𝑎, which we designate as the

representative of the component {3𝑎, 3𝑏, 3𝑐, 4𝑎, 4𝑏, 4𝑐}.
Finally, for each core number 𝑗 < 𝑖 , we update the connectivity information on each hash

table 𝐿 𝑗 , by concatenating all linked lists in 𝐿 𝑗 corresponding to the 𝑟 -cliques in the component 𝐶

(Line 19). More precisely, we update the value of the key 𝑅1 to be the concatenation, or we insert

the concatenation into 𝐿 𝑗 with 𝑅1 as the key if 𝑅1 does not already exist in the hash table (this is

possible if 𝑅1 had no neighbors with core number 𝑗). We use tombstones to delete the other keys

𝑅ℓ (ℓ ≠ 1) in each 𝐿 𝑗 . Additionally, on Line 20, we update the component ID in 𝐼𝐷 𝑗 of each 𝑅ℓ to be

𝑅1. For 𝑖 = 3, we see that in our example there are no lists to concatenate, but in 𝐼𝐷2, we map each

of 3𝑏, 3𝑐, 4𝑎, 4𝑏, and 4𝑐 to the representative 3𝑎.

We repeat this process until we have processed all 𝑘 rounds. In our example, for round 𝑖 = 2,

we relabel 4𝑐 in 𝐿2 with 3𝑎, as given by 𝐼𝐷2, and we construct a subgraph 𝐻 with vertices 2𝑎, 3𝑎,

and 4𝑑 , and edges (2𝑎, 3𝑎) and (2𝑎, 4𝑑). Again, there is only one connected component, given by

{2𝑎, 3𝑎, 4𝑑}. In the hierarchy tree for round 𝑖 = 2, we construct a new parent labeled with the

representative 2𝑎, whose children are the leaves 2𝑎 and 4𝑑 , and the previously constructed parent

node 3𝑎. Again, there are no lists to concatenate in 𝐿1, but in 𝐼𝐷1, we map both 3𝑎 and 4𝑑 to the

representative 2𝑎. Then, for round 𝑖 = 1, we relabel 3𝑎 in 𝐿1 with 2𝑎, as given by 𝐼𝐷1. We construct

a subgraph 𝐻 with vertices 1𝑎 and 2𝑎, and a single edge between them. There is only one connected

component, {1𝑎, 2𝑎}, and in the hierarchy tree for round 𝑖 = 1, we construct a new parent labeled

with the representative 1𝑎, whose children are the leaf 1𝑎 and the previously constructed parent

node 2𝑎. This concludes the construction of the hierarchy 𝑇 in our example.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:9

Theoretical Efficiency. We now analyze the theoretical efficiency of our hierarchy algorithm,

arb-nucleus-hierarchy. Note that as in Shi et al.’s [55] work, 𝜌 (𝑟,𝑠) (𝐺) is defined to be the

(𝒓, 𝒔) peeling complexity of 𝐺 , or the number of rounds needed to peel the graph where in

each round, all 𝑟 -cliques with the minimum 𝑠-clique count are peeled (removed). Importantly,

𝑘 ≤ 𝜌 (𝑟,𝑠) (𝐺) ≤ 𝑂 (𝑚𝛼𝑟−2), since at least one 𝑟 -clique is peeled in each round, and the number of

rounds is at least the maximum (𝑟, 𝑠)-clique core number in 𝐺 .

Theorem 5.1. arb-nucleus-hierarchy computes the (𝑟, 𝑠) nucleus decomposition hierarchy in
𝑂 (𝑚𝛼𝑠−2) expected work and 𝑂 (𝑘 log𝑛 + 𝜌 (𝑟,𝑠) (𝐺) log𝑛 + log2 𝑛) span w.h.p., where 𝜌 (𝑟,𝑠) (𝐺) is the
(𝑟, 𝑠) peeling complexity and 𝑘 is the maximum (𝑟, 𝑠)-clique core number.

Proof. First, the theoretical complexity of computing the (𝑟, 𝑠)-clique core numbers of each 𝑟 -clique

(Line 3) is given by Shi et al. [55], which they show takes 𝑂 (𝑚𝛼𝑠−2) work and 𝑂 (𝜌 (𝑟,𝑠) (𝐺) log𝑛
+ log2 𝑛) span w.h.p. for constant 𝑟 and 𝑠 . Note that the work bound is given by the version of their

algorithm that takes space proportional to the number of 𝑠-cliques in 𝐺 , which we incur regardless

to store the hash tables 𝐿𝑖 . Additionally, iterating through all 𝑠-cliques in 𝐺 (Line 6) is superseded

by the work required to compute the (𝑟, 𝑠)-clique core numbers. For every pair of 𝑟 -cliques in

each 𝑠-cliques, we hash each 𝑟 -clique and append to a linked list (Lines 7–8), which in total takes

𝑂 (𝑚𝛼𝑠−2) work and 𝑂 (log2 𝑛) span w.h.p. for constant 𝑟 and 𝑠 .

We now discuss the work and span of constructing the hierarchy tree 𝑇 level-by-level, in 𝑘

rounds (Lines 12–20). The key idea here is that the linked lists in each hash table 𝐿𝑖 are iterated over

at most once across all rounds, and the concatenation of linked lists in intermediate rounds incurs

minimal costs (since concatenating linked lists does not require iterating through the linked lists).

The sum of the lengths of the linked lists in each 𝐿𝑖 remains invariant throughout this portion of

the construction, so in total, the cost of iterating over the linked lists is bounded by𝑂 (𝑚𝛼𝑠−2) work,
matching the work needed to construct each linked list in each 𝐿𝑖 originally. Also, the number

of keys in each 𝐿𝑖 only monotonically decreases, so processing the connected components of the

constructed subgraphs 𝐻 takes at most 𝑂 (𝑚𝛼𝑠−2) work as well.

In more detail, for fixed 𝑖 , let the sum of the lengths of the linked lists in 𝐿𝑖 be ℓ𝑖 , and let the number

of keys in 𝐿𝑖 be 𝑦𝑖 . For each round 𝑖 ∈ [𝑘], applying 𝐼𝐷𝑖 and parallel list ranking on the linked lists

in 𝐿𝑖 (Lines 13–14) takes work proportional to ℓ𝑖 and 𝑂 (log𝑛) span w.h.p.. The number of edges

in the subgraph 𝐻 constructed from the linked lists in 𝐿𝑖 is at most ℓ𝑖 , so performing connectivity

on 𝐻 (Line 15) takes work linear in ℓ𝑖 and 𝑂 (log𝑛) span w.h.p. [22]. Also, there are at most 𝑂 (𝑦𝑖)
vertices in 𝐻 , so processing each connected component and updating the hierarchy tree𝑇 (Line 17)

takes 𝑂 (𝑦𝑖) work and 𝑂 (1) span. In total, for Lines 13–17, we incur 𝑂 (∑𝑖 (ℓ𝑖 + 𝑦𝑖)) = 𝑂 (𝑚𝛼𝑠−2)
expected work and 𝑂 (𝑘 log𝑛) span w.h.p.

It remains to bound the cost of of the loop in Lines 18–20. First, note that across all rounds,

each value corresponding to every key in each 𝐿𝑖 is concatenated at most once (Line 19). This is

because we concatenate linked lists and store the concatenation under exactly one existing key. We

empty the corresponding values for the previously associated keys, which allows us to maintain the

invariant that the sum of the lengths of the linked lists in each 𝐿𝑖 remains fixed. Also, the previously

associated keys are never used again, since we update the value associated with each 𝑟 -clique in

𝐼𝐷 𝑗 . Thus, the concatenations are bounded by 𝑂 (𝑚𝛼𝑠−2) work across all rounds, matching the

work of constructing all 𝐿𝑖 . Additionally, iterating through all levels 𝑗 ≤ 𝑖 for each component C
does not increase the work. This is because we only reach this loop if |C| ≥ 2, which means that we

are effectively merging multiple 𝑟 -cliques together in each hash table 𝐿 𝑗 for 𝑗 ≤ 𝑖 , and assigning the

𝑟 -clique 𝑅1 as the new representative for the other 𝑟 -cliques in the component (updating 𝐼𝐷 𝑗). Thus,

we can assign the work of iterating through all 𝑗 ≤ 𝑖 to the 𝑟 -cliques that are being merged (𝑅ℓ
where ℓ ≠ 1). Once the 𝑟 -clique 𝑅ℓ is merged, due to the concatenation on Line 19 and the update in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:10 Jessica Shi, Laxman Dhulipala, and Julian Shun

𝐼𝐷 𝑗 on Line 20, it never participates as a vertex in𝐻 again in future rounds, so is never re-processed

in a future connected component of 𝐻 ; this is due to the mapping on Line 13. The amount of work

that we assign per merged 𝑟 -clique 𝑅ℓ is at most the core number of 𝑅ℓ . This is because the amount

of work we assign to 𝑅ℓ is given by the number of rounds in which we merge, or 𝑖 , and 𝑅ℓ only

appears in 𝐿𝑖 if 𝑁𝐷 [𝑅ℓ] ≥ 𝑖 , by construction on Line 8. Thus, in total, for each 𝑟 -clique, we incur

work upper bounded by the core number. We have in total 𝑂 (∑𝑟 -clique 𝑅∈𝐺 𝑁𝐷 [𝑅]) = 𝑂 (𝑚𝛼𝑠−2)
work, since the sum of the (𝑟, 𝑠)-clique core numbers in𝐺 is necessarily bounded by the number of

𝑠-cliques for constant 𝑟 and 𝑠 . This is because each 𝑠-clique contributes to at most

(
𝑠
𝑟

)
𝑟 -clique’s

core numbers, so the summation across all core numbers is upper bounded by

(
𝑠
𝑟

)
· (the number

of 𝑠-cliques). Thus, in total, the loop in Lines 18–20 incurs 𝑂 (𝑚𝛼𝑠−2) work and 𝑂 (𝑘 log𝑛) span,
where the span is due to list ranking.

In total, we have 𝑂 (𝑚𝛼𝑠−2) expected work and 𝑂 (𝑘 log𝑛 + 𝜌 (𝑟,𝑠) (𝐺) log𝑛 + log2 𝑛) span w.h.p.,

as desired. □

Comparison to Prior Work. The prior state-of-the-art algorithm is the sequential (𝑟, 𝑠) nucleus
decomposition hierarchy algorithm by Sariyüce and Pinar [49]. They provide an algorithm similar

to arb-nucleus-hierarchy in that it first computes the (𝑟, 𝑠)-clique core numbers of each 𝑟 -clique,

and then builds the hierarchy tree from the bottom up. They show that the time complexity is upper

bounded by the time complexity of computing the (𝑟, 𝑠)-clique core numbers. Note that they omit a

factor of 𝑂 (𝛼 (𝑛𝑠 , 𝑛𝑟)) where 𝛼 is the inverse Ackermann function and 𝑛𝑠 and 𝑛𝑟 are the number of

𝑠-cliques and 𝑟 -cliques, respectively, in the graph; this factor is necessary for their algorithm, since

they use union-find to construct the hierarchy tree. Thus, the time complexity of Sariyüce and

Pinar’s algorithm is 𝑂 (𝑚𝛼𝑠−2𝛼 (𝑛𝑠 , 𝑛𝑟)) (this is achieved using the state-of-the-art algorithm for

computing the (𝑟, 𝑠)-clique core numbers [55]). Our arb-nucleus-hierarchy algorithm avoids the

additional inverse Ackermann factor, by efficiently constructing graphs to represent different levels

of the hierarchy tree and using linear-work graph connectivity to construct the hierarchy tree.

Thus, we improve the sequential running time of constructing the (𝑟, 𝑠) nucleus decomposition

hierarchy to 𝑂 (𝑚𝛼𝑠−2), and arb-nucleus-hierarchy is work-efficient.

