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ABSTRACT
This paper studies the nucleus decomposition problem, which has

been shown to be useful in finding dense substructures in graphs.

We present a novel parallel algorithm that is efficient both in theory

and in practice. Our algorithm achieves awork complexitymatching

the best sequential algorithm while also having low depth (parallel

running time), which significantly improves upon the only existing

parallel nucleus decomposition algorithm (Sariyüce et al., PVLDB
2018). The key to the theoretical efficiency of our algorithm is a new

lemma that bounds the amount of work done when peeling cliques

from the graph, combined with the use of a theoretically-efficient

parallel algorithms for clique listing and bucketing. We introduce

several new practical optimizations, including a new multi-level

hash table structure to store information on cliques space-efficiently

and a technique for traversing this structure cache-efficiently. On

a 30-core machine with two-way hyper-threading on real-world

graphs, we achieve up to a 55x speedup over the state-of-the-art

parallel nucleus decomposition algorithm by Sariyüce et al., and
up to a 40x self-relative parallel speedup. We are able to efficiently

compute larger nucleus decompositions than prior work on several

million-scale graphs for the first time.
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1 INTRODUCTION
Discovering dense substructures in graphs is a fundamental topic

in graph mining, and has been studied across many areas including

computational biology [5, 25], spam and fraud-detection [26], and

large-scale network analysis [3]. Recently, Sariyüce et al. [55] intro-
duced the nucleus decomposition problem, which generalizes the

influential notions of 𝑘-cores and 𝑘-trusses to 𝑘-(𝑟, 𝑠) nucleii, and
can better capture higher-order structures in the graph. Informally,

a 𝑘-(𝑟, 𝑠) nucleus is the maximal induced subgraph such that every

𝑟 -clique in the subgraph is contained in at least 𝑘 𝑠-cliques. The
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goal of the (𝑟, 𝑠) nucleus decomposition problem is to identify for

each 𝑟 -clique in the graph, the largest 𝑘 such that it is in a 𝑘-(𝑟, 𝑠)
nucleus.

Solving the (𝑟, 𝑠) nucleus decomposition problem is a signif-

icant computational challenge for several reasons. First, simply

counting and enumerating 𝑠-cliques is a challenging task, even for

modest 𝑠 . Second, storing information for all 𝑟 -cliques can require

a large amount of space, even for relatively small graphs. Third,

engineering fast and high-performance solutions to this problem

requires taking advantage of parallelism due to the computationally-

intensive nature of listing cliques. There are two well-known par-

allel paradigms for approaching the (𝑟, 𝑠) nucleus decomposition

problem, a global peeling-based model and a local update model

that iterates until convergence [54]. The former is inherently chal-

lenging to parallelize due to sequential dependencies and necessary

synchronization steps [54], which we address in this paper, and

we demonstrate that the latter requires orders of magnitude more

work to converge to the same solution and is thus less performant.

Lastly, it is unknown whether existing sequential and parallel

algorithms for this problem are theoretically efficient. Notably, ex-

isting algorithms perform more work than the fastest theoretical

algorithms for 𝑘-clique enumeration on sparse graphs [14, 58], and

it is open whether one can solve the (𝑟, 𝑠) nucleus decomposition

problem in the same work as 𝑠-clique enumeration.

In this paper, we design a novel parallel algorithm for the nucleus

decomposition problem. We address the computational challenges

by designing a theoretically efficient parallel algorithm for (𝑟, 𝑠)
nucleus decomposition that nearly matches the work for 𝑠-clique

enumeration, along with new techniques that improve the space

and cache efficiency of our solutions. The key to our theoretical

efficiency is a new combinatorial lemma bounding the total sum

over all 𝑘-cliques in the graph of the minimum degree vertex in this

clique, which enables us to to provide a strong upper bound on the

overall work of our algorithm. As a byproduct, we also obtain the

most theoretically-efficient serial algorithm for (𝑟, 𝑠) nucleus de-
composition. We provide several new optimizations for improving

the practical efficiency of our algorithm, including a new multi-

level hash table structure to space efficiently store data associated

with cliques, a technique for efficiently traversing this structure in

a cache-friendly manner, and methods for reducing contention and

further reducing space usage. Finally, we experimentally study our

parallel algorithm on various real-world graphs and (𝑟, 𝑠) values,
and find that it achieves between 3.31–40.14x self-relative speedup

on a 30-core machine with two-way hyper-threading. The only ex-

isting parallel algorithm for nucleus decomposition is by Sariyüce et
al. [54], but their algorithm requires much more work than the best

sequential algorithm. Our algorithm achieves between 1.04–54.96x

speedup over the state-of-the-art parallel nucleus decomposition of
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Sariyüce et al., and our algorithm can scale to larger (𝑟, 𝑠) values,
due to our improved theoretical efficiency and our proposed opti-

mizations. We are able to compute the (𝑟, 𝑠) nucleus decomposition

for 𝑟 > 3 and 𝑠 > 4 on several million-scale graphs for the first time.

We summarize our contributions below:

• The first theoretically-efficient parallel algorithm for the nucleus

decomposition problem.

• A collection of practical optimizations that enable us to design a

fast implementation of our algorithm.

• Comprehensive experiments showing that our new algorithm

achieves up to a 55x speedup over the state-of-the-art algorithm

by Sariyüce et al., and up to a 40x self-relative parallel speedup

on a 30-core machine with two-way hyper-threading.

2 RELATEDWORK
The nucleus decomposition problem is inspired by and closely

related to the 𝑘-core problem, which was defined independently by

Seidman [56], and by Matula and Beck [46]. The 𝑘-core of a graph

is the maximal subgraph of the graph where the induced degree of

every vertex is at least 𝑘 . The coreness of a vertex is the maximum

value of 𝑘 such that the vertex participates in a 𝑘-core. Matula and

Beck provided a linear time algorithm based on peeling vertices

that computes the coreness value of all vertices [46].

In subsequent years, many concepts capturing dense near-clique

substructures were proposed, including𝑘-trusses (or triangle-cores),

𝑘-plexes [57], and 𝑛-clans and 𝑛-clubs [47]. In particular, 𝑘-trusses

were proposed independently by Cohen [15], Zhang et al. [71],
and Zhou et al. [74] with the goal of efficiently obtaining dense

clique-like substructures. Unlike other near-clique substructures

like 𝑘-plexes, 𝑛-clans, and 𝑛-clubs, which are computationally in-

tractable to enumerate and count, 𝑘-trusses can be efficiently found

in polynomial-time.Many parallel, external-memory, and distributed

algorithms have been developed in the past decade for 𝑘-cores [19,

24, 34, 36, 48, 70] and 𝑘-trusses [7, 12, 13, 16, 35, 43, 62, 67, 75], and

computing all trussness values of a graph is one of the challenge

problems in the yearly MIT GraphChallenge [49]. A related prob-

lem is to compute the 𝑘-clique densest subgraph [65] and (𝑘,Ψ)-
core [23], for which efficient parallel algorithms have been recently

designed [58]. The concept of a (𝑟, 𝑠) nucleus decomposition was

first proposed by Sariyüce et al. as a principled approach to dis-

covering dense substructures in graphs that generalizes 𝑘-cores

and 𝑘-trusses [55]. They also proposed an algorithm for efficiently

finding the hierarchy associated with a (𝑟, 𝑠) nucleus decomposi-

tion [52]. Sariyüce et al. later proposed parallel algorithms for nu-

cleus decomposition based on local computation [54]. Recent work

has studied nucleus decomposition in probabilistic graphs [22].

Clique counting and enumeration are fundamental subproblems

required for computing nucleus decompositions. A trivial algorithm

enumerates 𝑐-cliques in𝑂 (𝑛𝑐 ) work, and using a thresholding argu-
ment improves the work for counting to 𝑂 (𝑚𝑐/2) [2]. The current
fastest combinatorial algorithms for 𝑐-clique enumeration for sparse

graphs are based on the seminal results of Chiba and Nishizeki [14],

who show that all 𝑐-cliques can be enumerated in𝑂 (𝑚𝛼𝑐−2) where
𝛼 is the arboricity of the graph. We defer to the survey of Williams

for an overview of theoretical algorithms for this problem [66]. The

current state-of-the-art practical algorithms for 𝑘-clique counting

are all based on the Chiba-Nishizeki algorithm [18, 40, 58].

Researchers have also studied 𝑘-core-like computations in bipar-

tite graphs [37, 42, 53, 60, 68], as well as how to maintain 𝑘-cores

and𝑘-trusses in dynamic graphs [1, 4, 29–31, 33, 39, 41, 44, 45, 51, 63,

70, 72, 73]. Very recently, Sariyüce proposed a motif-based decom-

position, which generalizes the connection between 𝑟 -cliques and

𝑠-cliques in nucleus decomposition to any pair of subgraphs [50].

3 PRELIMINARIES
Graph Notation and Definitions.We consider graphs𝐺 = (𝑉 , 𝐸)
to be simple and undirected, where𝑛 = |𝑉 | and𝑚 = |𝐸 |. For analysis,
we assume𝑚 = Ω(𝑛). For vertices 𝑣 ∈ 𝑉 , we denote by deg(𝑣) the
degree of 𝑣 , and we denote by 𝑁𝐺 (𝑣) the neighborhood of 𝑣 in 𝐺 .

