
Sorting with Asymmetric Read and Write Costs

Guy E. Blelloch
Carnegie Mellon University

guyb@cs.cmu.edu

Jeremy T. Fineman
Georgetown University

jfineman@cs.georgetown.edu

Phillip B. Gibbons
Intel Labs & CMU

gibbons@cs.cmu.edu

Yan Gu
Carnegie Mellon University

yan.gu@cs.cmu.edu

Julian Shun
Carnegie Mellon University

jshun@cs.cmu.edu

ABSTRACT
Emerging memory technologies have a significant gap between the
cost, both in time and in energy, of writing to memory versus reading
from memory. In this paper we present models and algorithms that
account for this difference, with a focus on write-efficient sorting
algorithms. First, we consider the PRAM model with asymmetric
write cost, and show that sorting can be performed in O(n) writes,
O(n logn) reads, and logarithmic depth (parallel time). Next, we
consider a variant of the External Memory (EM) model that charges
k > 1 for writing a block of size B to the secondary memory, and
present variants of three EM sorting algorithms (multi-way merge-
sort, sample sort, and heapsort using buffer trees) that asymptotically
reduce the number of writes over the original algorithms, and per-
form roughly k block reads for every block write. Finally, we define
a variant of the Ideal-Cache model with asymmetric write costs,
and present write-efficient, cache-oblivious parallel algorithms for
sorting, FFTs, and matrix multiplication. Adapting prior bounds for
work-stealing and parallel-depth-first schedulers to the asymmetric
setting, these yield parallel cache complexity bounds for machines
with private caches or with a shared cache, respectively.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Sorting and searching

Keywords
Sorting, asymmetric read-write costs, non-volatile memory, persis-
tent memory, write-efficient, write-avoiding, parallel algorithms,
cache-oblivious algorithms, external memory model, mergesort,
sample sort, I/O buffer tree, FFT, matrix multiplication.

1. INTRODUCTION
Emerging nonvolatile/persistent memory (NVM) technologies

such as Phase-Change Memory (PCM), Spin-Torque Transfer Mag-
netic RAM (STT-RAM), and Memristor-based Resistive RAM
(ReRAM) offer the promise of significantly lower energy and higher
density (bits per area) than DRAM. With byte-addressability and
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’15, June 13–15, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3588-1/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2755573.2755604 .

read latencies approaching or improving on DRAM speeds, these
NVM technologies are projected to become the dominant memory
within the decade [27, 40], as manufacturing improves and costs
decrease.

Although these NVMs could be viewed as just a layer in the
memory hierarchy that provides persistence, there is one important
distinction: Writes are significantly more costly than reads, suffer-
ing from higher latency, lower per-chip bandwidth, higher energy
costs, and endurance problems (a cell wears out after 108–1012

writes [27]). Thus, unlike DRAM, there is a significant (often an
order of magnitude or more) asymmetry between read and write
costs [3, 6, 16, 17, 23, 25, 31, 38], motivating the study of write-
efficient (write-limited, write-avoiding) algorithms, which reduce
the number of writes relative to existing algorithms.

Related Work. While read-write asymmetry in NVMs has been the
focus of many systems efforts [13, 26, 39, 41, 42], there have been
very few papers addressing this from the algorithmic perspective.
Reducing the number of writes has long been a goal in disk arrays,
distributed systems, cache-coherent multiprocessors, and the like,
but that work has not focused on NVMs and the solutions are not
suitable for their properties. Several papers [7, 18, 21, 28, 30, 36]
have looked at read-write asymmetries in the context of NAND
flash memory. This work has focused on (i) the fact that in NAND
flash chips, bits can only be cleared by incurring the overhead of
erasing a large block of memory, and/or (ii) avoiding individual
cell wear out. Eppstein et al. [18], for example, presented a novel
cuckoo hashing algorithm that chooses where to insert/reinsert each
item based on the number of writes to date for the cells it hashes
to. Emerging NVMs, in contrast, do not suffer from (i) because
they can write arbitrary bytes in-place. As for (ii), we choose not to
focus on wear out (beyond reducing the total number of writes to
all of memory) because system software (e.g., the garbage collector,
virtual memory manager, or virtual machine hypervisor) can readily
balance application writes across the physical memory over the long
time horizons (many orders of magnitude longer than NAND Flash)
before an individual cell would wear out from too many writes to it.

A few prior works [12, 36, 37] have looked at algorithms for
asymmetric read-write costs in emerging NVMs, in the context of
databases. Chen et al. [12] presented analytical formulas for PCM
latency and energy, as well as algorithms for B-trees and hash joins
that are tuned for PCM. For example, their B-tree variant does not
sort the keys in a leaf node nor repack a leaf after a deleted key,
thereby avoiding the write cost of sorting and repacking, at the
expense of additional reads when searching. Similarly, Viglas [37]
traded off fewer writes for additional reads by rebalancing a B+-tree
only if the cost of rebalancing has been amortized. Viglas [36]
presented several “write-limited” sorting and join algorithms within
the context of database query processing.

Our Results. In this paper, we seek to systematically study algo-
rithms under asymmetric read and write costs. We consider natural
extensions to the RAM/PRAM models, to the External Memory
model, and to the Ideal-Cache model to incorporate an integer cost,
k > 1, for writes relative to reads. We focus primarily on sorting
algorithms, given their fundamental role in computing and as build-
ing blocks for other problems, especially in the External Memory
and Parallel settings—but we also consider additional problems.