Shi et al. [55] present a parallel algorithm to compute the (𝑟, 𝑠)-clique core numbers in𝑂 (𝑚𝛼𝑠−2)
expected work. A vanilla extension of their algorithm to compute the hierarchy would be to run

connected components for each non-empty core number 𝑖 , with vertices being the (𝑟, 𝑠)-cliques
that have core number 𝑖 or above, in a top-down manner. This incurs 𝑂 (𝑚𝛼𝑠−2) expected work

per level, and there can be 𝜌 (𝑟,𝑠) (𝐺) levels in the worst case, leading to 𝑂 (𝜌 (𝑟,𝑠) (𝐺)𝑚𝛼𝑠−2) total
expected work. In contrast, our algorithm has a much lower total expected work of 𝑂 (𝑚𝛼𝑠−2).
6 Approximate Nucleus Decomposition
Given the potentially large span (i.e., longest critical path) of computing the exact nucleus de-

composition hierarchy, we develop a new parallel approximate nucleus decomposition hierarchy

algorithm, arb-approx-nucleus-hierarchy. Instead of computing exact (𝑟, 𝑠)-clique-core num-

bers of each 𝑟 -clique, the main idea of the new algorithm is to compute an approximation of the

(𝑟, 𝑠)-clique core number. Specifically, we compute a (
(
𝑠
𝑟

)
+𝜀)-approximate (𝑟, 𝑠)-clique core number

of each 𝑟 -clique; that is to say, if we let the true (𝑟, 𝑠)-clique core number of each 𝑟 -clique be 𝑘𝑅 ,

our approximation is at least 𝑘𝑅 and at most (
(
𝑠
𝑟

)
+ 𝜀) · 𝑘𝑅 .

Our approximate computation uses the same peeling paradigm from Shi et al. [55] for exact
nucleus decomposition, but with an important modification that allows it to take only 𝑂 (log2 𝑛)
peeling rounds, thus significantly improving upon the span. As a result, we only have polylogarith-

mically many core numbers, leading to a hierarchy tree with polylogarithmic height. Our hierarchy

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:11

construction for arb-approx-nucleus-hierarchy is exactly the same as that of arb-nucleus-

hierarchy, and the only salient difference is that for arb-approx-nucleus-hierarchy, we replace

the arb-nucleus subroutine in Line 3 of Algorithm 1 with our approximate nucleus decomposition

subroutine, approx-arb-nucleus.

Our Algorithm. We present our pseudocode for approx-arb-nucleus in Algorithm 2. Again, we

have highlighted in blue the parts that derive directly from prior work, and the remainder is novel

to this work. Note that it takes as input a parameter 𝛿 > 0, which controls the 𝜀 in the (
(
𝑠
𝑟

)
+ 𝜀)-

approximation. Specifically, approx-arb-nucleus gives a (
(
𝑠
𝑟

)
+𝛿) · (1+𝛿) = (

(
𝑠
𝑟

)
+𝜀)-approximation,

which we prove in Theorem 6.1.

First, on Line 3, approx-arb-nucleus computes a low out-degree orientation of the graph 𝐺 ,

which directs the edges such that every vertex has out-degree at most 𝑂 (𝛼), using an efficient

algorithm by Shi et al. [54]. Then, on Lines 4–5, it counts the number of 𝑠-cliques per 𝑟 -clique in 𝐺 ,

and stores the result in a parallel hash table𝑈 . It uses an 𝑠-clique counting subroutine, rec-list-

cliqes, from Shi et al.’s previous work [54]. The key difference between approx-arb-nucleus

and arb-nucleus is on Line 6, where the buckets in the bucketing structure hold 𝑟 -cliques with a

range of 𝑠-clique-degrees instead of a single 𝑠-clique-degree. Specifically, for an input parameter

𝛿 , we define the range of each bucket 𝐵𝑖 to be [(
(
𝑠
𝑟

)
+ 𝛿) · (1 + 𝛿)𝑖 , (

(
𝑠
𝑟

)
+ 𝛿) · (1 + 𝛿)𝑖+1], where

𝑖 ∈ [𝑠 log
1+𝛿 𝑛] since

(
𝑛
𝑠

)
= 𝑂 (𝑛𝑠) is a trivial upper bound on the maximum 𝑠-clique-degree possible

in any given graph.

The peeling algorithm then proceeds as it does in [55], except using our modified bucketing

structure. While not all 𝑟 -cliques have been peeled, approx-arb-nucleus processes the set of

𝑟 -cliques 𝐴 (that have not yet been peeled) within the lowest bucket 𝐵𝑖 (starting with 𝑖 = 0), and

peels them from the graph (Lines 8–20). For each 𝑟 -clique 𝑅 in𝐴, we iterate over all 𝑠-clique-adjacent

𝑟 -cliques 𝑅′, and update the recorded 𝑠-clique-degree of 𝑅′ given 𝑅’s removal (Lines 12–15). Then,

we peel (remove) the 𝑟 -cliques in 𝐴 from the graph and update the buckets of all unpeeled 𝑟 -cliques

based on the updated 𝑠-clique-degrees on Line 16. Notably, if a 𝑟 -clique 𝑅’s 𝑠-clique-degree falls

below the range of the current bucket of 𝑟 -cliques that is being peeled, we do not rebucket 𝑅 into a

lower bucket, and instead aggregate these 𝑟 -cliques within the current bucket. As such, in any given

round of peeling, we are actually peeling all 𝑟 -cliques with 𝑠-clique-degree ≤ (
(
𝑠
𝑟

)
+ 𝛿) · (1 + 𝛿)𝑖 ,

which is important for our theoretical bounds. Note that we process a given bucket 𝐵𝑖 at most

𝑂 (log
1+𝛿/(𝑠𝑟) (𝑛)) times; if we have exceeded this threshold, or if 𝐵𝑖 is empty, then we move on

to processing the next bucket, 𝐵𝑖+1 (Lines 17–20). If there are unpeeled 𝑟 -cliques remaining in 𝐵𝑖
once we reach this threshold, we include them in the next bucket 𝐵𝑖+1 (Line 18). Note that the
approximate (𝑟, 𝑠)-clique core number that we compute for each 𝑟 -clique is given by the upper

bound of the bucket in which it was peeled. In practice, we can improve this by taking the minimum

of the upper bound of the bucket, and the 𝑠-clique-degree of each 𝑟 -clique (in the original graph).

Oncewe have peeled all 𝑟 -cliques, this concludes our subroutine. arb-approx-nucleus-hierarchy

is then given by replacing arb-nucleus in Line 3 of Algorithm 1 with approx-arb-nucleus.

Theoretical Guarantees and Efficiency.We now discuss the theoretical guarantees and theoreti-

cal efficiency of approx-arb-nucleus, and by extension, arb-approx-nucleus-hierarchy.

The main idea is to bound the proportion of 𝑟 -cliques with core numbers ≤ ℓ for some fixed ℓ ,

but with 𝑠-clique-degree > ℓ (
(
𝑠
𝑟

)
+ 𝛿). We can then set ℓ such that at any given step of our peeling

process, we obtain a bound on the maximum proportion of 𝑟 -cliques with core number at most ℓ

that is not within the current bucket to be peeled. In essence, this gives us a bound on the number of

times that a bucket must be reprocessed, such that moving on to the next bucket does not degrade

the approximation factor, which gives us our approximation guarantees. Due to space constraints,

we defer the proof of the following theorem to the full paper [56].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:12 Jessica Shi, Laxman Dhulipala, and Julian Shun

Algorithm 2 Approximate parallel (𝑟, 𝑠) nucleus algorithm
1: Initialize 𝑟 , 𝑠 ⊲ 𝑟 and 𝑠 for (𝑟, 𝑠) nucleus decomposition

2: procedure approx-arb-nucleus(𝐺 = (𝑉 , 𝐸) , 𝛿)
3: 𝐷𝐺 ← Arb-Orient(𝐺) ⊲ Apply an arboricity-orientation algorithm

4: Initialize𝑈 to be a parallel hash table with 𝑟 -cliques as keys, and 𝑠-clique counts as values

5: rec-list-cliqes(𝐷𝐺 , 𝑠 ,𝑈) ⊲ Count 𝑠-cliques, and store the counts per 𝑟 -clique in𝑈

6: Let 𝑁𝐷 be a bucketing structure mapping each 𝑟 -clique to a bucket based on # of 𝑠-cliques, where each bucket 𝐵𝑖

contain all 𝑟 -cliques with 𝑠-clique-degree in the range [(
(𝑠
𝑟

)
+𝛿) · (1+𝛿)𝑖 , (

(𝑠
𝑟

)
+𝛿) · (1+𝛿)𝑖+1], for all 𝑖 ∈ [𝑠 log(𝑠𝑟)+𝛿 𝑛]

7: finished← 0, num_rounds← 0, 𝑖 ← 0

8: while finished < |𝑈 | do
9: 𝐴← 𝑟 -cliques in the bucket 𝐵𝑖 in 𝑁𝐷 (to be peeled)

10: finished← finished + |𝐴 |
11: num_rounds← num_rounds + 1
12: parfor all 𝑟 -cliques 𝑅 in 𝐴 do
13: parfor all 𝑠-cliques 𝑆 containing 𝑅 do
14: parfor all 𝑟 -cliques 𝑅′ in 𝑆 where 𝑅′ ≠ 𝑅 do
15: Update 𝑠-clique count of 𝑅′ in𝑈

16: Peel 𝐴, assign the upper bound of the bucket as the coreness value for peeled 𝑟 -cliques, and update the buckets

of 𝑟 -cliques with updated 𝑠-clique counts

17: if num_rounds ≥ 𝑂 (log
1+𝛿/(𝑠𝑟) (𝑛)) or 𝐵𝑖 is empty then

18: Add the remaining 𝑟 -cliques in 𝐵𝑖 (if it is non-empty) to 𝐵𝑖+1
19: 𝑖 ← 𝑖 + 1
20: num_rounds← 0

21: return 𝑁𝐷

Theorem 6.1. arb-approx-nucleus-hierarchy computes a (
(
𝑠
𝑟

)
+ 𝜀)-approximate (𝑟, 𝑠) nucleus

decomposition hierarchy in 𝑂 (𝑚𝛼𝑠−2) expected work and 𝑂 (log3 𝑛) span w.h.p.

Note that in the theorem above, 𝜖 does not affect the work bound, and affects the base of one of

the logarithms in the span bound (which we omitted as we treat 𝜖 as a constant).

7 Practical Implementations
While the algorithm presented in Section 5 (Algorithm 1) is efficient in theory, we present a number

of optimizations that improve its practical performance. Algorithm 1 requires two passes over the

𝑟 -cliques and their 𝑠-clique-adjacent neighbors, first to compute the (𝑟, 𝑠)-clique core numbers and

then to construct the hierarchy. We present algorithms that interleave these two computations,

so that only a single pass is required. Specifically, we present two algorithms that are not as

theoretically efficient as Algorithm 1, but are faster in practice, particularly when the difference

between 𝑟 and 𝑠 is large, as we demonstrate in Section 8.1.