If the graph is unambiguous, we let 𝑁 (𝑣) denote the neighborhood
of 𝑣 . For a directed graph 𝐷𝐺 , 𝑁 (𝑣) = 𝑁𝐷𝐺 (𝑣) denotes the out-

neighborhood of 𝑣 . The arboricity (𝜶 ) of a graph is the minimum

number of spanning forests needed to cover the graph. In general,

𝛼 is upper bounded by 𝑂 (
√
𝑚) and lower bounded by Ω(1) [14].

A 𝑐-(𝑟, 𝑠) nucleus is a maximal subgraph 𝐻 of an undirected

graph formed by the union of 𝑠-cliques 𝐶𝑠 , such that each 𝑟 -clique

𝐶𝑟 in 𝐻 has induced 𝑠-clique degree at least 𝑐 (i.e., each 𝑟 -clique is

contained within at least 𝑐 induced 𝑠-cliques). The (𝑟, 𝑠) nucleus
decomposition problem is to compute all non-empty (𝑟, 𝑠)-nuclei.
Our algorithm outputs the (𝑟, 𝑠)-clique core number of each 𝑟 -

clique 𝐶𝑟 , or the maximum 𝑐 such that 𝐶𝑟 is contained within a

𝑐-(𝑟, 𝑠) nucleus.1 The 𝑘-core and 𝑘-truss problems correspond to

the 𝑘-(1, 2) and 𝑘-(2, 3) nucleus, respectively.
Graph Storage. For theoretical analysis, we assume that our graphs

are represented in an adjacency hash table, where each vertex is

associated with a parallel hash table of its neighbors. In practice,

we store graphs in compressed sparse row (CSR) format.

Model of Computation. We use the work-span model for our

theoretical analysis, which is widely used in analyzing shared-

memory parallel algorithms [17, 32], with many recent practical

uses [21, 61, 64, 69]. The work𝑊 of an algorithm is the total num-

ber of operations, and the span 𝑆 of an algorithm is the longest

dependency path. Brent’s scheduling theorem [10] upper bounds

the parallel running time of an algorithm by𝑊 /𝑃 +𝑆 where 𝑃 is the

number of processors. A randomized work-stealing scheduler, such

as that in Cilk [9], can be used in practice to obtain this running time

in expectation. The goal of our work is to develop work-efficient
parallel algorithms under this model, or algorithms with a work

complexity that asymptotically matches the best-known sequential

time complexity for the given problem. We assume that this model

supports concurrent reads, concurrent writes, compare-and-swaps,

atomic adds, and fetch-and-adds in 𝑂 (1) work and span.

Parallel Primitives.We use the following parallel primitives in

our algorithms. Parallel prefix sum takes as input a sequence 𝐴 of

length 𝑛, an identity 𝜀, and an associative binary operator ⊕, and
returns the sequence 𝐵 of length𝑛where 𝐵 [𝑖] =

⊕
𝑗<𝑖 𝐴[ 𝑗]⊕𝜀. Par-

allel filter takes as input a sequence 𝐴 of length 𝑛 and a predicate

1
The original definition of (𝑟, 𝑠) nucleus decomposition is stricter, in that it additionally

requires any two 𝑟 -cliques in themaximal subgraph𝐻 to be connected via 𝑠-cliques [52,

55]. This requires additional work to partition the 𝑟 -cliques, which the previous parallel

algorithm [54] does not perform, and is also out of our scope of this paper.
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function 𝑓 , and returns the sequence 𝐵 containing all 𝑎 ∈ 𝐴 such

that 𝑓 (𝑎) is true, maintaining the order that elements appeared in𝐴.

Both algorithms take𝑂 (𝑛)work and𝑂 (log𝑛) span [32]. These prim-

itives are basic sequence operations that represent essential building

blocks of efficient parallel algorithms. They are implemented in

practice using efficient parallel divide-and-conquer subroutines.

We also use parallel hash tables that support insertion, dele-
tion, and membership queries, and that can perform 𝑛 operations in

𝑂 (𝑛) work and 𝑂 (log𝑛) span with high probability (w.h.p.) [27].
2

Given two parallel hash tables T1 and T2 of size 𝑛1 and 𝑛2 respec-
tively, the intersection T1 ∩ T2 can be computed in 𝑂 (min(𝑛1, 𝑛2))
work and 𝑂 (log(𝑛1 + 𝑛2)) span w.h.p. For multiple hash tables T𝑖
for 𝑖 ∈ [𝑚], each of size 𝑛𝑖 , the intersection

⋂
𝑖∈[𝑚] T𝑖 can be com-

puted in𝑂 (min𝑖∈[𝑚] (𝑛𝑖 )) work and𝑂 (log(
∑
𝑖∈[𝑚] 𝑛𝑖 )) span w.h.p.

These subroutines are essential to our clique counting and listing

subroutines, allowing us to find the intersections of adjacency lists

of vertices. We also use parallel hash tables in our algorithms as

efficient data structures for 𝑟 -clique access and aggregation.

Parallel Bucketing. A parallel bucketing structure maintains

a mapping from identifiers to buckets, which we use to group

𝑟 -cliques according to their incident 𝑠-clique counts. The bucket

value of identifiers can change, and the structure can efficiently

update these buckets. We take identifiers to be values associated

with 𝑟 -cliques, and use the structure to repeatedly extract all 𝑟 -

cliques in the minimum bucket to process, which can cause the

bucket values of other 𝑟 -cliques to change (other 𝑟 -cliques that share

vertices with extracted 𝑟 -cliques in our algorithm). Theoretically,

the batch-parallel Fibonacci heap by Shi and Shun [60] can be used

to implement a bucketing structure storing 𝑛 objects that supports

𝑘 bucket insertions in 𝑂 (𝑘) amortized expected work and 𝑂 (log𝑛)
span w.h.p., 𝑘 bucket update operations in𝑂 (𝑘) amortized expected

work and 𝑂 (log2 𝑛) span w.h.p., and extracts the minimum bucket

in 𝑂 (log𝑛) amortized expected work and 𝑂 (log𝑛) span w.h.p. In

our (𝑟, 𝑠) nucleus decomposition algorithm, we must extract the

bucket of 𝑟 -cliques with the minimum 𝑠-clique count in every round,

and the work-efficiency of this Fibonacci heap contributes to our

work-efficient bounds. However, our implementations use the

bucketing structure by Dhulipala et al. [19], which we found to

be more efficient in practice. This structure obtains performance

improvements by only materializing a constant number of the

lowest buckets, reducing the number of times each 𝑟 -clique’s bucket

must be updated. In retrieving new buckets, the structure also

skips over large ranges of empty buckets containing no 𝑟 -cliques,

allowing for fast retrieval of the minimum non-empty bucket.

𝑂 (𝛼)-Orientation.Weuse the parallel 𝑐-clique counting and listing

algorithm by Shi et al. [58], which relies on directing a graph using

a low out-degree orientation in order to reduce the amount of work

that must be performed to find 𝑐-cliques. An 𝑎-orientation of an

undirected graph is a total ordering on the vertices such that when

edges in the graph are directed from vertices lower in the ordering

to vertices higher in the ordering, the out-degree of each vertex is

bounded by 𝑎. Shi et al. give parallel work-efficient algorithms to

obtain an 𝑂 (𝛼)-orientation, namely the parallel Barenboim-Elkin

algorithm which takes 𝑂 (𝑚) work and 𝑂 (log2 𝑛) span, and the

2
We say𝑂 (𝑓 (𝑛)) with high probability (w.h.p.) to indicate𝑂 (𝑐 𝑓 (𝑛)) with proba-

bility at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1, where 𝑛 is the input size.

Algorithm 1 Parallel 𝑐-clique listing algorithm.

1: procedure rec-list-cliqes(𝐷𝐺 , 𝐼 , 𝑟 ℓ ,𝐶 , 𝑓 )

2: ⊲ 𝐷𝐺 is the directed graph, 𝐼 is the set of potential neighbors to complete the

clique, 𝑟 ℓ is the recursive level,𝐶 is the set of vertices in the clique so far, and 𝑓 is

the desired function to apply to 𝑐-cliques.

3: if 𝑟 ℓ = 1 then
4: parfor 𝑣 in 𝐼 do
5: Apply 𝑓 on the 𝑐-clique𝐶 ∪ {𝑣 }
6: return
7: parfor 𝑣 in 𝐼 do
8: 𝐼 ′ ← intersect(𝐼 , 𝑁𝐷𝐺 (𝑣)) ⊲ Intersect 𝐼 with directed neighbors of 𝑣

9: rec-list-cliqes(𝐷𝐺 , 𝐼 ′, 𝑟 ℓ − 1,𝐶 ∪ {𝑣 }, 𝑓 ) ⊲ Add 𝑣 to the 𝑐-clique and

recurse

parallel Goodrich-Pszona algorithm which takes 𝑂 (𝑚) work and

𝑂 (log2 𝑛) spanw.h.p. Besta et al. [6] give a parallel𝑂 (𝛼)-orientation
algorithm that takes 𝑂 (𝑚) work and 𝑂 (log2 𝑛) span.

4 (𝑟, 𝑠) NUCLEUS DECOMPOSITION
We present here our parallel work-efficient (𝑟, 𝑠) nucleus decompo-

sition algorithm. Importantly, we introduce new theoretical bounds

for (𝑟, 𝑠) nucleus decomposition, which also improve upon the previ-

ous best sequential bounds. We discuss in Section 4.1 a key 𝑠-clique

counting subroutine, and we present arb-nucleus-decomp, our

parallel (𝑟, 𝑠) nucleus decomposition algorithm, in Section 4.2.