We first observe that in the RAM model, it is well known that
sorting by inserting each key into a balanced search tree requires
only O(n) writes with no increase in reads (O(n logn)). Apply-
ing this idea to a carefully-tuned sort for the asymmetric CRCW
PRAM yields a parallel sort with O(n) writes, O(n logn) reads
and O(k logn) depth (with high probability1).

Next, we consider an Asymmetric External Memory (AEM)
model, which has a small primary memory (cache) of size M and
transfers data in blocks of size B to (at a cost of k) and from (at
unit cost) an unbounded external memory. We show that three
asymptotically-optimal EM sorting algorithms can each be adapted
to the AEM with reduced write costs. First, following [30, 36],
we adapt multi-way mergesort by merging kM/B sorted runs at a
time (instead of M/B as in the original EM version). This change
saves writes by reducing the depth of the recursion. Each merge
makes k passes over the runs, using an in-memory heap to extract
values for the output run for the pass. Our algorithm and analysis
is somewhat simpler than [30, 36]. Second, we present an AEM
sample sort algorithm that uses kM/B splitters at each level of
recursion (instead of M/B in the original EM version). Again, the
challenge is to both find the splitters and partition using them while
incurring only O(N/B) writes across each level of recursion. We
also show how this algorithm can be parallelized to run with linear
speedup on the Asymmetric Private-Cache model (Section 2) with
p = n/M processors. Finally, our third sorting algorithm is an
AEM heapsort using a buffer-tree-based priority queue. Compared
to the original EM algorithm, both our buffer-tree nodes and the
number of elements stored outside the buffer tree are larger by a
factor of k, which adds nontrivial changes to the data structure. All
three sorting algorithms have the same asymptotic complexity on
the AEM.

Finally, we define an Asymmetric Ideal-Cache model, which is
similar to the AEM model in terms of M and B and having asym-
metric read/write costs, but uses an asymmetric ideal replacement
policy instead of algorithm-specified transfers. We extend important
results for the Ideal-Cache model and thread schedulers to the asym-
metric case—namely, the Asymmetric Ideal-Cache can be (constant
factor) approximated by an asymmetric-LRU cache, and it can be
used in conjunction with a work-stealing (parallel-depth-first) sched-
uler to obtain good parallel cache complexity bounds for machines
with private caches (a shared cache, respectively). We use this model
to design write-efficient cache-oblivious algorithms for sorting, Fast
Fourier Transform, and matrix multiplication. Our sorting algorithm
is adapted from [9], and again deals with the challenges of reducing
the number of writes. All three algorithms use Θ(k) times more
reads than writes and have good parallelism.

2. PRELIMINARIES AND MODELS
This section presents background material on NVMs and models,

as well as new (asymmetric cost) models and results relating models.
We first consider models whose parallelism is in the parallel transfer

1With high probability (w.h.p.) means with probability 1− n−c, for
a constant c.

of the data in a larger block, then consider models with parallel
processors.

Emerging NVMs. While DRAM stores data in capacitors that typi-
cally require refreshing every few milliseconds, and hence must be
continuously powered, emerging NVM technologies store data as
“states” of the given material that require no external power to retain.
Energy is required only to read the cell or change its value (i.e., its
state). While there is no significant cost difference between reading
and writing DRAM (each DRAM read of a location not currently
buffered requires a write of the DRAM row being evicted, and hence
is also a write), emerging NVMs such as Phase-Change Memory
(PCM), Spin-Torque Transfer Magnetic RAM (STT-RAM), and
Memristor-based Resistive RAM (ReRAM) each incur significantly
higher cost for writing than reading. This large gap seems funda-
mental to the technologies themselves: to change the physical state
of a material requires relatively significant energy for a sufficient
duration, whereas reading the current state can be done quickly and,
to ensure the state is left unchanged, with low energy. An STT-RAM
cell, for example, can be read in 0.14 ns but uses a 10 ns writing
pulse duration, using roughly 10−15 joules to read versus 10−12

joules to write [17] (these are the raw numbers at the materials level).
A Memristor ReRAM cell uses a 100 ns write pulse duration, and
an 8MB Memrister ReRAM chip is projected to have reads with 1.7
ns latency and 0.2 nJ energy versus writes with 200 ns latency and
25 nJ energy [38]—over two orders of magnitude differences in
latency and energy. PCM is the most mature of the three technolo-
gies, and early generations are already available as I/O devices. A
recent paper [25] reported 6.7 µs latency for a 4KB read and 128
µs latency for a 4KB write. Another reported that the sector I/O
latency and bandwidth for random 512B writes was a factor of 15
worse than for reads [23]. As a future memory/cache replacement,
a 512Mb PCM memory chip is projected to have 16 ns byte reads
versus 416 ns byte writes, and writes to a 16MB PCM L3 cache are
projected to be up to 40 times slower and use 17 times more energy
than reads [16]. While these numbers are speculative and subject to
change as the new technologies emerge over time, there seems to be
sufficient evidence that writes will be considerably more costly than
reads in these NVMs.

Sorting. The sorting problem we consider is the standard compari-
son based sorting with n records each containing a key. We assume
the input is in an unsorted array, and the output needs to be placed
into a sorted array. Without loss of generality, we assume the keys
are unique (a position index can always be added to make them
unique).

The Asymmetric RAM model. This is the standard RAM model
but with a cost k > 1 for writes, while reads are still unit cost.