7.1 Interleaved Hierarchy Framework
Our algorithms use the same framework, given in Algorithm 3, and the main difference between

the two algorithms is the implementation of the key subroutines link and construct-tree. The

framework is based on the peeling process used to compute the (𝑟, 𝑠)-clique core numbers in Shi et
al.’s work [55]. The main idea is that when we peel an 𝑟 -clique 𝑅, while computing the updated

𝑠-clique counts due to peeling 𝑅, we are already iterating over all 𝑠-clique-adjacent 𝑟 -cliques 𝑅′.
Note that additionally, the nucleus decomposition algorithm in Shi et al. [55] uses a bucketing
structure that maintains the intermediate (𝑟, 𝑠)-clique core numbers of each 𝑟 -clique throughout

the peeling process (which begin as simply the 𝑠-clique count of each 𝑟 -clique, and throughout

the peeling process are updated to the actual (𝑟, 𝑠)-clique core numbers). Then, if the intermediate

(𝑟, 𝑠)-clique core number of 𝑅′ is less than or equal to that of 𝑅, as maintained in the bucketing

structure, the intermediate (𝑟, 𝑠)-clique core numbers of 𝑅 and 𝑅′ are actually the final (𝑟, 𝑠)-clique

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:13

Algorithm 3 Parallel (𝑟, 𝑠) nucleus hierarchy framework

1: Initialize 𝑟 , 𝑠 ⊲ 𝑟 and 𝑠 for (𝑟, 𝑠) nucleus decomposition

2: procedure arb-nucleus-decomp-hierarchy-framework(𝐺 = (𝑉 , 𝐸))
3: 𝐷𝐺 ← Arb-Orient(𝐺) ⊲ Apply an arboricity-orientation algorithm

4: Initialize𝑈 to be a parallel hash table with 𝑟 -cliques as keys, and 𝑠-clique counts as values

5: rec-list-cliqes(𝐷𝐺 , 𝑠 ,𝑈) ⊲ Count 𝑠-cliques, and store the counts per 𝑟 -clique in𝑈

6: Let 𝑁𝐷 be a bucketing structure mapping each 𝑟 -clique to a bucket based on # of 𝑠-cliques

7: finished← 0

8: while finished < |𝑈 | do
9: 𝐴← 𝑟 -cliques in the next bucket in 𝑁𝐷 (to be peeled)

10: finished← finished + |𝐴 |
11: parfor all 𝑟 -cliques 𝑅 in 𝐴 do
12: parfor all 𝑠-cliques 𝑆 containing 𝑅 do
13: parfor all 𝑟 -cliques 𝑅′ in 𝑆 where 𝑅′ ≠ 𝑅 do
14: if 𝑁𝐷 [𝑅′] ≤ 𝑁𝐷 [𝑅] then
15: link(𝑅′, 𝑅, 𝑁𝐷)
16: else Update 𝑠-clique count of 𝑅′ in𝑈
17: Update the buckets of 𝑟 -cliques with updated 𝑠-clique counts, peeling 𝐴

18: return construct-tree(𝑁𝐷) ⊲ Return the hierarchy tree𝑇 , constructed based on link

core numbers of 𝑅 and 𝑅′, respectively. Thus, each such 𝑅 and 𝑅′ pair are connected in the nucleus

decomposition hierarchy up to the level given by min(𝑁𝐷 [𝑅], 𝑁𝐷 [𝑅′]), and after the peeling

process completes, we will have all of the relevant connectivity information to completely compute

the nucleus decomposition hierarchy. In this sense, it suffices to define a link subroutine to process

the 𝑠-clique-adjacent 𝑟 -cliques given the intermediate (𝑟, 𝑠)-clique core numbers throughout the

peeling algorithm. Based on link, construct-tree constructs the final hierarchy tree.

In more detail, arb-nucleus-decomp-hierarchy-framework first uses an efficient low out-

degree orientation algorithm by Shi et al. [54] to direct the graph 𝐺 such that every vertex has

out-degree at most 𝑂 (𝛼) (Line 3). Then, it counts the number of 𝑠-cliques per 𝑟 -clique in 𝐺 and

stores the counts in a parallel hash table 𝑈 , where the keys are 𝑟 -cliques and the values are the

counts (Lines 4–5). Note that arb-nucleus-decomp-hierarchy-framework uses a subroutine

rec-list-cliqes based on previous work by Shi et al. [54], to count the number of 𝑠-cliques per

𝑟 -clique. Also, our algorithm initializes a parallel bucketing structure 𝑁𝐷 that maps 𝑟 -cliques

to buckets, initially based on their 𝑠-clique counts (Line 6). We use the bucketing structure by

Dhulipala et al. [16]. This structure 𝑁𝐷 stores the aforementioned intermediate (𝑟, 𝑠)-clique core
numbers of each 𝑟 -clique, and supports efficient operations to update buckets and return the lowest

unpeeled bucket. Our algorithm then proceeds with a classic peeling paradigm, where until all

𝑟 -cliques have been peeled, it processes the 𝑟 -cliques (that have not yet been peeled) incident to

the lowest number of 𝑠-cliques and peels them from the graph (Lines 8–17). For a set 𝐴 of 𝑟 -cliques

with the lowest number of incident 𝑠-cliques (Line 9), we iterate over all 𝑠-clique-adjacent 𝑟 -cliques

𝑅′ to each 𝑟 -clique 𝑅 in 𝐴 (Lines 11–13).

Note that if 𝑁𝐷 [𝑅′] ≤ 𝑁𝐷 [𝑅], this means that 𝑅′ was either previously peeled or is currently

being peeled (and is also in 𝐴); this is because at any given peeling step, we process the bucket of

unpeeled 𝑟 -cliques with the minimum incident 𝑠-clique count. This also means that 𝑁𝐷 [𝑅′] and
𝑁𝐷 [𝑅] are the actual (𝑟, 𝑠)-clique core numbers of 𝑅′ and 𝑅 respectively, which follows directly

from the correctness of the peeling paradigm [52]. Thus, each such 𝑅 and 𝑅′ pair are connected
in the nucleus decomposition hierarchy up to the level given by min(𝑁𝐷 [𝑅], 𝑁𝐷 [𝑅′]), which we

process using the link subroutine (Lines 14–15). The link subroutine will construct the hierarchy,

and we describe it in Sections 7.2 and 7.3.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:14 Jessica Shi, Laxman Dhulipala, and Julian Shun

Algorithm 4 Basic link and tree construction

1: Initialize 𝑘 union-find data structures, 𝑢𝑓𝑖 for 𝑖 ∈ [𝑘], where 𝑘 is the maximum (𝑟, 𝑠)-clique core number

2: procedure link-basic(𝑅,𝑄 , 𝑁𝐷)

3: parfor 𝑖 ∈ [min(𝑁𝐷 [𝑅], 𝑁𝐷 [𝑄])] do
4: 𝑢𝑓𝑖 .unite(𝑅,𝑄)
5: procedure construct-tree-basic(𝑁𝐷)

6: Initialize the hierarchy tree𝑇 with leaves corresponding to each 𝑟 -clique

7: for 𝑖 ∈ {𝑘, 𝑘 − 1, . . . , 1} do
8: parfor each connected component𝐶 = {𝑅1, . . . , 𝑅𝑐 } in 𝑢𝑓𝑖 do
9: Construct a new parent in𝑇 , to be the parent of the roots of the leaf nodes corresponding to each 𝑅ℓ (for

ℓ ∈ [𝑐])
10: return𝑇

On the other hand, if 𝑁𝐷 [𝑅] > 𝑁𝐷 [𝑅′], then this means that 𝑅′ has not yet been peeled, and

the 𝑠-clique removed by 𝑅 must be properly accounted for. In this case, arb-nucleus-decomp-

hierarchy-framework updates the 𝑠-clique count of 𝑅′ in the hash table 𝑈 (Line 16). After

processing all 𝑅 and 𝑅′ pairs, we then update the buckets of the 𝑟 -cliques with updated 𝑠-clique

counts in𝑈 (Line 17). We omit the details of these steps for conciseness, since they are described in

Shi et al.’s parallel nucleus decomposition algorithm [55].

7.2 Basic Version of link
The remaining details are in how we perform the link subroutine (Line 15) and how we construct

the hierarchy tree 𝑇 with construct-tree (Line 18).

In Algorithm 4, we present a basic link subroutine, link-basic, and the corresponding construct-

tree subroutine, construct-tree-basic. link-basic maintains a parallel union-find data structure

𝑢𝑓𝑖 per core number 𝑖 ∈ [𝑘], which corresponds to a level of the hierarchy tree 𝑇 . Each 𝑢𝑓𝑖 con-

nects 𝑟 -cliques that are 𝑠-clique-adjacent considering only 𝑟 -cliques with core numbers ≥ 𝑖 . To

construct these 𝑢𝑓𝑖 ’s, given two 𝑟 -cliques 𝑅 and 𝑄 , link-basic simply unites 𝑅 and 𝑄 in each 𝑢𝑓𝑖
where 𝑖 ≤ max(𝑁𝐷 [𝑅], 𝑁𝐷 [𝑄]) (Lines 3–4). Then, given the 𝑢𝑓𝑖 for all 𝑖 ∈ [𝑘], we construct

the hierarchy tree 𝑇 from the bottom up, starting with leaf nodes corresponding to 𝑟 -cliques.

construct-tree-basic begins with 𝑖 = 𝑘 , where for each connected component in 𝑢𝑓𝑘 (Line 8), we

construct a parent in 𝑇 where its children are the leaf nodes corresponding to the 𝑟 -cliques in the

connected component (Line 9). Then, for 𝑖 = 𝑘−1, . . . , 1 (Line 7), we construct a new parent for each

connected component in 𝑢𝑓𝑖 , where its children are the parents of the leaf nodes corresponding to

the 𝑟 -cliques that compose the component (Line 9). This produces the desired 𝑇 .

However, link-basic is not efficient, since it requires a union-find data structure per level, and

for every pair of 𝑟 -cliques, we could perform up to 𝑘 unite operations. Indeed, in Section 8.1, we

empirically show that link-basic performs many unnecessary unite operations in practice. If we

let 𝑛𝑟 and 𝑛𝑠 denote the number of 𝑟 -cliques and the number of 𝑠-cliques in the graph, respectively,

link-basic incurs additional space proportional to 𝑂 (𝑘𝑛𝑟) and total work upper bounded by

𝑂 (𝑘𝑛𝑠) (since there are at most 𝑂 (𝑛𝑠) pairs of 𝑠-clique-adjacent 𝑟 -cliques). In the next subsection,

we introduce more efficient link and construct-tree subroutines.

7.3 Efficient Version of link
Our improved subroutines link-efficient and construct-tree-efficient are shown in Algorithm

5. We refer to an example of (1, 3)-nucleus decomposition in the graph in Figure 1. Recall that we

have omitted labeling some vertices in the graph for simplicity.