4.1 Recursive 𝑠-clique Counting Algorithm
Wefirst introduce an important subroutine, rec-list-cliqes, based

on previous work from Shi et al. [58], which recursively finds and

lists 𝑐-cliques in parallel. This subroutine is based on a state-of-the-

art algorithm, which in practice balances performance and memory

efficiency, outperforming other baselines, particularly for large

graphs with hundreds of billions of edges [58]. It has been modi-

fied from previous work to integrate in our parallel (𝑟, 𝑠) nucleus
decomposition algorithm, to both count the number of 𝑠-cliques

incident on each 𝑟 -clique, and update the 𝑠-clique counts after peel-

ing subsets of 𝑟 -cliques. The main idea for rec-list-cliqes is to

iteratively grow each 𝑐-clique by maintaining at every step a set of

candidate vertices that are neighbors to all vertices in the 𝑐-clique

so far, and prune this set as we add more vertices to the 𝑐-clique.

The pseudocode for the algorithm is shown in Algorithm 1. rec-

list-cliqes takes as input a directed graph 𝐷𝐺 , a set 𝐼 of potential

neighbors to complete the clique (which for 𝑐-clique listing is ini-

tially𝑉 ), the recursive level 𝑟 ℓ (which for 𝑐-clique listing is initially

set to 𝑐), a set 𝐶 of vertices in the clique so far (which for 𝑠-clique

listing is initially empty), and a function 𝑓 to apply to each dis-

covered 𝑐-clique. The directed graph 𝐷𝐺 is an 𝑂 (𝛼)-orientation
of the original undirected graph, which allows us to reduce the

work required for computing intersections. rec-list-cliqes then

uses repeated intersections on the set 𝐼 and the directed neighbors

of each vertex in 𝐼 to find valid vertices to add to the clique 𝐶

(Line 8), and recurses on the updated clique (Line 9). At the final

recursive level, rec-list-cliqes applies the user-specified func-

tion 𝑓 on each discovered clique (Line 5). Assuming that 𝐷𝐺 is an

𝑂 (𝛼)-oriented graph, and excluding the time required to obtain

𝐷𝐺 , rec-list-cliqes can perform 𝑐-clique listing in 𝑂 (𝑚𝛼𝑐−2)
work and 𝑂 (𝑐 log𝑛) span w.h.p. [58].
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Figure 1: An example of our parallel nucleus decomposition
algorithm arb-nucleus-decomp for (𝑟, 𝑠) = (3, 4). At each step,
we peel in parallel all triangles (3-cliques) with the mini-
mum 4-clique count; the vertices and edges that compose of
these triangles are highlighted in red. We then recompute
the 4-clique count on the remaining triangles. Vertices and
edges that no longer participate in any active triangles, due
to previously peeled triangles, are shown in gray. Each step
is labeled with the 𝑘-(3,4) nucleus discovered, where 𝑘 is the
4-clique count of the triangles highlighted in red. The figure
below labels each 𝑘-(3,4) nucleus.

4.2 (𝑟, 𝑠) Nucleus Decomposition Algorithm
We now describe our parallel nucleus decomposition algorithm,

arb-nucleus-decomp. arb-nucleus-decomp computes the (𝑟, 𝑠)
nucleus decomposition by first computing and storing the incident

𝑠-clique counts of each 𝑟 -clique. It then proceeds in rounds, where

in each round, it peels, or implicitly removes, the 𝑟 -cliques with

the minimum 𝑠-clique counts. It updates the 𝑠-clique counts of the

remaining unpeeled 𝑟 -cliques, by decrementing the count by 1 for

each 𝑠-clique that the unpeeled 𝑟 -clique shares peeled 𝑟 -cliques

with. arb-nucleus-decomp uses rec-list-cliqes as a subroutine,

to compute and update 𝑠-clique counts.

Example. An example of our algorithm for (𝑟, 𝑠) = (3, 4) is shown
in Figure 1. There are 14 total triangles in the example graph, namely

those given by any three vertices in {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, and the additional
triangles 𝑎𝑏𝑓 , 𝑏𝑒 𝑓 , 𝑎𝑒 𝑓 , and 𝑐𝑑𝑔. At the start of the algorithm, 𝑐𝑑𝑔 is

incident to no 4-cliques, while 𝑎𝑏𝑓 , 𝑏𝑒 𝑓 , and 𝑎𝑒 𝑓 are each incident

to one 4-clique. Also, 𝑎𝑏𝑒 is incident to three 4-cliques, and the

rest of the triangles are incident to two 4-cliques. Thus, only 𝑐𝑑𝑔 is

peeled in the first round, and has a (3, 4)-clique-core number of 0.

Then, 𝑎𝑏𝑓 , 𝑏𝑒 𝑓 , and 𝑎𝑒 𝑓 are peeled simultaneously in the second

round, each with a 4-clique count of one, which is also their (3,

4)-clique-core number. Peeling these triangles updates the 4-clique

count of 𝑎𝑏𝑒 to two, and in the third round, all remaining triangles

have the same 4-clique count (and form the 2-(3, 4) nucleus) and
are peeled simultaneously, completing the algorithm.

OurAlgorithm.We now provide a more detailed description of the

algorithm. Algorithm 2 presents the pseudocode for arb-nucleus-

decomp. We refer to Figure 2, which shows the state of each data

structure after each round of arb-nucleus-decomp, for an example

of (3, 4) nucleus decomposition on the graph in Figure 1. arb-

nucleus-decomp first directs the graph 𝐺 such that every vertex

has out-degree 𝑂 (𝛼) (Line 20), using an efficient low out-degree

orientation algorithm by Shi et al. [58]. Then, it initializes a parallel

Figure 2: An example of the data structures in arb-nucleus-

decomp during each round of (3, 4) nucleus decomposition,
on the graph in Figure 1.

hash table 𝑇 to store 𝑠-clique counts, keyed by 𝑟 -clique counts, and

calls rec-list-cliqes to count and store the number of 𝑠-cliques

incident on each 𝑟 -clique (Lines 21–22). It uses count-func (Lines

2–4) to atomically increment the count for each 𝑟 -clique found in

each discovered 𝑠-clique. As shown in Figure 2, before any rounds of

peeling,𝑇 contains the 4-clique count incident to each triangle. The

algorithm also initializes a parallel bucketing structure 𝐵 that stores

sets of 𝑟 -cliques with the same 𝑠-clique counts (Line 23). We have

four initial buckets in Figure 2. The first bucket contains 𝑐𝑑𝑔, which

is incident to no 4-cliques, and the second bucket contains 𝑎𝑏𝑓 ,

𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓 , which are incident to exactly one 4-clique. The third

bucket contains the triangles incident to exactly two 4-cliques, 𝑎𝑏𝑐 ,

𝑎𝑏𝑑 , 𝑎𝑐𝑑 , 𝑎𝑐𝑒 , 𝑎𝑑𝑒 , 𝑏𝑐𝑑 , 𝑏𝑐𝑒 , 𝑏𝑑𝑒 , and 𝑐𝑑𝑒 . The final bucket contains

𝑎𝑏𝑒 , which is incident to exactly three 4-cliques.

While not all of the 𝑟 -cliques have been peeled, the algorithm

repeatedly obtains the 𝑟 -cliques incident upon the lowest number

of induced 𝑠-cliques (Line 26), updates the count of the number

of peeled 𝑟 -cliques (Line 27), and updates the 𝑠-clique counts of

𝑟 -cliques that participate in 𝑠-cliques with peeled 𝑟 -cliques (Line 28).

In Figure 2, we see that in the first round, the bucket with the least

𝑠-clique count is bucket 0, and finished is updated to the size of the

bucket, or one triangle. No 4-cliques are involved, so no updates

are made to 𝑇 , and 𝑈 remains empty. arb-nucleus-decomp then

updates the buckets for 𝑟 -cliques with changed 𝑠-clique counts

(Line 29), and repeats until all 𝑟 -cliques have been peeled. At the end,

the algorithm returns the bucketing structure, which maintains the

(𝑟, 𝑠)-core number of each 𝑟 -clique. In the second round in Figure 2,

the bucket with the least 4-clique count is bucket 1, containing 𝑎𝑏𝑓 ,

𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓 . We add 3 to finished, making its value 4. The sole

4-clique incident to these triangles is 𝑎𝑏𝑒 𝑓 , so when these triangles

are peeled, there is one fewer 4-clique incident on 𝑎𝑏𝑒 . Thus, the

4-clique count stored on 𝑎𝑏𝑒 in𝑇 is decremented by one, and 𝑎𝑏𝑒 is

returned in the set 𝑈 as the only triangle with a changed 4-clique

3
When Count-Func and Update-Func are invoked on lines 17 and 22, all arguments

except the last argument 𝑆 are bound to each function. This is because these functions

are then called in rec-list-cliqes, where they take as input an 𝑠-clique 𝑆 , which is

precisely the last argument.
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Algorithm 2 Parallel (𝑟, 𝑠) nucleus decomposition algorithm

1: Initialize 𝑟 , 𝑠 ⊲ 𝑟 and 𝑠 for (𝑟, 𝑠) nucleus decomposition

2: procedure Count-Func(𝑇 , 𝑆) 3

3: parfor all size 𝑟 subsets 𝑅 ⊂ 𝑆 do
4: Atomically add 1 to the 𝑠-clique count𝑇 [𝑅 ]
5: procedure Update-Func(𝑈 ,𝐴,𝑇 , 𝑆) 3