The (Asymmetric) External Memory model. The widely studied
External Memory (EM) model [2] (also called I/O model, Disk
Model and Disk Access Model) assumes a two level memory hi-
erarchy with a fixed size primary memory (cache) of size M and
a secondary memory of unbounded size. Both are partitioned into
blocks of size B. Standard RAM instructions can be used within
the primary memory, and in addition the model has two special
memory transfer instructions: a read transfers (alternatively, copies)
an arbitrary block from secondary memory to primary memory,
and a write transfers an arbitrary block from primary to secondary
memory. The I/O complexity of an algorithm is the total number of
memory transfers. Sorting n records can be performed in the EM
model with I/O complexity

Θ
(n
B

log M
B

n

B

)
(1)

This is both an upper and lower bound [2]. The upper bound can
be achieved with at least three different algorithms, a multi-way
mergesort [2], a distribution sort [2], and a priority-queue (heap)
sort based on buffer trees [4].

The Asymmetric External Memory (AEM) model simply adds a
parameter k to the EM model, and charges this for each write of a
block. Reading a block still has unit cost.

Throughout the paper, we assume that M and B are measured in
terms of the number of data objects. If we are sorting, for example,
it is the number records. We assume that the memory has an extra
O(logM) locations just for storing a stack to compute with.

The (Asymmetric) Ideal-Cache model. The Ideal-Cache model [20]
is a variant of the EM model. The machine model is still organized
in the same way with two memories each partitioned into blocks,
but there are no explicit memory transfer instructions. Instead all
addressable memory is in the secondary memory, but any subset of
up to M/B of the blocks can have a copy resident in the primary
memory (cache). Any reference to a resident block is a cache hit
and is free. Any reference to a word in a block that is not resident
is a cache miss and requires a memory transfer from the secondary
memory. The cache miss can replace a block in the cache with
the loaded block, which might require evicting a cache block. The
model makes the tall cache assumption where M = Ω(B2), which
is easily met in practice. The I/O or cache complexity of an algo-
rithm is the number of cache misses. An optimal (offline) cache
eviction policy is assumed—i.e., one that minimizes the I/O com-
plexity. It is well known that the optimal policy can be approximated
using the online least recently used (LRU) policy at a cost of at most
doubling the number of misses, and doubling the cache size [35].

The main purpose of the Ideal-Cache model is for the design
of cache-oblivious algorithms. These are algorithms that do not
use the parameters M and B in their design, but for which one
can still derive effective bounds on I/O complexity. This has the
advantage that the algorithms work well for any cache sizes on any
cache hierarchies. The I/O complexity of cache-oblivious sorting is
asymptotically the same as for the EM model.

We define the Asymmetric Ideal-Cache model by distinguishing
reads from writes, as follows. A cache block is dirty if the version in
the cache has been modified since it was brought into the cache, and
clean otherwise. When a cache miss evicts a clean block the cost is
1, but when evicting a dirty block the cost is 1+k, 1 for the read and
k for the write. Again, we assume an ideal offline cache replacement
policy—i.e., minimizing the total I/O cost. Under this model we
note that the LRU policy is no longer 2-competitive. However, the
following variant is competitive within a constant factor. The idea is
to separately maintain two equal-sized pools of blocks in the cache
(primary memory), a read pool and a write pool. When reading a
location, (i) if its block is in the read pool we just read the value, (ii)
if it is in the write pool we copy the block to the read pool, or (iii)
if it is in neither, we read the block from secondary memory into
the read pool. In the latter two cases we evict the LRU block from
the read pool if it is full, with cost 1. The rules for the write pool
are symmetric when writing to a memory location, but the eviction
has cost k+ 1 because the block is dirty. We call this the read-write
LRU policy. This policy is competitive with the optimal offline
policy:

LEMMA 2.1. For any sequence S of instructions, if it has cost
QI(S) on the Asymmetric Ideal-Cache model with cache size MI ,
then it will have cost

QL(S) ≤ ML

(ML −MI)
QI(S) + (1 + k)MI/B

on an asymmetric cache with read-write LRU policy and cache sizes
(read and write pools) ML.

PROOF. Partition the sequence of instructions into regions that
contain memory reads to exactly ML/B distinct memory blocks
each (except perhaps the last). Each region will require at most
ML/B misses under LRU. Each will also require at least (ML −
MI)/B cache misses on the ideal cache since at mostMI/B blocks
can be in the cache at the start of the region. The same argument can
be made for writes, but in this case each operation involves evicting
a dirty block. The (1 + k)MI/B is for the last region. To account
for the last region, in the worst case at the start of the last write
region the ideal cache starts withMI/B blocks which get written to,
while the LRU starts with none of those blocks. The LRU therefore
invokes an addition MI/B write misses each costing 1 + k (1 for
the load and k for the eviction). Note that if the cache starts empty
then we do not have to add this term since an equal amount will be
saved in the first round.