The main idea of link-efficient is instead of maintaining 𝑘 union-find data structures, we

maintain a single parallel union-find data structure 𝑢𝑓 and an additional hash table 𝐿 that maps

𝑟 -cliques to 𝑟 -cliques. First, 𝑢𝑓 stores connected 𝑟 -cliques considering only other 𝑟 -cliques with

equal core numbers. For instance, in Figure 1, the vertices 3𝑎, 3𝑏, and 3𝑐 are connected and all have

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:15

Algorithm 5 Efficient link and tree construction

1: Initialize a union-find data structure, 𝑢𝑓 , of length equal to the number of 𝑟 -cliques

2: Initialize a hash table, 𝐿, where the keys and values are 𝑟 -cliques

3: procedure link-efficient(𝑅,𝑄 , 𝑁𝐷)

4: if 𝑅 or𝑄 is empty then return
5: if 𝑁𝐷 [𝑄] < 𝑁𝐷 [𝑅] then Swap 𝑅 and𝑄

6: 𝑅 ← 𝑢𝑓 .parent(𝑅) ,𝑄 ← 𝑢𝑓 .parent(𝑄)
7: if 𝑁𝐷 [𝑅] = 𝑁𝐷 [𝑄] then
8: 𝑢𝑓 .unite(𝑅,𝑄)
9: if 𝑢𝑓 .parent(𝑅) ≠ 𝑅 then link-efficient(𝐿[𝑅],𝑢 𝑓 .parent(𝑅), 𝑁𝐷)
10: if 𝑢𝑓 .parent(𝑄) ≠ 𝑄 then link-efficient(𝐿[𝑄],𝑢 𝑓 .parent(𝑄), 𝑁𝐷)
11: else ⊲ 𝑁𝐷 [𝑅] < 𝑁𝐷 [𝑄]
12: while true do
13: 𝐿𝑄 ← 𝐿[𝑄]
14: 𝑄 ← 𝑢𝑓 .parent(𝑄)
15: if compare-and-swap(𝐿[𝑄], empty, 𝑅) then
16: if 𝑢𝑓 .parent(𝑄) ≠ 𝑄 then
17: link-efficient(𝑅,𝑢𝑓 .parent(𝑄), 𝑁𝐷)

18: break

19: else if 𝑁𝐷 [𝐿𝑄] < 𝑁𝐷 [𝑅] then
20: if compare-and-swap(𝐿[𝑄], 𝐿𝑄 , 𝑅) then
21: if 𝑢𝑓 .parent(𝑄) ≠ 𝑄 then
22: link-efficient(𝑅,𝑢𝑓 .parent(𝑄), 𝑁𝐷)

23: link-efficient(𝑅, 𝐿𝑄, 𝑁𝐷)

24: break

25: else
26: link-efficient(𝑅, 𝐿[𝑄], 𝑁𝐷)

27: break

28: procedure construct-tree-efficient(𝑁𝐷)

29: Initialize the hierarchy tree𝑇 with leaves corresponding to each 𝑟 -clique

30: parfor each connected component C = {𝑅1, . . . , 𝑅𝑐 } in 𝑢𝑓 do
31: Construct a parent node 𝑢𝑓C in𝑇 , where its children are the leaves corresponding to the 𝑟 -cliques in C
32: parfor each parent node 𝑢𝑓C in𝑇 do
33: if 𝐿[C] is non-empty then
34: 𝑅 ← 𝑢𝑓 .parent(𝐿[C]) ⊲ Note that C is the 𝑟 -clique representing the component in 𝑢𝑓

35: Make 𝑢𝑓C a child of 𝑢𝑓𝑅 in𝑇 ⊲ Note that 𝑢𝑓𝑅 necessarily exists since 𝑅 represents a component in 𝑢𝑓

36: return𝑇

core number 3, so we would store these as a component in 𝑢𝑓 . Note that for all core numbers 𝑖 , we

can store this information using a single union-find data structure because the sets of 𝑟 -cliques

with distinct core numbers are disjoint. We can arbitrarily represent each connected component in

𝑢𝑓 by a single 𝑟 -clique in that component.

The main idea of 𝐿 is to connect the components in 𝑢𝑓 to the “nearest” core with a different

core number that it is contained within (if it exists). For instance, in Figure 1, we note that the

component in 𝑢𝑓 corresponding to 4𝑎 (consisting of vertices with core number 4) is contained

within the 3-core consisting of the component {3𝑎, 3𝑏, 3𝑐}. In 𝐿, we would store one of 3𝑎, 3𝑏,

or 3𝑐 in an entry corresponding to key 4𝑎, indicating that this is the “nearest” core that 4𝑎 must

join in the hierarchy. We note that 4𝑎 is also contained within a larger 2-core and a larger 1-core,

but its “nearest” core, or the smallest core such that the component 4𝑎 is a proper subset of that

core, is given by the 3-core. It is sufficient to store only the “nearest” core to 4𝑎 in 𝐿, because the

component in 𝑢𝑓 corresponding to {3𝑎, 3𝑏, 3𝑐} is responsible for storing its “nearest” core in 𝐿

as well, to the 2-core it is contained within. On the other hand, the component corresponding to

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:16 Jessica Shi, Laxman Dhulipala, and Julian Shun

Fig. 4. An example of the 𝑢𝑓 and 𝐿 data structures
maintained by link-efficient when computing the
(1, 3)-nucleus hierarchy on the graph in Figure 1. The
data structures are shown after the third and fourth
rounds of peeling in arb-nucleus-decomp-hierarchy-

framework, and after intermediate calls to link-

efficient within the fourth round.

Fig. 5. An example of the (1, 3)-nucleus hierar-
chy tree on the graph in Figure 1, constructed by
construct-tree-efficient. Stage 1 shows an inter-
mediate tree constructed in the construct-tree-
efficient subroutine, and Stage 2 depicts the final
hierarchy tree.

4𝑑 is not contained within the 3-core, and its “nearest” core would be the 2-core containing the

component 2𝑎, so 4𝑑 would store in 𝐿 the value 2𝑎.

More formally, for each 𝑟 -clique 𝑅 representing a connected component in 𝑢𝑓 , let 𝑅′ be an

𝑟 -clique with the maximum 𝑁𝐷 [𝑅′] such that 𝑁𝐷 [𝑅′] < 𝑁𝐷 [𝑅], and 𝑅′ is connected to 𝑅 through

𝑠-cliques considering only 𝑟 -cliques with core number ≥ 𝑁𝐷 [𝑅′]. Then, each such 𝑟 -clique 𝑅 is a

key in 𝐿, and 𝐿 stores the corresponding 𝑅′ that satisfies these conditions as the value. Note that
if there are multiple such 𝑅′ where 𝑁𝐷 [𝑅′] is maximized under these conditions, it is irrelevant

which 𝑅′ is stored in 𝐿, because it is simple to look up the component that 𝑅′ corresponds to using

𝑢𝑓 . That is to say, it is irrelevant which of 3𝑎, 3𝑏, and 3𝑐 we store for 4𝑎 in 𝐿, because we can look

up the parent of 3𝑎, 3𝑏, and 3𝑐 in 𝑢𝑓 , which would resolve to the same parent. link-efficient

updates 𝑢𝑓 and 𝐿, depending on the core numbers of the given 𝑟 -cliques 𝑅 and 𝑄 .

Tree Construction. We describe first how construct-tree-efficient constructs the hierarchy

tree 𝑇 given the specifications for 𝑢𝑓 and 𝐿. We refer to the construction shown in Figure 5, where

𝑢𝑓 and 𝐿 are given under “After Round 4” in Figure 4.

The main idea for the construction is that if we begin with a hierarchy tree 𝑇 consisting of only

leaf nodes corresponding to each 𝑟 -clique, the highest (bottom-most) level in which that leaf node

may join a non-trivial connected component is the level corresponding to the leaf node’s 𝑟 -clique’s

(𝑟, 𝑠)-clique core number. That is to say, starting from 𝑖 = 𝑘 and iterating to 𝑖 = 1, an 𝑟 -clique 𝑅

is necessarily a singleton component from 𝑖 = 𝑘 to 𝑖 = 𝑁𝐷 [𝑅] + 1. The union-find structure 𝑢𝑓

denotes the parent of each leaf node on the level corresponding to its core number.

Then, once we have the connected components per level corresponding to each core number,

it remains to describe how components with different core numbers are contained within each

other. This containment is necessarily hierarchical, where components corresponding to larger core

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:17

numbers are contained within successive components corresponding to smaller core numbers, as

can be seen in Figure 1. This containment is precisely what 𝐿 describes; it points each component

within a given core 𝑖 to a component on the greatest core number 𝑗 such that 𝑗 < 𝑖 , where the

two components are connected on level 𝑗 (that is to say, connected through 𝑟 -cliques with core

numbers ≥ 𝑗). Thus, using 𝐿, we can point each parent constructed using our 𝑢𝑓 to another parent,

which represents the first instance (from the bottom up in𝑇) in which the original parent is merged

into another component.

In more detail, in construct-tree-efficient, we begin with a hierarchy tree 𝑇 consisting of

isolated 𝑟 -cliques (Line 29). For each component C = {𝑅1, . . . , 𝑅𝑐 } in 𝑢𝑓 , representing a connected

component of 𝑟 -cliques with the same core number, we construct a parent in 𝑇 , where its children

are leaves corresponding to the 𝑟 -cliques in C (Lines 30–31). C is one of these cliques, and is chosen

arbitrarily. The new parent is 𝑢𝑓C . This process is shown in Stage 1 in Figure 5; each vertex has

itself as its parent in 𝑢𝑓 , except the vertices 3𝑎, 3𝑏, and 3𝑐 , which have 3𝑏 as their parent. Thus, we

create a new parent node 𝑢𝑓3𝑏 for the leaves 3𝑎, 3𝑏, and 3𝑐 .

Then, for each parent node 𝑢𝑓C , we look up the nearest connected component that it should

hierarchically connect to using 𝐿. What this means is that the component 𝑢𝑓C should join the

connected component of 𝐿[C] (if it exists). If 𝑅 = 𝑢𝑓 .parent(𝐿[C]), then the connected component

of 𝐿[C] is represented by𝑢𝑓𝑅 . Thus, we make𝑢𝑓C a child of𝑢𝑓𝑅 in𝑇 (Lines 32–35). This construction

is shown in Stage 2 in our example in Figure 5. We note that 𝐿[2𝑎] = 1𝑎 and 𝑢𝑓 [1𝑎] = 1𝑎, so we

make 𝑢𝑓2𝑎 the child of 𝑢𝑓1𝑎 . Similarly, 𝐿[3𝑏] = 2𝑎 and 𝑢𝑓 [2𝑎] = 2𝑎, so we make 𝑢𝑓3𝑏 the child of

𝑢𝑓2𝑎 , and 𝐿[4𝑑] = 2𝑎 and 𝑢𝑓 [2𝑎] = 2𝑎, so we also make 𝑢𝑓4𝑑 the child of 𝑢𝑓2𝑎 . Finally, we have

𝐿[4𝑎] = 3𝑎, 𝐿[4𝑏] = 3𝑏, and 𝐿[4𝑐] = 3𝑏, where 𝑢𝑓 [3𝑎] = 𝑢𝑓 [3𝑏] = 3𝑏, so we make 𝑢𝑓4𝑎 , 𝑢𝑓4𝑏 , and

𝑢𝑓4𝑐 the children of 𝑢𝑓3𝑏 . In this manner, we construct 𝑇 .

We make a subtle note that it is not strictly necessary to maintain parent nodes in the hierarchy

tree with exactly one child; we can remove all such parents 𝑃 and make the child 𝐶 a direct child

of its grandparent 𝐺 . This is because it is inherently implied that the component that the child 𝐶

represents in unchanged until it joins the component represented by 𝐺 . For instance, 𝑢𝑓4𝑑 ’s sole

child is 4𝑑 . If we set 4𝑑 to be a direct child of its grandparent, 𝑢𝑓2𝑎 , and remove 𝑢𝑓4𝑑 , then it is

implied that the vertex 4𝑑 remains its own component until it joins the 2-core containing 2𝑎 (and

notably, 4𝑑 represents an unchanged component in the 3-core and in the 4-core of the graph). In

this sense, the final hierarchy tree produced in Figure 5 is actually equivalent to that in Figure 3.

link Subroutine. We now describe link-efficient. The key to link-efficient is to properly

maintain 𝑢𝑓 and 𝐿 according to their definitions given new information obtained by connected

𝑟 -cliques. The main subtlety is that after updating the connectivity information of 𝑅 or 𝑄 , in 𝑢𝑓 or

in 𝐿, there may be cascading effects resulting in new calls to link-efficient.

In more detail, link-efficient first ensures that 𝑁𝐷 [𝑅] ≤ 𝑁𝐷 [𝑄] (Line 5). We need only

perform operations on the parents of the components of the 𝑟 -cliques in 𝑢𝑓 , so we set 𝑅 and 𝑄 to

their respective parents in 𝑢𝑓 (Line 6).