6: Let𝑈 ′ ← {𝑅 ⊂ 𝑆 | |𝑅 | = 𝑟 and 𝑅 ∉ 𝐴}
7: Let 𝑎 be the # of size 𝑟 subsets 𝑅 ⊂ 𝑆 such that 𝑅 ∈ 𝐴
8: if any 𝑅 ∈ 𝑈 ′ has been previously peeled then
9: return
10: parfor 𝑅 in𝑈 ′ do
11: Atomically subtract 1/𝑎 from the 𝑠-clique count𝑇 [𝑅 ]
12: Add 𝑅 to𝑈

13: procedure Update(𝐺 = (𝑉 , 𝐸), 𝐷𝐺,𝐴,𝑇 )

14: Initialize𝑈 to be a parallel hash table to store 𝑟 -cliques with updated 𝑠-clique

counts after peeling𝐴

15: parfor 𝑅 in𝐴 do
16: 𝐼 ← intersect(𝑁𝐺 (𝑣) for 𝑣 ∈ 𝑅) ⊲ Intersect the undirected neighbors of

𝑣 ∈ 𝑅
17: rec-list-cliqes(𝐷𝐺 , 𝐼 , 𝑠 − 𝑟 , 𝑅, update-func(𝑈 ,𝐴,𝑇 ))

18: return𝑈

19: procedure arb-nucleus-decomp(𝐺 = (𝑉 , 𝐸) , Orient)
20: 𝐷𝐺 ← Orient(𝐺 ) ⊲ Apply a user-specified orientation algorithm

21: Initialize 𝑇 to be a parallel hash table with 𝑟 -cliques as keys, and 𝑠-clique

counts as values

22: rec-list-cliqes(𝐷𝐺 ,𝑉 , 𝑠 , ∅, count-func(𝑇 )) ⊲ Count 𝑠-cliques

23: Let 𝐵 be a bucketing structure mapping each 𝑟 -clique to a bucket based on #

of 𝑠-cliques

24: finished← 0

25: while finished < |𝑇 | do
26: 𝐴← 𝑟 -cliques in the next bucket in 𝐵 (to be peeled)

27: finished← finished + |𝐴 |
28: 𝑈 ← Update(𝐺,𝐷𝐺,𝐴,𝑇 ) ⊲ Update # of 𝑠-cliques and return 𝑟 -cliques

with changed 𝑠-clique counts

29: Update the buckets of 𝑟 -cliques in𝑈 , peeling𝐴

30: return 𝐵

count. Note that the (3, 4)-clique core number of 𝑎𝑏𝑓 , 𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓

is thus 1, which is implicitly maintained upon their removal from 𝐵.

The bucket of 𝑎𝑏𝑒 is updated to 2, since 𝑎𝑏𝑒 now participates in only

two 4-cliques. Then, in the final round, the rest of the triangles are

all in the peeled bucket, bucket 2, and the finished count is updated

to 14, or the total number of triangles. The implicitly maintained (3,

4)-clique-core number of these triangles is 2, and since no triangles

remain unpeeled, there are no further updates to the data structure

and the algorithm returns.

The subroutine Update (Lines 13–18) is the main subroutine

of arb-nucleus-decomp, used on Line 28. It takes as additional

input the directed graph 𝐷𝐺 , a set 𝐴 of 𝑟 -cliques to peel, and the

parallel hash table𝑇 that stores current 𝑠-clique counts, and updates

incident 𝑠-clique counts affected by peeling the 𝑟 -cliques in 𝐴. It

also returns the set of 𝑟 -cliques that have not yet been peeled with

their decremented 𝑠-clique counts. Update first initializes a parallel

hash table 𝑈 to store the set of 𝑟 -cliques with changed 𝑠-clique

counts (Line 14).
4
It then considers each 𝑟 -clique 𝑅 ∈ 𝐴 being

peeled, and computes the intersection of the undirected neighbors

of the vertices in 𝑅, which are stored in set 𝐼 (Line 16). The vertices

in 𝐼 are candidate vertices to form 𝑠-cliques from 𝑅, and Update

uses 𝐼 with the subroutine rec-list-cliqes to find the remaining

𝑠 − 𝑟 vertices to complete the 𝑠-cliques incident to 𝑅 (Line 17). In

the second round of Figure 2, 𝑎𝑏𝑓 , 𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓 are being peeled.

4
Note that it is inefficient to initialize𝑈 here in the Update in every round, although

we do so in the pseudocode for simplicity. Instead,𝑈 should be initialized following

Line 24, with size equal to the total number of 𝑟 -cliques. Then, after Line 29,𝑈 can be

efficiently cleared for the next round by rerunning the Update subroutine solely to

clear previously modified entries in𝑈 .

The intersection of the neighbors of 𝑎, 𝑏, and 𝑓 adds vertex 𝑒 to the

discovered 4-clique. We thus find only one 4-clique incident to 𝑎𝑏𝑓 ,

and similarly, we find the same 4-clique incident to 𝑎𝑒 𝑓 and 𝑏𝑒 𝑓 .

For each 𝑠-clique 𝑆 found, rec-list-cliqes calls update-func

(Lines 6–12), which first checks if 𝑆 contains 𝑟 -cliques that were

previously peeled (Line 8). If not, update-func atomically subtracts

1/𝑎 from each 𝑠-clique count for each 𝑟 -clique in 𝑆 , where 𝑎 is the

number of size 𝑟 subsets in 𝑆 that are also being peeled (Line 11).

This is to prevent over-counting—if 𝑟 -cliques that participate in

the same 𝑠-clique are peeled simultaneously, then they will each

subtract 1/𝑎 from the 𝑠-clique count, and the total subtraction will

sum to 1 for this 𝑠-clique. update-func also adds each 𝑟 -clique

with updated counts to𝑈 (Line 12). In the second round of Figure

2, since 𝑎𝑏𝑓 , 𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓 each discover the 4-clique 𝑎𝑏𝑒 𝑓 , which

consists of 𝑎 = 3 triangles that are simultaneously being peeled,

𝑎𝑏𝑓 , 𝑎𝑒 𝑓 , and 𝑏𝑒 𝑓 each decrement 1/3 from the 4-clique count of

𝑎𝑏𝑒 in𝑇 . In total, 1 is decremented from 𝑎𝑏𝑒’s 4-clique count. Then,

𝑎𝑏𝑒 is added to 𝑈 , since its 4-clique count has been updated. In

the third round, because all remaining triangles are being peeled

in 𝐴, the set 𝑈 ′ defined on Line 6, is either empty or contains

a previously peeled triangle, by definition. Thus, Update returns

without performing any modifications to𝑈 or𝑇 , and no buckets are

updated. Afterwards, the finished variable equals the total number

of triangles, and the algorithm finishes.

We now discuss the theoretical efficiency our parallel nucleus

decomposition algorithm. To show that our algorithm improves

upon the best existing work bounds for the sequential nucleus

decomposition algorithm, we first introduce a key lemma that upper

bounds the sum of the minimum degrees of vertices over all 𝑐-

cliques. We present the proof in the full version of the paper [59].

Lemma 4.1. For a graph𝐺 with arboricity 𝛼 , over all 𝑐-cliques𝐶𝑐 =

{𝑣1, . . . , 𝑣𝑐 } in 𝐺 where 𝑐 ≥ 1,
∑
𝐶𝑐

min1≤𝑖≤𝑐 deg(𝑣𝑖 ) = 𝑂 (𝑚𝛼𝑐−1).
Using this key lemma, we prove in the full version of the pa-

per the following bounds for our parallel nucleus decomposition

algorithm. 𝜌 (𝑟,𝑠) (𝐺) is the (𝒓, 𝒔) peeling complexity of 𝐺 , or the

number of rounds needed to peel the graph where in each round,

all 𝑟 -cliques with the minimum 𝑠-clique count are peeled. 𝜌 (𝑟,𝑠) (𝐺)
≤ 𝑂 (𝑚𝛼𝑟−2), since at least one 𝑟 -clique is peeled in each round.

Theorem 4.2. arb-nucleus-decomp computes the (𝑟, 𝑠) nucleus
decomposition in 𝑂 (𝑚𝛼𝑠−2 + 𝜌 (𝑟,𝑠) (𝐺) log𝑛) amortized expected
work and 𝑂 (𝜌 (𝑟,𝑠) (𝐺) log𝑛 + log2 𝑛) span w.h.p., where 𝜌 (𝑟,𝑠) (𝐺)
is the (𝑟, 𝑠) peeling complexity of 𝐺 .

Discussion. arb-nucleus-decomp is work-efficient with respect to

the best sequential algorithm, and improves upon the best sequen-

tial algorithm that uses sublinear space in the number of 𝑠-cliques.

In more detail, the previous best sequential bounds were given by

Sariyüce et al. [55], in terms of the number of 𝑐-cliques containing

each vertex 𝑣 , or 𝑐𝑡𝑐 (𝑣), and the work of an arbitrary 𝑐-clique enu-

meration algorithm, or 𝑅𝑇𝑐 . Assuming space proportional to the

number of 𝑠-cliques and the number of 𝑟 -cliques in the graph, they

compute the (𝑟, 𝑠) nucleus decomposition in𝑂 (𝑅𝑇𝑟 +𝑅𝑇𝑠 ) = 𝑂 (𝑅𝑇𝑠 )
work, and assuming space proportional to only the number of 𝑟 -

cliques in the graph, they compute the (𝑟, 𝑠) nucleus decomposi-

tion in𝑂 (𝑅𝑇𝑟 +
∑

𝑣∈𝑉 (𝐺) 𝑐𝑡𝑟 (𝑣) ·deg(𝑣)𝑠−𝑟 ) work. We discuss these

bounds in detail and provide a comparison to arb-nucleus-decomp
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in the full version of the paper. Specifically, arb-nucleus-decomp

uses space proportional to the number of 𝑟 -cliques due to the space

required for 𝑇 and 𝐵, and is work-efficient with respect to the best

sequential algorithm that uses the same space, improving upon the

corresponding bound given by Sariyüce et al. [55]. If more space is

permitted, a small modification of our algorithm yields a sequential

nucleus decomposition algorithm that performs 𝑂 (𝑚𝛼𝑠−2) work,
matching the corresponding bound given by Sariyüce et al. [55]. The
idea is to use a dense bucketing structure with space proportional to

the total number of 𝑠-cliques, since finding the next bucket with the

minimum 𝑠-clique count involves a simple linear search rather than

a heap operation. In the parallel setting, arb-nucleus-decomp can

work-efficiently find the minimum non-empty bucket by perform-

ing a series of steps, where at each step 𝑖 , arb-nucleus-decomp

searches in parallel the region [2𝑖 , 2𝑖+1] for the next non-empty

bucket. This search procedure takes logarithmic span, and is work-

efficient with respect to the sequential algorithm.