The Asymmetric PRAM model. In the Asymmetric PRAM, the
standard PRAM is augmented such that each write costs k and all
other instructions cost 1. In this paper we analyze algorithms in
terms of work (total cost of the operations) and depth (parallel time
using an unbounded number of processors). If we have depth d(n)
and separate the work into w(n) writes and r(n) other instructions,
then the time on p processors is bounded by:

T (n, p) = O

(
kw(n) + r(n)

p
+ d(n)

)
using Brent’s theorem [24]. This bound assumes that work can be
allocated to processors efficiently. We allow for concurrent reads and
writes (CRCW), and for concurrent writes we assume an arbitrary
write takes effect. Note that a parallel algorithm that require O(D)
depth in the PRAM model requires O(kD) depth in the asymmetric
PRAM model to account for the fact that writes are k times more
expensive than reads.
The Asymmetric Private-Cache model. In the Asymmetric Private-
Cache model (a variant of the Private-Cache model [1, 5]), each
processor has its own primary memory of sizeM , and all processors
share a secondary memory. We allow concurrent reads but do not
use concurrent writes. As in the AEM model, transfers are in blocks
of size B and transfers to the shared memory cost k.
The (Asymmetric) Low-depth Cache-Oblivious Paradigm. The
final model that we consider is based on developing low-depth
cache-oblivious algorithms [9]. In the model algorithms are defined
as nested parallel computations based on parallel loops, possibly
nested (this is a generalization of a PRAM). The depth of the com-
putation is the longest chain of dependences—i.e., the depth of a
sequential strand of computation is its sequential cost, and the depth
of a parallel loop is the maximum of the depths of its iterates. The
computation has a natural sequential order by converting each paral-
lel loop to a sequential loop. The cache complexity can be analyzed
on the Ideal-Cache model under this sequential order.

Using known scheduling results the depth and sequential cache
complexity of a computation are sufficient for deriving bounds on
parallel cache complexity. In particular, let D be the depth and Q1

be the sequential cache complexity. Then for a p-processor shared-
memory machine with private caches (each processor has its own
cache) using a work-stealing scheduler, the total number of misses
Qp across all processors is at most Q1 + O(pDM/B) with high
probability [1]. For a p-processor shared-memory machine with a
shared cache of size M + pBD using a parallel-depth-first (PDF)
scheduler, Qp ≤ Q1 [8]. These bounds can be extended to multi-

Algorithm 1 ASYMMETRIC-PRAM SORT

Input: An array of records A of length n
1: Select a sample S from A independently at random with per-

record probability 1/ logn, and sort the sample.
2: Use every (logn)-th element in the sorted S as splitters, and

for each of the about n/ log2 n buckets defined by the splitters
allocate an array of size c log2 n.

3: In parallel locate each record’s bucket using a binary search on
the splitters.

4: In parallel insert the records into their buckets by repeatedly try-
ing a random position within the associated array and attempting
to insert if empty.

5: Pack out all empty cells in the arrays and concatenate all arrays.
// Step 6 is an optional step used to obtain O(k logn) depth

6: For round r ← 1 to 2 do
for each array A′ generated in previous round

Deterministically select |A′|1/3 − 1 samples as splitters
and apply integer sort on the bucket number to partition
A′ into |A′|1/3 sub-arrays.

7: For each subarray apply the asymmetric RAM sort.
8: Return the sorted array.

level hierarchies of private or shared caches, respectively [9]. Thus,
algorithms with low depth have good parallel cache complexity.

Our asymmetric variant of the low-depth cache-oblivious paradigm
simply accounts for k in the depth and uses the Asymmetric Ideal-
Cache model for sequential cache complexity. We observe that the
above scheduler bounds readily extend to this asymmetric setting.
TheO(pDM/B) bound on the additional cache misses under work-
stealing arises from an O(pD) bound on the number of steals and
the observation that each steal requires the stealer to incur O(M/B)
misses to “warm up” its cache. Pessimistically, we will charge
2M/B writes (and reads) for each steal, because each line may be
dirty and need writing back before the stealer can read it into its
cache and, once the stealer has completed the stolen work (reached
the join corresponding to the fork that spawned the stolen work),
the contents of its cache may need to be written back. Therefore
for private caches we have QP ≤ Q1 +O(pkDM/B). The PDF
bounds extend because there are no additional cache misses and
hence no additional reads or writes.

3. SORTING ON RAM/PRAM
The number of writes on an asymmetric RAM can be bound for a

variety of algorithms and data structures using known techniques.
For example, there has been significant research on maintaining
balanced search trees such that every insertion and deletion only
requires a constant number of rotations (see e.g., [29] and refer-
ences within). While the motivation for that work is that for certain
data structures rotations can be asymptotically more expensive than
visiting a node (e.g., if each node of a tree maintains a secondary
set of keys), the results apply directly to improving bounds on the
asymmetric RAM. Sorting can be done by inserting n records into
a balanced search tree data structure, and then reading them off in
order. This requires O(n logn) reads and O(n) writes, for total
cost O(n(k + logn)). Similarly, we can maintain priority queues
(insert and delete-min) and comparison-based dictionaries (insert,
delete and search) in O(1) writes per operation.

We now consider how to sort on an asymmetric CRCW PRAM
(arbitrary write). Algorithm 1 outlines a sample sort (with over-
sampling) that does O(n logn) reads and O(n) writes and has

depth O(k logn). It is similar to other sample sorts [10, 19, 24].
We consider each step in more detail and analyze its cost.