The first case is if 𝑁𝐷 [𝑅] = 𝑁𝐷 [𝑄] (Line 7). Then, we need only unite 𝑅 and𝑄 in𝑢𝑓 , to maintain

that 𝑢𝑓 tracks the connectivity between 𝑟 -cliques with the same core number (Line 8). However,

the new parent 𝑃 may now need to update its value in 𝐿 based on 𝐿[𝑅] and 𝐿[𝑄]. This is because
it is possible that 𝐿[𝑃] must be updated; for instance, if 𝐿[𝑅] has a strictly greater core number

than the current 𝐿[𝑃], 𝐿[𝑃] must be updated to be 𝐿[𝑅]. link-efficient performs these updates

by calling itself on 𝐿[𝑅] and 𝑃 , and on 𝐿[𝑄] and 𝑃 , if 𝑃 ≠ 𝑅 and 𝑃 ≠ 𝑄 , respectively (Lines 9–10).

The second case is if 𝑁𝐷 [𝑅] < 𝑁𝐷 [𝑄] (Line 11). There are two main considerations. First, 𝑅

may replace the current value of 𝐿[𝑄], which we call 𝐿𝑄 , if 𝑁𝐷 [𝑅] > 𝑁𝐷 [𝐿𝑄]. Second, 𝑅 and 𝐿𝑄

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:18 Jessica Shi, Laxman Dhulipala, and Julian Shun

must be linked, since they are connected through𝑄 and could affect each other’s parent or value in

𝑢𝑓 or 𝐿, respectively. We handle these cases with a series of if statements and compare-and-swaps.

We first perform a compare-and-swap, checking if 𝐿[𝑄] is empty and replacing it with 𝑅 if so

(Line 15); if this compare-and-swap succeeds, then there is still the possibility that 𝑄’s parent in

𝑢𝑓 changed before the compare-and-swap completed, in which case 𝑄 ’s new parent is unaware of

its connection to 𝑅. In this scenario, we must call link-efficient again on 𝑅 and the new parent

of 𝑄 , since 𝑅 could potentially modify the 𝑟 -clique stored in 𝐿 corresponding to 𝑄’s new parent

(Lines 16–17).

If the previous compare-and-swap failed, then we check if 𝑁𝐷 [𝐿𝑄] < 𝑁𝐷 [𝑅] (Line 19), which
if true, means that 𝑅 is a candidate to replace 𝐿𝑄 in 𝐿. We perform another compare-and-swap

to replace 𝐿𝑄 with 𝑅 (Line 20), and if it succeeds, we must again check if 𝑄’s parent in 𝑢𝑓 has

potentially changed before the compare-and-swap completed. Again, if this occurs, we must call

link-efficient on 𝑅 and the new parent 𝑄 (Lines 21–22). We must also call link-efficient on 𝑅

and 𝐿𝑄 (Line 23), to store 𝑅’s connectivity to 𝐿𝑄 . This is because 𝑅’s “nearest” core as stored in 𝐿

may be superseded by 𝐿𝑄 . If the compare-and-swap fails, we simply try again, hence the while

loop (Line 12).

The last case is if 𝑁𝐷 [𝐿𝑄] ≥ 𝑁𝐷 [𝑅] (Line 25), in which case 𝑅 is not a candidate to replace 𝐿𝑄

in 𝐿, and we store 𝑅’s connectivity to 𝑄 by calling link-efficient on 𝑅 and 𝐿[𝑄]. Note that this is
necessary because 𝑅 and 𝐿[𝑄] could be united in 𝑢𝑓 if they have the same core number, or 𝑅 could

be a “nearest” core to 𝐿[𝑄].
This concludes our efficient link subroutine, link-efficient. We show in Section 8.1 that link-

efficient performs many fewer unite and link operations, and achieves significant speedups,

over link-basic. We provide an example of running link-efficient.

Example of link-efficient. As an example of these cascading effects, we refer to an intermediate

state of 𝑢𝑓 and 𝐿 on the example graph in Figure 1, given after the third round of peeling in

arb-nucleus-decomp-hierarchy-framework (immediately before peeling the final set of vertices

in the graph, given by the components 4𝑎, 4𝑏, 4𝑐 , and 4𝑑). This state is shown in the data structures

under “After Round 3” in Figure 4. In 𝑢𝑓 , every vertex is its own parent, and in 𝐿, we have identified

that the component corresponding to 3𝑎 is connected to 1𝑎. Note that many link operations occur

from peeling 4𝑎, 4𝑏, 4𝑐 , and 4𝑑 , including for the (𝑅,𝑄) pairs (3𝑎, 4𝑐), (3𝑏, 4𝑐), and (2𝑎, 4𝑐), which
we consider in this example. We show in Figure 4 the state of 𝑢𝑓 and 𝐿 after each of these three

calls to link-efficient (including the cascading calls that these calls generate). We list the 𝑅 and𝑄

for each link-efficient operation, as well as the cascading calls that they invoke. We assume the

operations happen sequentially for clarity, although in practice they can happen concurrently.

• 𝑅 = 3𝑎, 𝑄 = 4𝑐: We now know that 4𝑐 is connected to 3𝑎’s component, and 4𝑐 does not have a

previously set “nearest” core, so we set 𝐿[4𝑐] = 3𝑎 (Line 15).

• 𝑅 = 3𝑏, 𝑄 = 4𝑐 : We note that 𝐿[4𝑐] is now already set to a “nearest” core with core number 3, so

there is nothing new to update for 𝐿[𝑄]. However, we gain from this new link the knowledge

that 3𝑎 and 3𝑏 are connected (since 𝐿[4𝑐] = 3𝑎), so we must cascade a new link-efficient call

to (𝑅, 𝐿[𝑄]) = (3𝑏, 3𝑎) (Line 26), so that 3𝑎 and 3𝑏 can be set to the same component in 𝑢𝑓 .

– 𝑅 = 3𝑎, 𝑄 = 3𝑏: We now call unite on 3𝑎 and 3𝑏 in 𝑢𝑓 (Line 8). Say that arbitrarily, 3𝑏 is set as

the new parent of 3𝑎 and 3𝑏 in 𝑢𝑓 . Since the parents in 𝑢𝑓 are responsible for maintaining the

connection to the “nearest” core, we must transfer 𝐿[𝑅] = 𝐿[3𝑎] to 𝐿[𝑄] = 𝐿[3𝑏]. We do so by

calling link-efficient on (𝐿[𝑅], 𝑢 𝑓 .parent(𝑅)) = (1𝑎, 3𝑏) (Line 9).
∗ 𝑅 = 1𝑎, 𝑄 = 3𝑏: Now, we can set 𝐿[𝑄] = 𝐿[3𝑏] to 𝑅 = 1𝑎, since 3𝑏’s “nearest” core is now 1𝑎

(Line 15).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:19

• 𝑅 = 2𝑎, 𝑄 = 4𝑐: Since 4𝑐 already has an entry in 𝐿 that’s “nearer” to it than 2𝑎, there is nothing

new to update for 𝐿[𝑄]. However, we now know that 3𝑎 and 2𝑎 are connected, so we must

cascade a new link-efficient call to (𝑅, 𝐿[𝑄]) = (2𝑎, 3𝑎) (Line 26).
– 𝑅 = 2𝑎, 𝑄 = 3𝑎: Since the parent of 𝑄 in 𝑢𝑓 is 3𝑏, we can treat this as 𝑅 = 2𝑎 and 𝑄 = 3𝑏

(since we only need to maintain connections in 𝐿 for the parents in 𝑢𝑓). Now, we find that

3𝑏 has recorded its “nearest” core as 𝐿[3𝑏] = 1𝑎, but 2𝑎 is “nearer”. Thus, we update 𝐿[3𝑏] to
be 2𝑎 (Line 20), but now we know that 2𝑎 is connected to 1𝑎. So, we call link-efficient on

(𝑅, 𝐿[𝑄]) = (2𝑎, 1𝑎) (Line 23).
∗ 𝑅 = 1𝑎, 𝑄 = 2𝑎: We discover that 2𝑎’s “nearest” core is given by 1𝑎. We set 𝐿[𝑄] = 𝐿[2𝑎] to
𝑅 = 1𝑎 (Line 15).

Note that it is necessary for us to perform these cascading calls to link-efficient, because the

only way for 3𝑎 and 3𝑏 to discover that they should be connected is through one of the 4-core

components, and the only way for 3𝑏 to realize that the component with 2𝑎 is its “nearest” core

is also through one of the 4-core components. Similarly, the only way for 2𝑎 to realize that the

component with 1𝑎 is its “nearest” core is through first one of the 4-core components, then through

the 3-core component, in which 3𝑎, which we now know is connected to 3𝑏, had the original

adjacency to 1𝑎. Thus, information must be constantly propagated through 𝑢𝑓 and 𝐿.

Comparison to Prior Work. Sariyüce and Pinar [49] also provide a hierarchy construction

algorithm, nh, that is performed interleaved with the peeling process. They maintain a union-find

data structure that stores the connectivity of all 𝑟 -cliques considering only 𝑟 -cliques with the same

core number. However, for adjacent 𝑟 -cliques with different core numbers, they simply store all

pairs of such 𝑟 -cliques in a list. They process this list after the peeling process to construct the

hierarchy tree, and their method for processing this list requires a global view, since nh first sorts

the pairs of 𝑟 -cliques in the list based on their core numbers. Storing this list incurs additional space

potentially proportional to the number of 𝑠-cliques in the graph, which is a significant overhead.

Our main innovation in link-efficient is that we need only incur additional space overhead

proportional to the number of 𝑟 -cliques in the graph, because we process adjacent 𝑟 -cliques with

different core numbers while performing the peeling process.We are able to process this information

into a hash table 𝐿 proportional to the number of 𝑟 -cliques, so our memory overhead overall is 2𝑛𝑟 ,

where 𝑛𝑟 is the number of 𝑟 -cliques. In contrast, nh uses

(
𝑠
𝑟

)
· 𝑛𝑠 + 𝑛𝑟 additional space, where 𝑛𝑠

is the number of 𝑠-cliques. In addition, nh is sequential, whereas link-efficient is thread-safe

and carefully resolves conflicts in updating 𝑢𝑓 and 𝐿. Also, the post-processing step to construct

the hierarchy tree in nh involves many sequential dependencies, where even merges on the same

level of the tree may conflict with each other, whereas our post-processing step, construct-tree-

efficient, is fully parallel.

7.4 Practical Version of arb-nucleus-hierarchy
Finally, we make certain optimizations to our theoretically-efficient (𝑟, 𝑠) nucleus decomposition

hierarchy algorithm, arb-nucleus-hierarchy (Algorithm 1) to improve its performance in practice.

We maintain the two-pass paradigm of first computing the (𝑟, 𝑠)-clique core numbers of each 𝑟 -

clique and then constructing the hierarchy tree 𝑇 . However, we do not explicitly store linked lists

containing all pairs of 𝑠-clique-adjacent 𝑟 -cliques, since this represents too much of a memory

overhead to be practical, particularly for larger 𝑟 and 𝑠 . We also do not explicitly generate the graph

𝐻 given by these linked lists (Line 14).

Instead, we use a single union-find data structure tomaintain the connected components (through-

out the loop on Lines 12–20), and for each 𝑖 ∈ {𝑘, 𝑘 − 1, . . . , 1} (Line 12), we iterate through all

𝑟 -cliques 𝑅 with core number 𝑖 and their 𝑠-clique-adjacent 𝑟 -cliques 𝑅′. We perform a parallel

sort on the 𝑟 -cliques based on their core numbers, which allows us to efficiently extract 𝑟 -cliques

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:20 Jessica Shi, Laxman Dhulipala, and Julian Shun

𝑛 𝑚

amazon 334,863 925,872

dblp 317,080 1,049,866

youtube 1,134,890 2,987,624

skitter 1,696,415 11,095,298

livejournal 3,997,962 34,681,189

orkut 3,072,441 117,185,083

friendster 65,608,366 1.806 × 10
9

Table 1. Sizes of our input graphs, which are from SNAP [37].

with the same core numbers; this adds a small additional memory overhead, which we observe in

Section 8.1. For each such pair of 𝑟 -cliques 𝑅 and 𝑅′ where 𝑁𝐷 [𝑅′] ≥ 𝑁𝐷 [𝑅], we directly unite

them in our union-find data structure to obtain the desired connected components; this replicates

the same information stored in the linked lists (on Lines 6–8). We construct the requisite new

parents in the hierarchy tree 𝑇 given the computed connected components, and we reuse the same

union-find data structure for subsequent 𝑖 .