5 PRACTICAL OPTIMIZATIONS
We now introduce the practical optimizations that we use for our

parallel (𝑟, 𝑠) nucleus decomposition implementation. Another opti-

mization for the case of (2, 3) nucleus (truss) decomposition, namely

graph contraction, is described in the full version of the paper.

5.1 Number of Parallel Hash Table Levels
arb-nucleus-decomp uses a single parallel hash table 𝑇 to store

the 𝑠-clique counts, where the keys are 𝑟 -cliques. However, this

storage method is infeasible in practice due to space limitations,

particularly for large 𝑟 , since 𝑟 vertices must be concatenated into

a key for each 𝑟 -clique. We observe that space can be saved by

introducing more levels to our parallel hash table 𝑇 . For example,

one option is to instead use a two-level combination of an array

and a parallel hash table, which consists of an array of size 𝑛 whose

elements are pointers to individual hash tables where the keys are

(𝑟 − 1)-cliques. The 𝑠-clique count for a corresponding 𝑟 -clique

𝑅 = {𝑣1, . . . , 𝑣𝑟 } (where the vertices are in sorted order) is stored by

indexing into the 𝑣 th
1

element of the array, and storing the count on

the key corresponding to the (𝑟 − 1)-clique given by {𝑣2, . . . , 𝑣𝑟 } in
the given hash table. Space savings arise because 𝑣1 does not have

to be repeatedly stored for each (𝑟 − 1)-clique in its corresponding

hash table, but rather is only stored once in the array.

A more general option, particularly for large 𝑟 , is to use a multi-

level parallel hash table, with ℓ ≤ 𝑟 levels in which each intermedi-

ate level consists of a parallel hash table keyed by a single vertex

in the 𝑟 -clique whose value is a pointer to a parallel hash table in

the subsequent level, and the last level consists of a parallel hash

table keyed by (𝑟 − ℓ +1)-cliques. Given an 𝑟 -clique 𝑅 = {𝑣1, . . . , 𝑣𝑟 }
(where the vertices are in sorted order), each of the vertices in the

clique in order is mapped to each level of the hash table, except for

the last (𝑟 − ℓ + 1) vertices which are concatenated into a key for

the last level of the hash table. Thus, the location in the hash table

corresponding to 𝑅 can be found by looking up the key 𝑣 𝑗 in the

hash table at each level for 𝑗 < ℓ , and following the pointer to the

next level. At the last level, the key is given by the (𝑟 − ℓ + 1)-clique
corresponding to {𝑣ℓ , . . . , 𝑣𝑟 }. Again, space savings arise due to the

Figure 3: An example of the initial parallel hash table 𝑇 for
(3, 4) nucleus decomposition on the graph from Figure 1,
considering different numbers of levels; Figure 2 shows a
one-level table. If we consider each vertex and each pointer
to take a unit ofmemory, the one-level𝑇 takes 42 units, while
the two-level𝑇 takes 35 units, thus saving memory. However,
the 3-multi-level 𝑇 takes 50 units, because 𝑟 = 3 is too small
to give memory savings for this graph.

Figure 4: An example of the initial parallel hash table 𝑇 for
(4, 5) nucleus decomposition on the graph in Figure 1, with
different numbers of levels. If we consider each vertex and
each pointer to take a unit of memory, the one-level 𝑇 takes
24 units, while the 3-multi-level 𝑇 takes 22 units, thus sav-
ing memory. We see memory savings with more levels in 𝑇

compared to in Figure 3, because 𝑟 = 4 is sufficiently large.

shared vertices on each intermediate level, which need not be re-

peatedly stored in the keys on the subsequent levels of the parallel

hash table, and for 𝑟 ≥ ℓ > 2, these savings may exceed those found

in the previous combination of an array and a parallel hash table.

In considering different numbers of levels, we differentiate be-

tween the two-level combination of an array and a parallel hash

table, and the ℓ-multi-level option of nested parallel hash tables,

where ℓ is the number of levels, and notably, we may have ℓ = 2.

Figures 3 and 4 show examples of 𝑇 using different numbers of lev-

els. As shown in these examples, there are cases where increasing

the number of levels does not save space, because the additional

pointers required in increasing the number of levels exceeds the

overlap in vertices between 𝑟 -cliques, particularly for small 𝑟 .

Moreover, note that there are no theoretical guarantees onwhether

additional levels will result in a memory reduction, since a memory

reduction depends on the number of overlapping 𝑟 -cliques and the

size of the overlap in 𝑟 -cliques in any given graph. In other words,

the skew in the constituent vertices of the 𝑟 -cliques directly impacts

the possible memory reduction. Similarly, performance improve-

ments may arise due to better cache locality in accessing 𝑟 -cliques

that share many vertices, but this is not guaranteed, and cache

misses are inevitable while traversing through different levels.
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Figure 5: Using the same graph as shown in Figure 1 and the
two-level 𝑇 from Figure 3, for (3, 4) nucleus decomposition,
an example of the binary search and stored pointersmethods.

Figure 6: An example of the simple array, list buffer, and
hash table options in aggregating the set𝑈 of 𝑟 -cliques with
updated 𝑠-clique counts. Processors 𝑃1, 𝑃2, and 𝑃3 are storing
𝑟 -cliques 𝐶𝑟1 , 𝐶𝑟2 , and 𝐶𝑟3 , respectively, in𝑈 .

The idea of a multi-level parallel hash table is generally applica-

ble where the efficient storage and access of sets with significant

overlap is desired, particularly if memory usage is a bottleneck. An

example use case is to efficiently store hyperedge adjacency lists

for a hypergraph. It can also be used for data with multiple fields

or dimensions, where each level keys a different field.

5.2 Contiguous Space
In using the two-level and multilevel data structures as𝑇 , a natural

way to implement the last level parallel hash tables in these more

complicated data structures is to simply allocate separate blocks of

memory as needed for each last level parallel hash table. However,

this approach may be memory-inefficient and lead to poor cache

locality. An optimization for the two-level and multi-level tables is

to instead first compute the space needed for all last level parallel

hash tables and then allocate a contiguous block of memory such

that the last level tables are placed consecutively with one another,

using a parallel prefix sum to determine each of their indices into

the contiguous block of memory. This optimization requires little

overhead, and has the additional benefit of greater cache locality.

This optimization does not apply to one-level parallel hash tables,

since they are by nature contiguous.

5.3 Binary Search vs. Stored Pointers
An important implementation detail from arb-nucleus-decomp

is the interfacing between the representation of 𝑟 -cliques in the

bucketing structure 𝐵 and the representation of 𝑟 -cliques in the par-

allel hash table 𝑇 . It is impractical to use the theoretically-efficient

Fibonacci heap used to obtain our theoretical bounds, due to the

complexity of Fibonacci heaps in general; in practice, we use the

efficient parallel bucketing implementation by Dhulipala et al. [19].

This bucketing structure requires each 𝑟 -clique to be represented

by an index, and to interface between 𝑇 and 𝐵, we require a map

translating each 𝑟 -clique in𝑇 to its index in 𝐵, and vice versa. More

explicitly, for a given 𝑟 -clique in 𝑇 , we must be able to find the

number of 𝑠-cliques it participates in using 𝐵, and symmetrically,

for a given 𝑟 -clique that we peel from 𝐵, we must be able to find

its constituent vertices using 𝑇 . It would be impractical in terms of

space to represent the 𝑟 -clique directly using its constituent vertices

in 𝐵, since its constituent vertices are already stored in𝑇 . Thus, we

seek a unique index to represent each 𝑟 -clique by in 𝐵, that is easy

to map to and from the 𝑟 -clique in 𝑇 . If 𝑇 is represented using a

one-level parallel hash table, then a natural index to use for each 𝑟 -

clique is its key in𝑇 , and the map is implicitly the identity map. For

instance, considering the one-level 𝑇 in Figure 2, instead of storing

𝑐𝑑𝑔 in bucket 0 before any rounds begin, we would instead store 13,

which is the index of 𝑐𝑑𝑔 in 𝑇 . However, if 𝑇 is represented using a

two-level or multi-level structure, then the index representation and

map are less natural, and require additional overheads to maintain.