Step 1 can use Cole’s parallel mergesort [14] requiring O(n)
reads and writes w.h.p. (because the sample is size Θ(n/ logn)
w.h.p.), and O(k logn) depth. In step 2 for sufficiently large c,
w.h.p. all arrays will have at least twice as many slots as there
are records belonging to the associated bucket [10]. The cost of
step 2 is a lower-order term. Step 3 requires O(n logn) reads,
O(n) writes and O(k + logn) depth for the binary searches and
writing the resulting bucket numbers. Step 4 is an instance of the so-
called placement problem (see [32, 33]). This can be implementing
by having each record select a random location within the array
associated with its bucket and if empty, attempting to insert the
record at that location. This is repeated if unsuccessful. Since
multiple records might try the same location at the same time, each
record needs to check if it was successfully inserted. The expected
number of tries per record is constant. Also, if the records are
partitioned into groups of size logn and processed sequentially
within the group and in parallel across groups, then w.h.p. no group
will require more than O(logn) tries across all of its records [32].
Therefore, w.h.p., the number of reads and writes for this step are
O(n) and the depth is O(k logn). Step 5 can be done with a prefix
sum, requiring a linear number of reads and writes, and O(k logn)
depth. At this point we could apply the asymmetric RAM sort to
each bucket giving a total of O(n logn) reads, O(n) writes and a
depth of O

(
k log2 n+ log2 n log log n

)
w.h.p. (the first term for

the writes and second term for the reads).
We can reduce the depth to O(k logn) by further determinis-

tically sampling inside each bucket (step 6) using the following
lemma:

LEMMA 3.1. We can partition m records into m1/3 buckets
M1, . . . ,Mm1/3 such that for any i and j where i < j all records
in Mi are less than all records in Mj , and for all i, |Mi| <
m2/3 logm. The process requiresO(m logm) reads,O(m) writes,
and O(k

√
m) depth.

PROOF. We first split the m records into groups of size m1/3

and sort each group with the RAM sort. This takes O(m logm)

reads, O(m) writes and O
(
km1/3 logm

)
depth. Then for each

sorted group, we place every logm’th record into a sample. Now we
sort the sample of size m/ logm using Cole’s mergesort, and use
the result as splitters to partition the remaining records into buckets.
Finally, we place the records into their respective buckets by integer
sorting the records based on their bucket number. This can be done
with a parallel radix sort in a linear number of reads/writes and
O(k
√
m) depth [32].

To show that the largest bucket has size at most m2/3 logm, note
that in each bucket, we can pick at most logm consecutive records
from each of the m2/3 groups without picking a splitter. Otherwise
there will be a splitter in the bucket, which is a contradiction.

Step 6 applies two iterations of Lemma 3.1 to each bucket to
partition it into sub-buckets. For an initial bucket of size m, this
process will create sub-buckets of at most size O

(
m4/9 log5/3m

)
.

Plugging in m = O
(
log2 n

)
gives us that the largest sub-bucket is

of size O
(

log8/9 n(log log n)5/3
)

. We can now apply the RAM

sort to each bucket in O(k logn) depth. This gives us the following
theorem.

THEOREM 3.2. Sorting n records can be performed using O(n
logn) reads, O(n) writes, and in O(k logn) depth w.h.p. on the
Asymmetric CRCW PRAM.

This implies

T (n) = O

(
n logn+ kn

p
+ k logn

)
time. Allocating work to processors is outlined above or described
in the cited references. In the standard PRAM model, the depth of
our algorithm matches that of the best PRAM sorting algorithm [14],
although ours is randomized and requires the CRCW model. We
leave it open whether the same bounds can be met deterministically
and on a PRAM without concurrent writes.

4. EXTERNAL MEMORY SORTING
In this section, we present sorting algorithms for the Asymmetric

External Memory model. We show how the three approaches for
EM sorting—mergesort, sample sort, and heapsort (using buffer
trees)—can each be adapted to the asymmetric case.

In each case we trade off a factor of k additional reads for a larger
branching factor (kM/B instead ofM/B), hence reducing the num-
ber of rounds. It is interesting that the same general approach works
for all three types of sorting. The first algorithm, the mergesort,
has been described elsewhere [30] although in a different model
(their model is specific to NAND flash memory and has different
sized blocks for reading and writing, among other differences). Our
parameters are therefore different, and our analysis is new. To the
best of our knowledge, our other two algorithms are new.

4.1 Mergesort
We use an l-way mergesort—i.e., a balanced tree of merges with

each merge taking in l sorted arrays and outputting one sorted array
consisting of all records from the input. We assume that once the
input is small enough a different sort (the base case) is applied.
For l = M/B and a base case of n ≤ M (using any sort since it
fits in memory), we have the standard EM mergesort. With these
settings there are logM/B(n/M) levels of recursion, plus the base
case, each costing O(n/B) memory operations. This gives the
well-known overall bound from Equation 1 [2].

To modify the algorithm for the asymmetric case, we increase the
branching factor and the base case by a factor of k, i.e. l = kM/B
and a base case of n ≤ kM . This means that it is no longer possible
to keep the base case in the primary memory, nor one block for
each of the input arrays during a merge. The modified algorithm is
described in Algorithm 2.

Each merge proceeds in a sequence of rounds, where a round is
one iteration of the while loop starting on line 5. During each round
we maintain a priority queue within the primary memory. Because
operations within the primary memory are free in the model, this can
just be kept as a sorted array of records, or even unsorted, although
a balanced search tree can be a feasible solution in practice. Each
round consists of two phases. The first phase (the for loop on line 6)
considers each of the l input subarrays in turn, loading the current
block for the subarray into the load buffer, and then inserting each
record e from the block into the priority queue if not already written
to the output (i.e. e.key > lastV), and if smaller than the maximum
in the queue (i.e. e.key < Q.max). This might bump an existing
element out of the queue. Also, if a record is the last in its block
then it is marked and tagged with its subarray number.