8 Evaluation

Environment and Inputs. We run our experiments on a Google Cloud Platform instance with a

30-core machine with two-way hyper-threading, with 3.9 GHz Intel Cascade Lake processors and

240 GB of main memory. We use all cores when testing parallel implementations, unless specified

otherwise. Our implementations are written in C++ and we compile our code using g++ (version

7.4.0) with the -O3 flag. We use parallel primitives and the work-stealing scheduler from ParlayLib

by Blelloch et al. [6]. We terminate any experiment that takes over 4 hours. We test our algorithms

on real-world graphs from the Stanford Network Analysis Project (SNAP) [37], shown in Table 1.

We implement all three versions of our exact (𝑟, 𝑠) nucleus decomposition hierarchy algorithms,

including our theoretically-efficient arb-nucleus-hierarchy (Algorithm 1, with the optimiza-

tions described in Section 7.4), which we call anh-te, and our nucleus decomposition hierarchy

framework arb-nucleus-decomp-hierarchy-framework (Algorithm 3) using both link-basic

(Algorithm 4) and link-efficient (Algorithm 5), which we call anh-bl and anh-el, respectively.

We also implement our approximate (𝑟, 𝑠) nucleus decomposition hierarchy algorithm, arb-

approx-nucleus-hierarchy (using Algorithm 2). We integrate approx-arb-nucleus with each

of anh-te, anh-el, and anh-bl for the hierarchy construction, giving us three implementations,

approx-anh-te, approx-anh-el, and approx-anh-bl, respectively.

We compare our hierarchy algorithms to nh, the state-of-the-art sequential (𝑟, 𝑠) nucleus decom-

position hierarchy implementation by Sariyüce and Pinar [49] for (1, 2), (2, 3), and (3, 4) nucleus
decomposition. Note that nh does not generalize to other 𝑟 and 𝑠 values. nh, like anh-bl and

anh-el, constructs the hierarchy while computing the (𝑟, 𝑠)-clique-core numbers of the graph. For

the special case of 𝑘-core, we also compare to phcd, the state-of-the-art parallel 𝑘-core hierarchy

implementation by Chu et al. [11].
8.1 Comparison of anh-te, anh-el, and anh-bl

Figure 6 compares our exact (𝑟, 𝑠) nucleus decomposition hierarchy algorithms, anh-te, anh-el,

and anh-bl, against each other, for various 𝑟 and 𝑠 . We show 𝑟 < 𝑠 ≤ 5 here, but we ran all of our

algorithms for 𝑟 < 𝑠 ≤ 7. Also, the running times listed in these figures do not include the time

needed to compute the low out-degree orientation or to compute the initial 𝑠-clique-degrees of

each 𝑟 -clique, which are the same across all of our algorithms (note that we do include these times

when comparing to other work in Section 8.2). However, our running times do include the time

required to compute the (𝑟, 𝑠)-clique-core numbers of each 𝑟 -clique, which notably for anh-te is

given by arb-nucleus from [55].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:21

1
amazon
(0.034 s)

dblp
(0.058 s)

youtube
(0.12 s)

skitter
(0.28 s)

livejournal
(1.03 s)

orkut
(2.61 s)

friendster
(35.53 s)

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(1, 2)

ANH-TE ANH-EL
ANH-BL

amazon
(0.074 s)

dblp
(0.098 s)

youtube
(0.3 s)

skitter
(2.82 s)

livejournal
(8.64 s)

orkut
(36.56 s)

friendster
(436.28 s)

0
1
2
3
4
5
6
7
8
9
10
11
12

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(2, 3)

ANH-TE ANH-EL
ANH-BL

1
amazon
(0.12 s)

dblp
(2.67 s)

youtube
(4.22 s)

skitter
(75.51 s)

friendster
(1141.32 s)

0

10

20

30

40

50

60

70

80

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(2, 4)

ANH-TE ANH-EL
ANH-BL

amazon
(0.09 s)

dblp
(80.69 s)

youtube
(9.38 s)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(2, 5)

ANH-TE
ANH-EL
ANH-BL

amazon
(0.1 s)

dblp
(1.39 s)

youtube
(3.2 s)

skitter
(42.59 s)

livejournal
(652.26 s)

orkut
(1091.51 s)

0

1

2

3

4

5

6

7

8

9

10

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(3, 4)

ANH-TE ANH-EL
ANH-BL

amazon
(0.07 s)

dblp
(88.32 s)

youtube
(8.18 s)

1
2
3
4
5
6
7
8
9
10
11
12
13

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(3, 5)

ANH-TE
ANH-EL
ANH-BL

amazon
(0.058 s)

dblp
(51.63 s)

youtube
(7.09 s)

skitter
(478.27 s)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(4, 5)

ANH-TE
ANH-EL
ANH-BL

Fig. 6. Multiplicative slowdowns of our parallel nucleus decomposition hierarchy implementations anh-te,
anh-el, and anh-bl, over the fastest of the three for each graph, for 𝑟 < 𝑠 ≤ 5. We have omitted bars where
our implementations run out of memory or time out after 4 hours, and we have omitted graphs where only
one of anh-te, anh-el, and anh-bl completes. Below each graph in parentheses is the fastest running time
among the three implementations. We have also included a line marking a multiplicative slowdown of 1.

Overall, we find that anh-el is faster if the difference between 𝑠 and 𝑟 is small (generally, if

𝑠 − 𝑟 ≤ 2), and anh-te is faster in all other cases. The exception is for 𝑘-core (or (1, 2)-nucleus)

decomposition, where anh-te is 2.38–21.95x faster than anh-el. This is because the 𝑘-core decom-

position requires far lower overhead to compute the core numbers per vertex compared to higher

𝑟 and 𝑠 , since we need only maintain the degree of each vertex. The benefit of anh-el is due to

the improved locality in iterating over and processing 𝑠-cliques once, rather than recomputing the

𝑠-cliques twice. This is not a benefit for 𝑘-core, because iterating over edges is a much simpler and

cache-friendly pattern. Also, anh-bl is significantly slower than both anh-te and anh-el, and

runs out of memory for many values of 𝑟 and 𝑠 , since it has a much larger memory footprint from

storing a union-find structure per core number. Overall, anh-el is up to 2.37x faster than anh-te,

and anh-te is up to 41.55x faster than anh-el, where we see the largest speedups in anh-te over

anh-el when 𝑠 is much larger than 𝑟 . anh-bl is up to 14.55x slower than anh-el, and up to 11.96x

slower than anh-te.

The cases in which anh-el outperforms anh-te and vice versa, and the reason for the slowness

of anh-bl, is due to the number of link and unite operations. Indeed, for the dblp and youtube

graphs, particularly for larger 𝑟 and when the difference between 𝑟 and 𝑠 is small, the number of

times in which anh-te calls link and unite is 1.08–13.67x the number of times in which anh-el

calls link and unite. For smaller 𝑟 and when the difference between 𝑟 and 𝑠 is large, anh-el calls

link and unite between 1.02–18.94x more than anh-te. Looking at fixed 𝑟 and increasing 𝑠 , we

observe that anh-el performs many more cascading calls to itself as 𝑠 increases, since
(
𝑠
𝑟

)
increases

and anh-el more likely needs to connect two 𝑟 -cliques across multiple levels of the hierarchy tree.

anh-bl is much slower than both anh-te and anh-el, performing up to 39.75x the number of link

and unite calls. anh-bl repeatedly performs unite operations equal to the core number of each

𝑟 -clique, which can be redundant, since if two 𝑟 -cliques are connected in a higher core, they are

necessarily connected in the lower core.

In terms of memory usage, considering the memory overhead of building and constructing the

hierarchy (not including the space required to store the graph or the (𝑟, 𝑠)-clique-core numbers

of each 𝑟 -clique), on dblp and youtube, anh-bl uses 1.53–10.03x the amount of overhead that

anh-el uses, and anh-te uses 1.08–1.11x the amount of overhead that anh-el uses. We observe

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:22 Jessica Shi, Laxman Dhulipala, and Julian Shun

102
103
104
105

amazon
(0.002 s)

dblp
(0.058 s)

youtube
(0.12 s)

skitter
(0.28 s)

livejournal
(1.03 s)

orkut
(2.61 s)

friendster
(35.53 s)

0

5

10

15

20

25

30

35

40

45

50

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(1, 2) (2, 3)
(2, 4) (2, 5)
(2, 6) (2, 7)
(3, 5) (3, 6)
(3,7) (4,5)
(4,6) (4, 7)
(5,6) (5,7)
(6,7)

Fig. 7. Multiplicative slowdowns of parallel arb-

nucleus-hierarchy for each (𝑟, 𝑠) combination over
the fastest running time for parallel arb-nucleus-
hierarchy across all 𝑟 < 𝑠 ≤ 7 for each graph, consid-
ering the fastest of anh-te, anh-el, and anh-bl. The
fastest time is labeled in parentheses below each graph.
We have omitted bars where arb-nucleus-hierarchy
runs out of memory or times out after 4 hours.

1 2 4 8 16 30 30h
0

5

10

15

20

25

30

Number of workers

Sp
ee

du
p

ov
er

si
ng

le
-t

hr
ea

de
d

(2, 3) dblp
(2, 4) dblp
(2, 5) dblp
(3, 4) dblp
(3, 5) dblp
(4, 5) dblp

(2, 3) skitter
(2, 4) skitter
(3, 4) skitter
(4, 5) skitter

1 2 4 8 16 30 30h
0

5

10

15

20

25

30

Number of workers

Sp
ee

du
p

ov
er

si
ng

le
-t

hr
ea

de
d

(2, 3) dblp
(2, 4) dblp
(2, 5) dblp
(3, 4) dblp
(3, 5) dblp
(4, 5) dblp

(2, 3) skitter
(2, 4) skitter
(3, 4) skitter
(4, 5) skitter

Fig. 8. Speedup of anh-te on the left and anh-el

on the right over their respective single-threaded
running times, on dblp and skitter for various 𝑟
and 𝑠 . “30h” denotes 30-cores with two-way hyper-
threading.

that anh-el is the most memory efficient overall, since it only maintains two arrays proportional

to the number of 𝑟 -cliques (𝑢𝑓 and 𝐿). anh-te incurs almost the same memory overhead, with

a minor additional cost attributed to maintaining 𝑟 -cliques sorted by their core numbers (which

we discuss in Section 7.4), and anh-bl incurs much more overhead to maintain union-find data

structures proportional to the number of 𝑟 -cliques per core number.

To provide some context into how long the hierarchy construction takes compared to the coreness

computation, we measured the time for just computing coreness values and compared it to the

total time for each of our algorithms. The coreness computation time represents 46.53%, 35.26%,

and 36.08% of the total time on average in anh-el, anh-bl, and anh-te, respectively. Note that this

ignores the locality effects of interleaving the computations in anh-el and anh-bl. Nevertheless, we

see that on average, anh-el spends the least amount of time on hierarchy construction, indicating

the effectiveness of our optimizations.

8.2 Performance of Exact Hierarchy
Figure 7 shows the best running times for all graphs, over 𝑟 < 𝑠 ≤ 7, considering all of our exact

(𝑟, 𝑠) nucleus decomposition hierarchy algorithms, anh-te, anh-el, and anh-bl, excluding the

time needed to compute our low out-degree orientation and the initial 𝑠-clique-degrees of each

𝑟 -clique. In general, larger (𝑟, 𝑠) values correspond to longer running times. However, some of the

times for larger values of (𝑟, 𝑠) are faster than for smaller values of (𝑟, 𝑠) (especially on amazon)

because the maximum coreness values for the larger values of (𝑟, 𝑠) are small and the algorithms

finish quickly.