One important property of the mapping from 𝑇 to 𝐵 is space-

efficiency, and so it is desirable to maintain an implicit map. There-

fore, we represent each 𝑟 -clique by the unique index corresponding

to its position in the last level parallel hash table in 𝑇 , which can

be implicitly obtained by its location in memory if 𝑇 is represented

contiguously. If 𝑇 is not represented contiguously, then we can

store the prefix sums of the sizes of each successive level of parallel

hash tables, and use these plus the 𝑟 -clique’s index at its last level

table in 𝑇 to obtain the unique index. For equivalent 𝑇 , the index

corresponding to each 𝑟 -clique is the same regardless of whether 𝑇

is represented contiguously in memory or not. For instance, consid-

ering the two-level 𝑇 in Figure 3, instead of storing 𝑎𝑏𝑐 in bucket

2 before any rounds begin, we would instead store 2, which is the

index of 𝑎𝑏𝑐 in the second level of 𝑇 . Similarly, instead of storing

𝑏𝑒 𝑓 in bucket 1, we would instead store 8; this is because we take

the index corresponding to 𝑏𝑒 𝑓 to be its index in the second level

hash table corresponding to vertex 𝑏, plus the sizes of earlier second

level hash tables, namely the size of the hash table corresponding

to vertex 𝑎. Then, it is also necessary to implicitly maintain the

inverse map, from an index in 𝐵 to the constituent vertices of the

corresponding 𝑟 -clique, for which we provide two methods.

Binary Search Method. One solution is to store the prefix sums

of the sizes of each successive level of parallel hash tables in both

the contiguous and non-contiguous cases, and use a serial binary

search to find the table corresponding to the given index at each

level. We also store the vertex corresponding to each intermediate

level alongside each table, which can be easily accessed after the

binary search. The key at the last level table can then be translated

to its constituent 𝑟 − ℓ vertices. This does not require the last level
parallel hash tables to be stored contiguously in memory. Figure

5 shows an example of this method in the non-contiguous case,

where the top array is the prefix sum of the sizes of the second level

hash tables. Each entry in the prefix sum corresponds to an entry
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in the first level, which contains the first vertex of the triangle and

points to the second level, which contains the other two vertices.

Stored Pointer Method. However, while using binary searches is

a natural solution, they may be computationally inefficient, both in

terms of work and cache misses, considering the number of such

translations that are needed throughout arb-nucleus-decomp. In-

stead, we consider a more sophisticated solution which, assuming

contiguous memory, is to place barriers between parallel hash tables

on each level that contain up-pointers to prior levels, and fill empty

cells of the parallel hash tables with the same up-pointers. Then,

given an index to the last level, which translates directly into the

memory location of the cell containing the last level 𝑟 -clique key

due to the contiguous memory, we can perform linear searches to

the right until it reaches an empty cell, which directly gives an up-

pointer to the prior level (and thus, also the vertex corresponding

to the prior level). We differentiate between empty and non-empty

cells by reserving the top bit of each key to indicate whether the

cell is empty or non-empty. The benefit of this method is that with

a good hashing scheme, the linear search for an empty cell will be

faster and more cache-friendly compared to a full binary search.

Figure 5 also shows an example of this method using contiguous

space, in which the barriers placed to the right of each hash table

in the second level point back to the parent entry in the first level,

allowing an index to traverse up these pointers to obtain the cor-

responding first vertex of the triangle. Note that the bold orange

lines on the second level mark the boundaries between parallel

hash tables corresponding to different vertices from the first level.

With both the contiguous space and stored pointers optimiza-

tions applied to two-level and multi-level parallel hash tables𝑇 , we

show in Section 6.2 that we achieve up to a 1.32x speedup of using

a two-level 𝑇 , and up to a 1.46x speedup of using an ℓ-multi-level

𝑇 for ℓ > 2, over one level.

5.4 Graph Relabeling
We sort the vertices in each 𝑟 -clique prior to translating it into

a unique key for use in the parallel hash table 𝑇 . However, the

lexicographic ordering of vertices in the input graph may not be

representative of the access patterns used in finding 𝑟 -cliques. Be-

cause we use directed edges based on an𝑂 (𝛼)-orientation to count

𝑟 -cliques and 𝑠-cliques, an optimization that could save work and

improve cache locality in accessing𝑇 is to relabel vertices based on

the 𝑂 (𝛼)-orientation, so that the sorted order is representative of

the order in which vertices are discovered in the rec-list-cliqes

subroutine. The first benefit of this is that there is no need to re-sort

𝑟 -cliques based on the orientation, which is implicitly performed

on Line 4 of Algorithm 2, as after relabeling, the vertices in a clique

will be added in increasing order. A second benefit is that 𝑟 -cliques

discovered in the same recursive hierarchy will be located closer

together in our parallel hash table, potentially leading to better

cache locality when accessing their counts in 𝑇 . In our evaluation

in Section 6.2, we see up to a 1.29x speedup using graph relabeling.

5.5 Obtaining the Set of Updated 𝑟 -cliques
Akey component of the bucketing structure in arb-nucleus-decomp

is the computation of the set 𝑈 of 𝑟 -cliques with updated 𝑠-clique

counts, after peeling a set of 𝑟 -cliques. Using a parallel hash table

with size equal to the number of 𝑟 -cliques is slow in practice due

to the need to iterate through the entire hash table to retrieve the

𝑟 -cliques and to clear the hash table. We present here three options

for computing𝑈 . Figure 6 shows an example of each of these.

Simple Array. The first option is to represent𝑈 as a simple array

to hold 𝑟 -cliques, along with a variable that maintains the next open

slot in the array.We use a fetch-and-add to update the 𝑠-clique count

of a discovered 𝑟 -clique in the Update-Func subroutine, and if in

the current round this is the first such modification of the 𝑟 -clique’s

count, we use a fetch-and-add to reserve a slot in𝑈 , and store the 𝑟 -

clique in the reserved slot in𝑈 . This method introduces contention

due to the requirement of all updated 𝑟 -cliques to perform a fetch-

and-add with a single variable to reserve a slot in 𝑈 . As shown

in Figure 6, processor 𝑃1 successfully updates the index variable

and inserts its 𝑟 -clique 𝐶𝑟1 into the first index in 𝑈 , but the other

processors must wait until their fetch-and-add operations succeed.

However, the 𝑟 -cliques are compactly stored in𝑈 and there is no

need to clear elements in𝑈 , which results in time savings.

List Buffer. The second option improves upon the contention

incurred by the first option, offering better performance. We use a

data structure that we call a list buffer, which consists of an array

𝑈 that holds 𝑟 -cliques, and 𝑃 variables {𝑖1, . . . , 𝑖𝑃 } that maintain

the next open slots in the array, where 𝑃 is the number of threads.

Each of the 𝑃 variables is exclusively assigned to one of the 𝑃

threads. The data structure also uses a constant buffer size, and

each thread is initially assigned a contiguous block of 𝑈 of size

equal to this constant buffer size. When a thread 𝑗 is the first to

modify an 𝑟 -clique’s count in a given round, the thread updates its

corresponding 𝑖 𝑗 , and uses the reserved open slot in 𝑈 to store the

𝑟 -clique. If a thread runs out of space in its assigned block in𝑈 , it

uses a fetch-and-add operation to reserve the next available block in

𝑈 of size equal to the constant buffer size. We filter𝑈 of all unused

slots, prior to returning 𝑈 to the bucketing data structure. The

reduced contention is due to the exclusive 𝑖 𝑗 that each thread 𝑗 can

update without contention. Threads may still contend on reserving

new blocks of space in𝑈 , but the contention is minimal with a large

enough buffer size. In reusing the list buffer data structure in later

rounds, there is no need to clear𝑈 , as it is sufficient to reset the 𝑖 𝑗 .

In Figure 6, the buffer size is 2, and the slots in𝑈 assigned to each

processor 𝑃𝑖 are labeled by𝑈𝑖 . Each 𝑃𝑖 can store its corresponding

𝑟 -clique 𝐶𝑟𝑖 in parallel, since there is no contention within their

buffer as long as the buffer is not full.

Hash Table. The last option reduces potential contention even

further by removing the necessity to reserve space, but at the cost

of additional work needed to clear 𝑈 between rounds. This option

uses a parallel hash table as 𝑈 , but dynamically determines the

amount of space required on each round based on the number of

𝑟 -cliques peeled. Thus, in rounds with fewer 𝑟 -cliques peeled, less

space is reserved for 𝑈 for that round, and as a result, less work

is required to clear the space to reuse in the next round. Figure 6

shows each processor 𝑃𝑖 storing its corresponding 𝑟 -clique𝐶𝑟𝑖 into

the parallel hash table. However, the entirety of 𝑈 must be cleared

in order to reuse𝑈 between rounds.

In our evaluation in Section 6.2, we achieve up to a 3.98x speedup

using a list buffer and up to a 4.12x speedup using a parallel hash

table, both over a simple array.
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Figure 7: Sizes of our input graphs, from [38], on the left,
and the number of rounds required 𝜌 (𝑟,𝑠) and the maximum
(𝑟, 𝑠)-core numbers for 𝑟 < 𝑠 ≤ 7 for each graph on the right.

6 EVALUATION
6.1 Environment and Graph Inputs
We run experiments on a Google Cloud Platform instance of a

30-core machine with two-way hyper-threading, with 3.8 GHz

Intel Xeon Scalable (Cascade Lake) processors and 240 GiB of main

memory. We compile with g++ (version 7.4.0) and use the -O3 flag.

We use the work-stealing scheduler ParlayLib by Blelloch et al. [8].
We terminate any experiment that takes over 6 hours. We test

our algorithms on real-world graphs from the Stanford Network

Analysis Project (SNAP) [38], shown in Figure 7 with 𝜌 (𝑟,𝑠) and the
maximum (𝑟, 𝑠)-core numbers for 𝑟 < 𝑠 ≤ 7. We also use synthetic

rMAT graphs [11], with 𝑎 = 0.5, 𝑏 = 𝑐 = 0.1, and 𝑑 = 0.3.