The second phase (the while loop starting on line 8) starts writing
the priority queue to the output one block at a time. Whenever
reaching a record that is marked as the last in its block, the algorithm
increments the pointer to the corresponding subarray and processes
the next block in the subarray. We repeat the rounds until all records
from all subarrays have been processed.

Algorithm 2 AEM-MERGESORT

Input: An array A of records of length n
1: if |A| ≤ kM then // base case
2: Sort A using k|A|/B reads and |A|/B writes, and return.
3: Evenly partition A into l = kM/B subarrays A1, . . . , Al

(at the granularity of blocks) and recursively apply AEM-
MERGESORT to each.

4: Initialize Merge. Initialize an empty output array O, a load
buffer and an empty store buffer each of size B, an empty
priority queue Q of size M , an array of pointers I1, . . . , Il
that point to the start of each sorted subarray, c = 0, and
lastV = −∞. Associated with Q is Q.max, which holds the
maximum element in Q if Q is full, and +∞ otherwise.

5: while c < |A| do
6: for i← 1 to l do
7: PROCESS-BLOCK(i).
8: while Q is not empty do
9: e← Q.deleteMin.

10: Write e to the store buffer, c← c+ 1.
11: If the store buffer is full, flush it to O and update lastV .
12: if e is marked as last record in its subarray block then
13: i = e.subarray.
14: Increment Ii to point to next block in subarray i.
15: PROCESS-BLOCK(i).
16: A← O. // Logically, don’t actually copy

17: function PROCESS-BLOCK(subarray i)
18: If Ii points to the end of the subarray then return.
19: Read the block Ii into the load buffer.
20: for all records e in the block do
21: if e.key is in the range (lastV, Q.max) then
22: If Q is full, eject Q.max.
23: Insert e into Q, and mark if last record in block.

To account for the space for the pointers I = I1, . . . , Il, let
α = (logn)/s, where s is the size of a record in bits, and n is the
total number of records being merged. The cost of the merge is
bounded as follows:

LEMMA 4.1. l = kM/B sorted sequences with total size n
(stored in dn/Be blocks, and block aligned) can be merged using at
most (k + 1)dn/Be reads and dn/Be writes, on the AEM model
with primary memory size (M + 2B + 2αkM/B).

PROOF. Each round (except perhaps the last) outputs at least M
records, and hence the total number of rounds is at most dn/Me.
The first phase of each round requires at most kM/B reads, so the
total number of reads across all the first phases is at most kdn/Be
(the last round can be included in this since it only loads as many
blocks as are output). For the second phase, a block is only read
when incrementing its pointer, therefore every block is only read
once in the second phase. Also every record is only written once.
This gives the stated bounds on the number of reads and writes. The
space includes the space for the in-memory heap (M), the load and
store buffers, the pointers I (αkM/B), and pointers to maintain the
last-record in block information (αkM/B).

We note that it is also possible to keep I in secondary memory.
This will double the number of writes because every time the algo-
rithm moves to a new block in an input array i, it would need to
write out the updated Ii. The increase in reads is small. Also, if one
uses a balanced search tree to implement the priority queue Q then

the size increases by < M(logM)/s in order to store the pointers
in the tree.

For the base case when n ≤ kM we use the following lemma.

LEMMA 4.2. n ≤ kM records stored in dn/Be blocks can be
sorted using at most kdn/Be reads and dn/Be writes, on the AEM
model with primary memory size M +B.

PROOF. We sort the elements using a variant of selection sort,
scanning the input list a total of at most k times. In the first scan,
store in memory theM smallest elements seen so far, performing no
writes and dn/Be reads. After completing the scan, output all the
min(M,n) elements in sorted order using dmin(M,n)/Be writes.
Record the maximum element written so far. In each subsequent
phase (if not finished), store in memory the M smallest records
larger than the maximum written so far, then output as before. The
cost is dn/Be reads and M/B writes per phase (except perhaps the
last phase). We need one extra block to hold the input. The largest
output can be stored in the O(logM) locations we have allowed for
in the model. This gives the stated bounds because every element is
written out once and the input is scanned at most k times.

Together we have:

THEOREM 4.3. Algorithm 2 sorts n records using

R(n) ≤ (k + 1)
⌈ n
B

⌉⌈
log kM

B

(n
B

)⌉
reads, and

W (n) ≤
⌈ n
B

⌉⌈
log kM

B

(n
B

)⌉
writes on an AEM with primary memory size (M + 2B + 2αkM/B).

PROOF. The number of recursive levels of merging is bounded
by
⌈
log kM

B

(
n

kM

)⌉
, and when we add the additional base round we

have 1+
⌈
log kM

B

(
n

kM

)⌉
=
⌈
log kM

B

(
n

kM
kM
B

)⌉
=
⌈
log kM

B

(
n
B

)⌉
.

The cost for each level is at most (k + 1)dn/Be reads and dn/Be
writes (only one block on each level might not be full).

4.2 Sample Sort
We now describe an l-way randomized sample sort [10, 19]

(also called distribution sort), which asymptotically matches the
I/O bounds of the mergesort. The idea of sample sort is to partition
n records into l approximately equally sized buckets based on a
sample of the keys within the records, and then recurse on each
bucket until an appropriately-sized base case is reached. As with the
mergesort, here we will use a branching factor l = kM/B. Again
this branching factor will reduce the number of levels of recursion
relative to the standard EM sample sort which uses l = M/B [2].
We describe how to process each partition and the base case.