Figure 8 shows the scalability of anh-te and anh-el over different numbers of threads on

dblp and skitter, and we see good scalability overall. Across all of our graphs and for 𝑟 < 𝑠 ≤ 7,

we observe up to 24.75x self-relative speedups (and a median of 15.57x) for anh-te and up to

30.96x self-relative speedups (and a median of 14.13x) for anh-el. Generally, we observe greater

self-relative speedups for larger 𝑟 and 𝑠 and for larger graphs.

Comparison to Other Implementations. Figure 9 shows the comparison of our parallel (1, 2),
(2, 3), and (3, 4) nucleus decomposition hierarchy implementations to other implementations. Note

that here, we include in our implementations the time needed to compute the low out-degree

orientation and to compute the initial 𝑠-clique-degrees of each 𝑟 -clique. We do not include the time

required to load the graph in both our and other implementations.

For (1, 2) nucleus (𝑘-core) decomposition, we compare to the parallel phcd [11] and the sequential

nh [49]. Our fastest implementation for 𝑘-core is anh-te, and we see that anh-te is up to 2.57x

slower than phcd overall, but 1.87x faster than phcd on dblp. We note that phcd is optimized

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:23

1
amazon
(0.031 s)

dblp
(0.058 s)

youtube
(0.1 s)

skitter
(0.18 s)

livejournal
(0.49 s)

orkut
(1.02 s)

friendster
(32 s)

0
5
10
15
20
25
30
35
40
45
50
55
60

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(1, 2)

ANH-TE (parallel) PHCD (parallel)
NH (sequential) ANH-TE (single-threaded)

1
amazon
(0.097 s)

dblp
(0.12 s)

youtube
(0.35 s)

skitter
(2.89 s)

livejournal
(9.29 s)

orkut
(40.43 s)

friendster
(526.3 s)

0
5
10
15
20
25
30
35
40
45
50
55

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(2, 3)

ANH-TE (parallel)
ANH-EL (parallel)

NH (sequential)
ANH-TE (single-threaded)
ANH-EL (single-threaded)

1
amazon
(0.12 s)

dblp
(1.5 s)

youtube
(3.27 s)

skitter
(43.46 s)

livejournal
(677.92 s)

orkut
(1113.85 s)

0

5

10

15

20

25

30

35

40

M
ul

tip
lic

at
iv

e
sl

ow
do

w
ns

(3, 4)

ANH-TE (parallel) ANH-EL (parallel)
NH (sequential) ANH-TE (single-threaded)

ANH-EL (single-threaded)

Fig. 9. Multiplicative slowdowns, comparing anh-te, anh-el, the parallel phcd [11], and the sequential
nh [49], for (1, 2), (2, 3), and (3, 4) nucleus decomposition. We give the multiplicative slowdown over the
fastest implementation for each graph and each (𝑟, 𝑠), where the fastest running time is labeled in parentheses
below each graph. We include end-to-end running times in this comparison, excluding only the time required
to load the graph. We have omitted bars where the implementation runs out of memory or times out after 4
hours. We have also included a line marking a multiplicative slowdown of 1.

101 102 103 104 105

Number of Vertices

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Nuclei Type

(2,3)

(2,4)

(2,5)

(2,6)

Hierarchy No Hierarchy

101

102

103

R
u

n
n

in
g

T
im

e

(2,3)-nuclei

(2,4)-nuclei

(2,5)-nuclei

(2,6)-nuclei

Fig. 10. (Left) Number of vertices vs. edge density of subgraphs from various (2, 𝑠)-nuclei on the youtube
graph. (Right) Running times for finding all (2, 𝑠)-nuclei with and without the hierarchy.

for the 𝑘-core decomposition, rather than general (𝑟, 𝑠) nucleus decomposition, whereas anh-te

generalizes for larger 𝑟 and 𝑠 . Like anh-te, phcd constructs the hierarchy tree from the bottom-up

after computing the core numbers of each vertex, but unlike anh-te, phcd leverages the information

from computing the core numbers to optimize for the 𝑘-core hierarchy, by reordering vertices

based on their core numbers. This optimization allows them to more efficiently divide the work of

constructing the hierarchy across different threads, and allows them to reduce the work in practice

when iterating over the neighbors of a vertex 𝑣 with larger core numbers than that of 𝑣 . Compared

to the sequential nh, anh-te is 4.67–58.84x faster, particularly on larger graphs.

For (1, 2), (2, 3), and (3, 4) nucleus decomposition, we compare our parallel anh-te and anh-el

to the sequential nh [49]. Considering the fastest of anh-te and anh-el for each graph, our

implementations are 3.76–23.54x faster, demonstrating that we achieve good speedups from our

use of parallelization. Sequentially, our fastest algorithm is between 2.02x faster and 4.2x slower

than nh. We get slowdowns due to the additional overheads of parallel subroutines and the fact

that our code has a general structure for supporting arbitrary (𝑟, 𝑠) values, whereas the code of [49]
is specialized for the specific values of (1, 2), (2, 3), and (3, 4). These slowdowns are somewhat

counteracted by our faster clique enumeration algorithm, leading to speedups in some cases.

Usefulness of the Hierarchy. In Figure 10, we show the edge densities of various (2, 𝑠)-nuclei
in the youtube graph. The edge density of a subgraph 𝑆 is defined to be the number of edges in 𝑆

divided by

(|𝑆 |
2

)
(the total possible number of edges). Edge density is the metric used to evaluate the

quality of subgraphs from nucleus decompositions [52], and finding dense subgraphs subject to a

size constraint has important applications.

For a fixed 𝑟 and 𝑠 , having the nucleus hierarchy enables us to efficiently find all of the 𝑐-(𝑟, 𝑠)
nuclei for any value of 𝑐 by simply removing all internal nodes corresponding to 𝑐′-(𝑟, 𝑠) nuclei for
𝑐′ < 𝑐 , and having each resulting subtree be a 𝑐-(𝑟, 𝑠) nucleus that contains all of its leaves. On the

other hand, given only the core numbers and no hierarchy, to find the 𝑐-(𝑟, 𝑠) nuclei for a given

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:24 Jessica Shi, Laxman Dhulipala, and Julian Shun

value of 𝑐 , one would need to run connected components on all 𝑟 -cliques with core number ≥ 𝑐 ,

with connectivity defined by 𝑠-clique adjacency, which is much more expensive than simply cutting

the hierarchy. Indeed, Figure 10 shows the time needed to generate all (2, 𝑠) nuclei for various
values of 𝑠 with and without the hierarchy for the youtube graph. We see that using the hierarchy

is 5.84–834.09x faster than not using the hierarchy.

8.3 Performance of Approximate Hierarchy
We considered 𝛿 = 0.1, 0.5, and 1 for our experiments for approximate (𝑟, 𝑠) nucleus decomposition

(𝛿 is the approximation parameter in Algorithm 2). We first compare approx-arb-nucleus to

arb-nucleus [55] and see a speedup of up to 16.16x for 𝛿 = 0.1, up to 8.35x for 𝛿 = 0.5, and up to

10.88x for 𝛿 = 1.

Besides the computation of the (𝑟, 𝑠)-clique-core numbers, approx-anh-te, approx-anh-el,

and approx-anh-bl are identical to anh-te, anh-el, and anh-bl, respectively. In other words,

their hierarchy construction procedure is the same. We observe up to a 3.3x speedup considering

the fastest of our approximate algorithms for each graph and 𝑟 < 𝑠 ≤ 7, over the fastest of our

exact algorithms. Notably, for 𝛿 = 0.1, we are able to compute the (2, 5) nucleus decomposition

hierarchy on friendster in 8783.2 seconds, where our exact implementations timeout at 4 hours. The

improvements in running time using our approximate algorithms are lower than when comparing

approx-arb-nucleus to arb-nucleus [55] because even in our approximate algorithms, 𝑠-cliques

must be exactly counted per 𝑟 -clique, and much of the time is spent doing this.

In terms of accuracy, the average error in the (𝑟, 𝑠)-clique-core number per 𝑟 -clique is relatively

low for all of our 𝛿 values. For 𝛿 = 0.1, across all of our graphs and for 𝑟 < 𝑠 ≤ 7, our coreness

estimates per 𝑟 -clique are have a multiplicative error of 1–2.92x on average (with a median of 1.33x)

compared to the exact coreness numbers. For 𝛿 = 0.5, the coreness estimates range from having

a multiplicative error of 1–2.92x on average as well, with a median of 1.34x, and for 𝛿 = 1, the

coreness estimates range from having a multiplicative error of 1–3.05x on average, with a median

of 1.35x. The multiplicative errors of the maximum (𝑟, 𝑠)-clique-core number, across all graphs

and for 𝑟 < 𝑠 ≤ 7, are also reasonably low, with a median of 1.6x for 𝛿 = 0.1, a median of 2x for

𝛿 = 0.5, and a median of 2x for 𝛿 = 1. The maximum multiplicative error for a given 𝑟 -clique is

6.73x for 𝛿 = 0.1, 6.98x for 𝛿 = 0.5, and 7.32x for 𝛿 = 1, but these arise for large 𝑠 , notably when

𝑟 = 5 and 𝑠 = 7 for all 𝛿 , and these errors are still much lower than the theoretical guarantee of

(
(
𝑠
𝑟

)
+ 𝛿) · (1 + 𝛿) given by Theorem 6.1. Note that the theoretical bound is a worst case bound. In

practice, (𝑟, 𝑠)-cliques whose core numbers are close to the end of the range of each bucket will

have a much better approximation. Furthermore, graphs with a low peeling complexity will likely

have more (𝑟, 𝑠)-cliques peeled before moving to the next round (Line 17 of Algorithm 2), which

will make the approximation better.

9 Conclusion
We have presented new parallel exact and approximate algorithms for nucleus hierarchy construc-

tion with strong theoretical guarantees. We have developed optimized implementations of our

algorithms, which interleave the coreness number computation with the hierarchy construction.

Our experiments showed that our implementations outperform state-of-the-art implementations

while achieving good parallel scalability.

Acknowledgements. This research was supported by NSF Graduate Research Fellowship #1122374,
DOE Early Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty

Research Award, Google Research Scholar Award, cloud computing credits from Google-MIT,

FinTech@CSAIL Initiative, DARPA SDH Award #HR0011-18-3-0007, and Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-sponsored by the Semiconductor Research

Corporation (SRC) and DARPA.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:25

References
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-Based Community Search: A Truss-Equivalence Based Indexing Approach.

Proc. VLDB Endow. 10, 11 (Aug. 2017), 1298–1309.
[2] Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. 2016. Distributed k-Core Decomposition

and Maintenance in Large Dynamic Graphs. In ACM International Conference on Distributed and Event-Based Systems.
161–168.

[3] Gary D Bader and Christopher WV Hogue. 2003. An Automated Method for Finding Molecular Complexes in Large

Protein Interaction Networks. BMC Bioinformatics 4, 1 (2003), 1–27.
[4] Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, and Torsten Hoefler. 2020.

High-Performance Parallel Graph Coloring with Strong Guarantees on Work, Depth, and Quality. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[5] Mark Blanco, Tze Meng Low, and Kyungjoo Kim. 2019. Exploration of Fine-Grained Parallelism for Load Balancing

Eager k-Truss on GPU and CPU. In IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
[6] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief Announcement: ParlayLib – A Toolkit for

Parallel Algorithms on Shared-Memory Multicore Machines. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA).

[7] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded Computations by Work Stealing. J. ACM
46, 5 (Sept. 1999), 720–748.