We compare to Sariyüce et al.’s state-of-the-art parallel [54] and
serial [55] nucleus decomposition implementations, which address

(2, 3) and (3, 4) nucleus decomposition. For the special case of (2, 3)
nucleus decomposition, we compare to Che et al.’s [12] highly opti-

mized state-of-the-art parallel pkt-opt-cpu, and implementations

by Kabir and Madduri’s pkt [35], Smith et al.’s msp [62], and Blanco
et al. [7], which represent the top-performing implementations

from the MIT GraphChallenge [28]. We run all of these using the

same environment as our experiments on arb-nucleus-decomp.

6.2 Tuning Optimizations
There are six total optimizations thatwe implement in arb-nucleus-

decomp: different numbers of levels in our parallel hash table 𝑇

(numbers of levels), the use of contiguous space (contiguous space),
a binary search versus stored pointers to perform the mapping of

indices representing 𝑟 -cliques to the constituent vertices (inverse in-
dex map), graph relabeling (graph relabeling), a simple array method

versus a list buffer versus a parallel hash table for maintaining the

set 𝑈 of 𝑟 -cliques with changed 𝑠-clique counts per round (update
aggregation), and graph contraction specifically for (2, 3) nucleus
decomposition (graph contraction).

The most unoptimized form of arb-nucleus-decomp uses a one-

level parallel hash table𝑇 , no graph relabeling, and the simple array

method for the update aggregation (as this is the simplest and most

intuitive method), and in the case of (2, 3) nucleus decomposition,

no graph contraction. Note that the contiguous space and inverse

index map optimizations do not apply to the one-level 𝑇 .

Because the first three optimizations, namely numbers of levels,

contiguous space, and the inverse index map, apply specifically to

the parallel hash table 𝑇 , while the remaining optimizations apply

generally to the rest of the nucleus decomposition algorithm, we

first tune different combinations of options for the first three opti-

mizations against the unoptimized arb-nucleus-decomp. We then

separately tune the remaining optimizations, namely graph rela-

beling, update aggregation, and graph contraction optimizations,

against both the unoptimized arb-nucleus-decomp and the best

choice of optimizations from the first comparison.

Optimizations on 𝑇 . Across (2, 3), (2, 4), (3, 4), and (4, 5) nucleus
decomposition, using a two-level 𝑇 with contiguous space and

stored pointers for the inverse index map gives the overall best

configuration across these 𝑟 and 𝑠 values, with up to 1.32x speedups

over the unoptimized case. This configuration either outperforms

or offers comparable performance to other configurations. Figure 8

shows the multiplicative speedup of each combination of optimiza-

tions on𝑇 over the unoptimized𝑇 for (3, 4) nucleus decomposition,

and we show the corresponding figure for (4, 5) nucleus decompo-

sition in the full version of the paper; friendster is omitted from our

(3, 4) experiments because arb-nucleus-decomp runs out of mem-

ory on these graphs. Also, the speedups for (2, 3) and (2, 4) nucleus
decomposition are omitted, but show similar behavior overall.

On the smallest graph, amazon, we see universally poor perfor-

mance of the two-level and multi-level options, and the one-level

𝑇 outperforms these options; however, we note that the one-level

running times for arb-nucleus-decomp on amazon in these cases

is < 0.2 seconds and the maximum core number of amazon is partic-

ularly small (≤ 10), and so the optimizations simply add too much

overhead to see performance improvements. The main case where

the two-level𝑇 performs noticeably worse than other options is for

large graphs and for large 𝑟 and 𝑠 . In (3, 4) nucleus decomposition,

we note that for orkut, using a 3-multi-level𝑇 , also with contiguous

space and stored pointers, significantly outperforms the analogous

two-level option, with a 1.34x speedup over the unoptimized case

compared to a 1.11x speedup. Similarly, in (4, 5) nucleus decompo-

sition, using a 3-multi-level 𝑇 offers comparable performance to

the two-level 𝑇 on dblp and skitter (the 3-multi-level 𝑇 gives 1.46x

and 1.06x speedups over the unoptimized 𝑇 , respectively, while

the 2-level 𝑇 gives 1.32x and 1.06x speedups, respectively), but un-

derperforms on amazon and youtube. The benefit of using large

ℓ relative to 𝑟 is difficult to observe for small 𝑟 , since ℓ ≤ 𝑟 and

speedups only appear in graphs with sufficiently many 𝑟 -cliques.

We see relatively small speedups from larger ℓ for certain graphs,

but in these cases, the performance is comparable, so we consider

the two-level 𝑇 to be the best overall option.

Additionally, the two-level and multi-level options offer signifi-

cant space savings due to their compact representation of vertices

shared among many 𝑟 -cliques, particularly for larger graphs and

larger values of 𝑟 and 𝑠 . Figure 8 also shows the space savings in

𝑇 of each optimization on (3, 4) nucleus decomposition, and we

show the corresponding figure for (4, 5) nucleus decomposition

in the full version of the paper; we omit the figures for (2, 3) and
(2, 4) nucleus decomposition due to space limitations, although

they show similar behavior. Across (2, 3) and (2, 4) nucleus de-
composition, the two-level options give up to a 1.79x reduction in
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Figure 8: On the left, multiplicative speedups of different combinations of optimizations on 𝑇 in arb-nucleus-decomp, over
an unoptimized setting of arb-nucleus-decomp, for (3, 4) nucleus decomposition. On the right, multiplicative space savings
for 𝑇 of different combinations of optimizations on 𝑇 in arb-nucleus-decomp, over the unoptimized setting, for (3, 4) nucleus
decomposition. Note that the space usage between the non-contiguous option and the contiguous option is equal. Friendster is
omitted because arb-nucleus-decomp runs out of memory for this graph.
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Figure 9: Multiplicative speedups of the graph relabeling, update aggregation, and graph contraction optimizations in arb-

nucleus-decomp, over a two-level setting with contiguous space and stored pointers, and using the simple array for𝑈 . Friendster
is omitted from the (2, 4) and (3, 4) nucleus decomposition experiments, because the unoptimized arb-nucleus-decomp times
out for (2, 4), and arb-nucleus-decomp runs out of memory for (3, 4).
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Figure 10: Multiplicative slowdowns over our parallel arb-nucleus-decomp of pkt-opt-cpu and pkt for (2, 3) nucleus decomposi-
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arb-nucleus-decomp in the legend refers to our single-threaded running times. We have omitted bars for pnd, and, and-nn, and
nd where these implementations run out of memory or time out. We have included in parentheses the times of our parallel
arb-nucleus-decomp on 30 cores with hyper-threading. We have also included a line marking a multiplicative slowdown of 1 for
𝑟 = 2, 𝑠 = 3, and we see that pkt-opt-cpu outperforms arb-nucleus-decomp on skitter, livejournal, orkut, and friendster.

space usage, and this increases to up to a 2.15x reduction in space

usage on (3, 4) nucleus decomposition and up to a 2.51x reduction

in space usage on (4, 5) nucleus decomposition. We similarly see

greater space reductions in using ℓ-multi-level 𝑇 for ℓ > 2 on (4, 5)
nucleus decomposition compared to the same ℓ on (3, 4) nucleus
decomposition for the same graphs; however, 𝑟 is not large enough

and there is not enough overlap between 𝑟 -cliques such that using

ℓ > 2 offers significant space savings over the two-level options.

Overall, the optimal setting for the parallel hash table 𝑇 is a

two-level combination of an array and a parallel hash table, with

contiguous space and stored pointers for the inverse index map.

Other optimizations. We now consider the graph relabeling and

update aggregation optimizations, fixing a one-level setting and a

two-level setting with contiguous space and stored pointers for the

inverse index map, and using the simple array for 𝑈 with a fetch-

and-add to reserve every slot. Figure 9 shows these speedups for

the two-level case; we omit the analogous figure for the one-level

case, which shows similar behavior to the two-level case.
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Figure 11: Multiplicative slowdowns of parallel arb-nucleus-
decomp for each (𝑟, 𝑠) combination over the fastest running
time for parallel arb-nucleus-decomp across all 𝑟 < 𝑠 ≤ 7 for
each graph (excluding (2, 3) and (3, 4), which are shown in
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below each graph. Also, livejournal is excluded because for
these 𝑟 and 𝑠, arb-nucleus-decomp is only able to complete
(2, 4) nucleus decomposition, in 484.74 seconds, and the rest
timed out. We have omitted bars where arb-nucleus-decomp
runs out of memory or times out.

Across (2, 3), (2, 4), and (3, 4) nucleus decomposition, the graph

relabeling optimization gives up to 1.23x speedups on the one-level

case and up to 1.29x speedups on the two-level case. We see greater

speedups on the two-level case, because the increased locality across

both levels due to the relabeling is more significant, whereas there

is little improved locality in the one-level case. Graph relabeling

provides minimal speedups in (2, 3) nucleus decomposition, with

slowdowns of up to 1.11x, whereas graph relabeling is almost uni-

versally optimal in (2, 4) and (3, 4) nucleus decomposition. This is

due to fewer benefits from locality when merely computing triangle

counts from edges, versus computing higher clique counts.

In terms of the options for update aggregation, using a list buffer

gives up to 3.43x speedups on the one-level case and up to 3.98x

speedups on the two-level case. Using a parallel hash table gives up

to 3.37x speedups on the one-level case and up to 4.12x speedups on

the two-level case. Notably, the parallel hash table is the fastest for

(2, 3) nucleus decomposition, whereas the list buffer outperforms

the parallel hash table for (2, 4) and (3, 4) nucleus decomposition.