The partitioning starts by selecting a set of splitters. This can
be done using standard techniques, which we review later. The
splitters partition the input into buckets that w.h.p. are within a
constant factor of the average size n/l. The algorithm now needs to
bucket the input based on the splitters. The algorithm processes the
splitters in k rounds of size M/B each, starting with the first M/B
splitters. For each round the algorithm scans the whole input array,
partitioning each value into the one of M/B buckets associated
with the splitters, or skipping a record if its key does not belong in
the current buckets. One block for each bucket is kept in memory.
Whenever a block for one of the buckets is full, it is written out to
memory and the next block is started for that bucket. Each k rounds
reads all of the input and writes out only the elements associated
with these buckets (roughly a 1/k fraction of the input).

The base case occurs when n ≤ kM , at which point we apply
the selection sort from Lemma 4.2.

Let n0 be the original input size. The splitters can be chosen by
randomly picking a sample of keys of sizem = Θ(l logn0), sorting
them, and then sub-selecting the keys at positionsm/l, 2m/l, . . . , (l−
1)m/l. By selecting the constant in the Θ sufficiently large, this pro-
cess ensures that, w.h.p., every bucket is within a constant factor of
the average size [10]. To sort the samples apply a RAM mergesort,
which requires at most O(((l logn0)/B) log(l logn0/M)) reads
and writes. This is a lower-order term when l = O(n / log2 n),
but unfortunately this bound on l may not hold for small subprob-
lems. There is a simple solution—when n ≤ k2M2/B, instead use
l = n/(kM). With this modification, we always have l ≤

√
n/B.

It is likely that the splitters could also be selected deterministically
using an approach used in the original I/O-efficient distribution
sort [2].

THEOREM 4.4. The kM/B-way sample sort sorts n records
using, w.h.p.,

R(n) = O

(
kn

B

⌈
log kM

B

(n
B

)⌉)
reads, and

W (n) = O
(n
B

⌈
log kM

B

(n
B

)⌉)
writes on an AEM with primary memory size (M +B +M/B).

PROOF. (Sketch) The primary-memory size allows one block
from each bucket as well as the M/B splitters to remain in memory.
Each partitioning step thus requires dn/Be+ kM/B writes, where
the second term arises from the fact that each bucket may use a
partial block. Since n ≥ kM (this is not a base case), the cost of
each partitioning step becomesO(n/B) writes andO(kn/B) reads.
Because the number of splitters is at most

√
n = O(n/ log2 n),

choosing and sorting the splitters takes O(n/B) reads and writes.
Observe that the recursive structure matches that of a sample sort
with an effective memory of size kM , and that there will be at
most two rounds at the end where l = n/(kM). As in standard
sample sort, the number of writes is linear with the size of the
subproblem, but here the number of reads is multiplied by a factor
of k. The standard samplesort analysis thus applies, implying the
bound stated.

It remains only to consider the base case. Because all buck-
ets are approximately the same size, the total number of leaves is
O(n/B)—during the recursion, a size n > kM problem is split
into subproblems whose sizes are Ω(B). Applying Lemma 4.2 to
all leaves, we get a cost of O(kn/B) reads and O(n/B) writes for
all base cases.

Extensions for the Private-Cache Model. The above can be read-
ily parallelized. Here we outline the approach. We assume that
there are p = n/M processors. We use parallelism both within each
partition, and across the recursive partitions. Within a partition we
first find the l splitters in parallel. (As above, l = kM/B except for
the at most two rounds prior to the base case where l = n/(kM).)
This can be done on a sample that is a logarithmic factor smaller
than the partition size, using a less efficient sorting algorithm such
as parallel mergesort, and then sub-selecting l splitters from the
sorted order. This requires O(k(M/B + log2 n)) time, where the
second term (O(k log2 n)) is the depth of the parallel mergesort, and
the first term is the work term O((k/B)((n/ logn) logn)/P) =
O(kM/B).

The algorithm groups the input into n/(kM) chunks of size kM
each. As before we also group the splitters into k rounds of size

M/B each. Now in parallel across all chunks and across all rounds,
partition the chunk based on the round. We have n/(kM)× k =
n/M processors so we can do them all in parallel. Each will require
kM reads and M writes. To ensure that the chunks write their
buckets to adjacent locations (so that the output of each bucket is
contiguous) we will need to do a pass over the input to count the
size of each bucket for each chunk, followed by a prefix sum. This
can be done before processing the chunks and is a lower-order term.
The time for the computation is O(kM/B).

The processors are then divided among the sub-problems pro-
portional to the size of the sub-problem, and we repeat. The work
at each level of recursion remains the same, so the time at each
level remains the same. For the base case of size ≤ kM , instead of
using a selection sort across all keys, which is sequential, we find
k splitters and divide the work among k processors to sub-select
their part of the input, each by reading the whole input, and then
sorting their part of size O(M) using a selection sort on those keys.
This again takes O(kM/B) time. The total time for the algorithm
is therefore:

O

(
k

(
M

B
+ log2 n

)⌈
1 + log kM

B

(n

kM

)⌉)
with high probability. This is linear speedup assuming M

B
≥ log2 n.

Otherwise the number of processors can be reduced to maintain
linear speedup.