[8] Yulin Che, Zhuohang Lai, Shixuan Sun, Yue Wang, and Qiong Luo. 2020. Accelerating Truss Decomposition on

Heterogeneous Processors. Proc. VLDB Endow. 13, 10 (June 2020), 1751–1764.
[9] Pei-Ling Chen, Chung-Kuang Chou, and Ming-Syan Chen. 2014. Distributed Algorithms for k-Truss Decomposition.

In IEEE International Conference on Big Data (BigData). 471–480.
[10] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing Algorithms. SIAM J. Comput. 14, 1 (Feb.

1985), 210–223.

[11] Deming Chu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2022. Hierarchical Core Decomposition

in Parallel: From Construction to Subgraph Search. In IEEE International Conference on Data Engineering (ICDE).
1138–1151.

[12] Jonathan Cohen. 2008. Trusses: Cohesive Subgraphs for Social Network Analysis. National Security Agency Technical
Report 16, 3.1 (2008).

[13] Ye Conghuan. 2011. Dense Subgroup Identifying in Social Network. In International Conference on Advances in Social
Networks Analysis and Mining. 555–556.

[14] Alessio Conte, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2018. Discovering 𝑘-Trusses in

Large-Scale Networks. In IEEE High Performance Extreme Computing Conference (HPEC). 1–6.
[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3. ed.).

MIT Press.

[16] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A Framework for Parallel Graph Algorithms Using

Work-efficient Bucketing. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.
[17] Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, and Shangdi Yu. 2022. Differential

Privacy from Locally Adjustable Graph Algorithms: 𝑘-Core Decomposition, Low Out-Degree Ordering, and Densest

Subgraphs. In IEEE Annual Symposium on Foundations of Computer Science. 754–765.
[18] Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and Kui Wu. 2022. Nucleus Decomposition in Probabilistic

Graphs: Hardness and Algorithms. In IEEE International Conference on Data Engineering (ICDE). 218–231.
[19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin Lin. 2019. Efficient Algorithms for

Densest Subgraph Discovery. Proc. VLDB Endow. 12, 11 (July 2019), 1719–1732.

[20] Martin Farach-Colton and Meng-Tsung Tsai. 2014. Computing the Degeneracy of Large Graphs. In Latin American
Symposium on Theoretical Informatics. 250–260.

[21] Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou. 2006. MotifCut: Regulatory Motifs

Finding with Maximum Density Subgraphs. Bioinformatics 22, 14 (2006), e150–e157.
[22] Hillel Gazit. 1991. An Optimal Randomized Parallel Algorithm for Finding Connected Components in a Graph. SIAM

J. Comput. 20, 6 (1991), 1046–1067.
[23] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. 2019. Improved Parallel Algorithms for Density-Based

Network Clustering. In Proceedings of the 36th International Conference on Machine Learning. 2201–2210.
[24] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering Large Dense Subgraphs in Massive Graphs. In

Proc. VLDB Endow. 721–732.
[25] J. Gil, Y. Matias, and U. Vishkin. 1991. Towards a Theory of Nearly Constant Time Parallel Algorithms. In IEEE

Symposium on Foundations of Computer Science (FOCS). 698–710.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

32:26 Jessica Shi, Laxman Dhulipala, and Julian Shun

[26] Q. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen. 2020. Faster Parallel Core Maintenance Algorithms

in Dynamic Graphs. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31, 6 (2020), 1287–1300.
[27] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-Truss Community in Large and

Dynamic Graphs. In ACM SIGMOD International Conference on Management of Data. 1311–1322.
[28] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approximate Closest Community Search in

Networks. Proc. VLDB Endow. 9, 4 (Dec. 2015), 276–287.
[29] Yihao Huang, Claire Wang, Jessica Shi, and Julian Shun. 2023. Efficient Algorithms for Parallel Bi-core Decomposition.

In Symposium on Algorithmic Principles of Computer Systems (APOCS). 17–32.
[30] J. Jaja. 1992. Introduction to Parallel Algorithms. Addison-Wesley Professional.

[31] Siddhartha V. Jayanti and Robert E. Tarjan. 2016. A Randomized Concurrent Algorithm for Disjoint Set Union. In ACM
Symposium on Principles of Distributed Computing (PODC). 75–82.

[32] H. Jin, N. Wang, D. Yu, Q. Hua, X. Shi, and X. Xie. 2018. Core Maintenance in Dynamic Graphs: A Parallel Approach

Based on Matching. IEEE Transactions on Parallel and Distributed Systems (TPDS) 29, 11 (2018), 2416–2428.
[33] H. Kabir and K. Madduri. 2017. Parallel 𝑘-Core Decomposition on Multicore Platforms. In IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW). 1482–1491.
[34] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-Truss Decomposition on Multicore Systems. In IEEE High

Performance Extreme Computing Conference (HPEC). 1–7.
[35] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015. k-Core Decomposition of Large

Networks on a Single PC. Proc. VLDB Endow. 9, 1 (2015), 13–23.
[36] Kartik Lakhotia, Rajgopal Kannan, Viktor K. Prasanna, and César A. F. De Rose. 2020. RECEIPT: REfine CoarsE-grained

IndePendent Tasks for Parallel Tip decomposition of Bipartite Graphs. Proc. VLDB Endow. 14, 3 (2020), 404–417.
[37] Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.

edu/data.

[38] R. Li, J. Yu, and R. Mao. 2014. Efficient Core Maintenance in Large Dynamic Graphs. IEEE Transactions on Knowledge
& Data Engineering (TKDE) 26, 10 (oct 2014), 2453–2465.

[39] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian. 2021. Hierarchical Core Maintenance on Large

Dynamic Graphs. Proc. VLDB Endow. 14, 5 (2021), 757–770.
[40] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2020. Efficient (𝛼 , 𝛽)-Core Computation

in Bipartite Graphs. Proc. VLDB Endow. 29, 5 (2020), 1075–1099.
[41] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun. 2022. Parallel Batch-Dynamic Algo-

rithms for 𝑘-Core Decomposition and Related Graph Problems. In ACM Symposium on Parallelism in Algorithms and
Architectures. 191–204.

[42] Tze Meng Low, Daniele G. Spampinato, Anurag Kutuluru, Upasana Sridhar, Doru Thom Popovici, Franz Franchetti,

and Scott McMillan. 2018. Linear Algebraic Formulation of Edge-Centric k-Truss Algorithms with Adjacency Matrices.

In IEEE High Performance Extreme Computing Conference (HPEC). 1–7.
[43] Qi Luo, Dongxiao Yu, Xiuzhen Cheng, Zhipeng Cai, Jiguo Yu, and Weifeng Lv. 2020. Batch Processing for Truss

Maintenance in Large Dynamic Graphs. IEEE Transactions on Computational Social Systems 7, 6 (2020), 1435–1446.
[44] Qi Luo, Dongxiao Yu, Hao Sheng, Jiguo Yu, and Xiuzhen Cheng. 2021. Distributed Algorithm for Truss Maintenance

in Dynamic Graphs. In Parallel and Distributed Computing, Applications and Technologies (PDCAT). 104–115.
[45] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and Clustering and Graph Coloring Algorithms. J.

ACM 30, 3 (July 1983).

[46] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2012. Distributed k-Core Decomposition. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 24, 2 (2012), 288–300.

[47] Ahmet Erdem Sariyüce. 2021. Motif-Driven Dense Subgraph Discovery in Directed and Labeled Networks. In The Web
Conference (WWW). 379–390.

[48] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V Çatalyürek. 2016. Incremental

k-Core Decomposition: Algorithms and Evaluation. Proc. VLDB Endow. 25, 3 (2016), 425–447.
[49] Ahmet Erdem Sariyüce and Ali Pinar. 2016. Fast Hierarchy Construction for Dense Subgraphs. Proc. VLDB Endow. 10,

3 (Nov. 2016), 97–108.

[50] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense Subgraph Discovery. In ACM
International Conference on Web Search and Data Mining (WSDM). 504–512.

[51] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for Hierarchical Dense Subgraph Discovery.

Proc. VLDB Endow. 12, 1 (2018), 43–56.
[52] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2017. Nucleus Decompositions for Identifying

Hierarchy of Dense Subgraphs. ACM Trans. Web 11, 3, Article 16 (July 2017), 16:1–16:27 pages.

[53] Stephen B. Seidman. 1983. Network Structure and Minimum Degree. Soc. Networks 5, 3 (1983), 269 – 287.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Parallel Algorithms for Hierarchical Nucleus Decomposition 32:27

[54] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2021. Parallel Clique Counting and Peeling Algorithms. In SIAM
Conference on Applied and Computational Discrete Algorithms (ACDA). 135–146.

[55] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2022. Theoretically and Practically Efficient Parallel Nucleus Decom-

position. Proc. VLDB Endow. 15, 3 (feb 2022), 583–596.
[56] Jessica Shi, Laxman Dhulipala, and Julian Shun. 2023. Parallel Algorithms for Hierarchical Nucleus Decomposition.

arXiv:2306.08623 [cs.DC]

[57] Jessica Shi and Julian Shun. 2020. Parallel Algorithms for Butterfly Computations. In SIAM Symposium on Algorithmic
Principles of Computer Systems (APoCS). 16–30.

[58] Shaden Smith, Xing Liu, Nesreen K Ahmed, Ancy Sarah Tom, Fabrizio Petrini, and George Karypis. 2017. Truss

Decomposition on Shared-Memory Parallel Systems. In IEEE High Performance Extreme Computing Conference (HPEC).
1–6.

[59] Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. 2020. Fully Dynamic Approximate 𝑘-Core Decomposition in

Hypergraphs. ACM Trans. Knowl. Discov. Data (TKDD) 14, 4, Article 39 (May 2020).

[60] Charalampos Tsourakakis. 2015. The 𝑘-Clique Densest Subgraph Problem. In The Web Conference (WWW). 1122–1132.
[61] Liptia Venica and Gusti Ayu Putri Saptawati. 2021. Finding Dense Subgraph for Community Detection on Social

Network Based on Information Diffusion. In International Conference on Data and Software Engineering (ICoDSE). 1–6.
[62] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks. Proc. VLDB Endow. 5, 9 (May 2012),

812–823.

[63] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient Bitruss Decomposition for Large-Scale

Bipartite Graphs. In IEEE International Conference on Data Engineering (ICDE). 661–672.
[64] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. Yu. 2019. I/O Efficient Core Graph Decomposition: Application to Degeneracy

Ordering. IEEE Transactions on Knowledge & Data Engineering (TKDE) 31, 01 (jan 2019), 75–90.

[65] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting Analyzing and Visualizing Triangle k-Core Motifs within

Networks. In IEEE International Conference on Data Engineering (ICDE). 1049–1060.
[66] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss Maintenance in Evolving Graphs. In

ACM SIGMOD International Conference on Management of Data. 1024–1041.
[67] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. 2017. A Fast Order-Based Approach for Core Maintenance. In IEEE International

Conference on Data Engineering (ICDE). 337–348.
[68] Feng Zhao and Anthony KH Tung. 2012. Large Scale Cohesive Subgraphs Discovery for Social Network Visual Analysis.

Proc. VLDB Endow. 6, 2 (2012), 85–96.
[69] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In Database Systems for Advanced Applications

(DASFAA). 218–233.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 32. Publication date: February 2024.

https://arxiv.org/abs/2306.08623

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Overview of Contributions
	5 Nucleus Decomposition Hierarchy
	6 Approximate Nucleus Decomposition
	7 Practical Implementations
	7.1 Interleaved Hierarchy Framework
	7.2 Basic Version of link
	7.3 Efficient Version of link
	7.4 Practical Version of arb-nucleus-hierarchy

	8 Evaluation
	8.1 Comparison of anh-te, anh-el, and anh-bl
	8.2 Performance of Exact Hierarchy
	8.3 Performance of Approximate Hierarchy

	9 Conclusion
	References