This behavior is particularly evident on larger graphs, where the

time to compute updated 𝑠-clique counts is more significant, and

thus there is less contention in using a list buffer.

Finally, in the special case of (2, 3) nucleus decomposition, we

evaluate the performance of graph contraction over the two-level

setting.We see up to 1.08x speedups using graph contraction, but up

to 1.11x slowdowns when using graph contraction on small graphs,

due to the increased overhead; however, the two-level running

times of arb-nucleus-decomp on these graphs is < 0.2 seconds.

Overall, the optimal setting for (2, 3) nucleus decomposition

is to use a parallel hash table for update aggregation and graph

contraction (with no graph relabeling), and the optimal setting for

general (𝑟, 𝑠) nucleus decomposition is to use a list buffer for update

aggregation and graph relabeling. Combining all optimizations,

over (2, 3), (2, 4), and (3, 4) nucleus decomposition, we see up to a

5.10x speedup over the unoptimized arb-nucleus-decomp.

6.3 Performance
Figures 10 and 11 show the parallel runtimes for arb-nucleus-

decomp using the optimal settings described in Section 6.2, for (𝑟, 𝑠)
where 𝑟 < 𝑠 ≤ 7. We only show in these figures our self-relative

speedups on (𝑟, 𝑠) = (2, 3) and (𝑟, 𝑠) = (3, 4), but we computed self-

relative speedups for all 𝑟 < 𝑠 ≤ 7, and overall, on 30 cores with two-

way hyper-threading, arb-nucleus-decomp obtains 3.31–40.14x

self-relative speedups. We see larger speedups on larger graphs and

for greater 𝑟 . We also see good scalability over different numbers

of threads, which we show in Figure 12 for (2, 3), (2, 4), and (3, 4)
nucleus decomposition on dblp, skitter, and livejournal. Figure 13

additionally shows the scalability of arb-nucleus-decomp over

rMAT graphs of varying sizes and varying edge densities. We see

that our algorithms scale in accordance with the increase in the

number of 𝑠-cliques, depending on the density of the graph.

Comparison to other implementations. Figure 10 also shows the
comparison of our parallel (2, 3) and (3, 4) nucleus decomposition

implementations to other implementations.We compare to Sariyüce

et al.’s [54, 55] parallel implementations, including their global im-

plementation pnd, their asynchronous local implementation and,

and their asynchronous local implementation with notification

and-nn, where the notification mechanism offers performance

improvements at the cost of space. We run the local implementa-

tions to convergence. We also compare to their implementation nd,

which is a serial version of pnd. We note that Sariyüce et al. give
implementations only for (2, 3) and (3, 4) nucleus decomposition.

Compared to pnd, arb-nucleus-decomp achieves 3.84–54.96x

speedups, and compared to and, arb-nucleus-decomp achieves

1.32–60.44x speedups. Notably, pnd runs out of memory on friend-

ster for (2, 3) nucleus decomposition, while our implementation

can process friendster in 368.62 seconds. Moreover, and runs out of

memory on both orkut and friendster for both (2, 3) and (3, 4) nu-
cleus decomposition, while arb-nucleus-decomp is able to process

orkut and friendster for (2, 3) nucleus decomposition, and orkut for

(3, 4) nucleus decomposition. Compared to and-nn, arb-nucleus-

decomp achieves 1.04–8.78x speedups. and-nn outperforms other

implementations by Sariyüce et al., but due to its increased space

usage, it is unable to run on the larger graphs skitter, livejournal,

orkut, and friendster for both (2, 3) and (3, 4) nucleus decomposi-

tion. Considering the best of Sariyüce et al.’s parallel implementa-

tions for each graph and each (𝑟, 𝑠), arb-nucleus-decomp achieves
1.04–54.96x speedups overall. Compared to Sariyüce et al.’s serial
implementation nd, arb-nucleus-decomp achieves 8.19–58.02x

speedups. We significantly outperform Sariyüce et al.’s algorithms

due to the work-efficiency of our algorithm. Notably, and and and-

nn are not work-efficient because they perform a local algorithm,

in which each 𝑟 -clique locally updates its 𝑠-clique-core number

until convergence, compared to the work-efficient peeling process

where the minimum 𝑠-clique-core is extracted from the entire graph

in each round. The total work of these local updates can greatly

outweigh the total work of the peeling process. We measured the

total number of times 𝑠-cliques were discovered in each algorithm,

and found that and computes 1.69–46.03x the number of 𝑠-cliques

in arb-nucleus-decomp, with a median of 15.15x. and-nn reduces

this at the cost of space, but still computes up to 3.45x the number

of 𝑠-cliques in arb-nucleus-decomp, with a median of 1.4x.
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Figure 13: Running times of parallel arb-nucleus-decomp on rMAT graphs of varying densi-
ties for (2, 3), (3, 4), and (4, 5) nucleus decomposition. We remove duplicate generated edges.

Moreover, pnd does perform a global peeling-based algorithm

like arb-nucleus-decomp, but does not parallelize within the peel-

ing process; more concretely, all 𝑟 -cliques with the same 𝑠-clique

count can be peeled simultaneously, which arb-nucleus-decomp

accomplishes by introducing optimizations, notably the update ag-

gregation optimization, that specifically address synchronization

issues when peeling multiple 𝑟 -cliques simultaneously. pnd instead

peels these 𝑟 -cliques sequentially in order to avoid these synchro-

nization problems, leading to significantly more sequential peeling

rounds than required in arb-nucleus-decomp; in fact, pnd per-

forms 5608–84170x the number of rounds of arb-nucleus-decomp.

Moreover, the speedups of arb-nucleus-decomp over pnd, and,

and and-nn are not solely due to our use of the efficient parallel 𝑘-

clique counting subroutine [58]. We replaced the 𝑘-clique counting

subroutine in arb-nucleus-decomp with that used by Sariyüce et
al. [54, 55], and found that arb-nucleus-decomp using Sariyüce

et al.’s 𝑘-clique counting subroutine achieves between 1.83–28.38x

speedups over Sariyüce et al.’s best implementations for (2, 3) and
(3, 4) nucleus decomposition. Within arb-nucleus-decomp, the

efficient 𝑘-clique counting subroutine gives up to 3.04x speedups

over the subroutine used by Sariyüce et al., with a median of 1.03x.

Comparison to 𝑘-truss implementations. In the special case of

(2, 3) nucleus decomposition, or 𝑘-truss, we compare our parallel

implementation to Che et al.’s [12] highly optimized parallel CPU

implementation pkt-opt-cpu, using all of their successive opti-

mizations and considering the best performance across different

reordering options, including degree reordering, 𝑘-core reordering,

and no reordering. Figure 10 also shows the comparison of arb-

nucleus-decomp to pkt-opt-cpu. arb-nucleus-decomp achieves

up to 1.64x speedups on small graphs, but up to 2.27x slowdowns

on large graphs compared to pkt-opt-cpu. However, we note that

pkt-opt-cpu is limited in that it solely implements (2, 3) nucleus
decomposition, and its methods do not generalize to other values

of (𝑟, 𝑠). arb-nucleus-decomp outperforms pkt-opt-cpu on small

graphs due to a more efficient graph reordering subroutine; arb-

nucleus-decomp computes a low out-degree orientation which it

then uses to reorder the graph, and arb-nucleus-decomp’s reorder-

ing subroutine achieves a 3.07–5.16x speedup over pkt-opt-cpu’s

reordering subroutine.
5
pkt-opt-cpu uses its own parallel sample

5
For pkt-opt-cpu, we consider the reordering option that gives the fastest overall

running time for each graph.

sort implementation, which is slower compared to that used by

arb-nucleus-decomp [20]. However, the cost of graph reordering

is negligible compared to the cost of computing the (2, 3) nucleus
decomposition in large graphs, and pkt-opt-cpu uses highly op-

timized intersection subroutines which achieve greater speedups

over arb-nucleus-decomp’s generalized implementation.

We also compared to additional (2, 3) nucleus decomposition

implementations. Specifically, we compared to Kabir and Madduri’s

pkt [35], which outperforms Che et al.’s pkt-opt-cpu on the small

graphs amazon and dblp by 1.01–1.53x, and which is also shown

in Figure 10. However, arb-nucleus-decomp achieves 1.07–2.88x

speedups over pkt on all graphs, including amazon and dblp. More-

over, we compared to Smith et al.’s msp [62], but found that msp

is slower than pkt and pkt-opt-cpu, and arb-nucleus-decomp

achieves 2.35–7.65x speedups over msp. We compared to Blanco et
al.’s [7] implementations as well, which we found to also be slower

than pkt and pkt-opt-cpu, and arb-nucleus-decomp achieves

2.45–21.36x speedups over their best implementation.
6
We also

found that Che et al.’s implementations outperform the reported

numbers from a recent parallel (2, 3) nucleus decomposition imple-

mentation by Conte et al. [16].

7 CONCLUSION
We have presented a novel theoretically efficient parallel algorithm

for (𝑟, 𝑠) nucleus decomposition, which improves upon the previous

best theoretical bounds. We have also developed practical optimiza-

tions and showed that they significantly improve the performance

of our algorithm. Finally, we have provided a comprehensive ex-

perimental evaluation demonstrating that on a 30-core machine

with two-way hyper-threading our algorithm achieves up to 55x

speedup over the previous state-of-the-art parallel implementation.
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