4.3 I/O Buffer Trees
This section describes how to augment the basic buffer tree [4]

to build a priority queue that supports n INSERT and DELETE-MIN
operations with an amortized cost of O((k/B)(1 + logkM/B n))
reads and O((1/B)(1 + logkM/B n)) writes per operation. Using
the priority queue to implement a sorting algorithm trivially results
in a sort costing a total of O((kn/B)(1 + logkM/B n)) reads and
O((n/B)(1 + logkM/B n)) writes. These bounds asymptotically
match the preceding sorting algorithms, but some additional con-
stant factors are introduced because a buffer tree is a dynamic data
structure.

Our buffer tree-based priority queue for the AEM contains a
few differences from the regular EM buffer tree [4]: (1) the buffer
tree nodes are larger by a factor k, (2) consequently, the “buffer-
emptying” process uses an efficient sort on kM elements instead of
an in-memory sort on M elements, and (3) to support the priority
queue, O(kM) elements are stored outside the buffer tree instead
of O(M), which adds nontrivial changes to the data structure.

4.3.1 Overview of a buffer tree
A buffer tree [4] is an augmented version of an (a, b)-tree [22],

where a = l/4 and b = l for large branching factor l. In the original
buffer tree l = M/B, but to reduce the number of writes we instead
set l = kM/B. As an (a, b) tree, all leaves are at the same depth
in the tree, and all internal nodes have between l/4 and l children
(except the root, which may have fewer). Thus the height of the
tree is O(1 + logl n). An internal node with c children contains
c − 1 keys, stored in sorted order, that partition the elements in
the subtrees. The structure of a buffer tree differs from that of an
(a, b) tree in two ways. Firstly, each leaf of the buffer tree contains
between lB/4 and lB elements stored in l blocks.2 Secondly, each

2Arge [4] defines the “leaves” of a buffer tree to contain Θ(B)
elements instead of Θ(lB) elements. Since the algorithm only
operates on the parents of those “leaves”, we find the terminology
more convenient when flattening the bottom two levels of the tree.
Our leaves thus correspond to what Arge terms “leaf nodes” [4] (not

node in the buffer tree also contains a dense unsorted list, called a
buffer, of partially inserted elements that belong in that subtree.

We next summarize the basic buffer tree insertion process [4].
Supporting general deletions is not much harder, but to implement
a priority queue we only need to support deleting an entire leaf.
The insertion algorithm proceeds in two phases: the first phase
moves elements down the tree through buffers, and the second phase
performs the (a, b)-tree rebalance operations (i.e., splitting nodes
that are too big). The first phase begins by appending the new
element to the end of the root’s buffer. We say that a node is full
if its buffer contains at least lB elements. If the insert causes the
root to become full, then a buffer-emptying process commences,
whereby all of the elements in the node’s buffer are sorted then
distributed to the children (appended to the ends of their buffers).
This distribution process may cause children to become full, in
which case they must also be emptied. More precisely, the algorithm
maintains a list of internal nodes with full buffers (initially the root)
and a separate list of leaves with full buffers. The first phase operates
by repeatedly extracting a full internal node from the list, emptying
its buffer, and adding any full children to the list of full internal or
leaf nodes, until there are no full internal nodes.

Note that during the first phase, the buffers of full nodes may
far exceed lB, e.g., if all of the ancestors’ buffer elements are
distributed to a single descendant. Sorting the buffer from scratch
would therefore be too expensive. Fortunately, each distribution
process writes elements to the child buffers in sorted order, so all
elements after the lB’th element (i.e., those written in the most
recent emptying of the parent) are sorted. It thus suffices to split the
buffer at the lB’th element and sort the first lB elements, resulting
in a buffer that consists of two sorted lists. These two lists can
trivially be merged as they are being distributed to the sorted list of
children in a linear number of I/O’s.

When the first phase completes, there may be full leaves but no
full internal nodes. Moreover, all ancestors of each full leaf have
empty buffers. The second phase operates on each full leaf one at a
time. First, the buffer is sorted as above and then merged with the
elements stored in the leaf. If the leaf contains X > lB elements,
then a sequence of (a, b)-tree rebalance operations occur whereby
the leaf may be split into Θ(X/(lB)) new nodes. These splits
cascade up the tree as in a typical (a, b)-tree insert.

4.3.2 Buffer tree with fewer writes
To reduce the number of writes, we set the branching factor of the

buffer tree to l = kM/B instead of l = M/B. The consequence of
this increase is that the buffer emptying process needs to sort lB =
kM elements, which cannot be done with an in-memory sort. The
advantage is that the height of the tree reduces toO(1+logkM/B n).

LEMMA 4.5. It costs O(kX/B) reads and O(X/B) writes to
empty a full buffer containing X elements using Θ(M) memory.

PROOF. By Lemma 4.2, the cost of sorting the first kM elements
is O(k2M/B) reads and O(kM/B) writes. The distribute step can
be performed by simultaneously scanning the sorted list of children
along with the two sorted pieces of the buffer, and outputting to
the end of the appropriate child buffer. A write occurs only when
either finishing with a child or closing out a block. The distribute
step thus uses O(kM/B+X/B) reads and writes, giving a total of
O(k2M/B+X/B) reads andO(kM/B+X/B) writes including
the sort step. Observing that full means X > kM completes the
proof.

to be confused with leaves) or equivalently what Sitchinava and Zeh
call “fringe nodes” [34].

THEOREM 4.6. Suppose that the partially empty block belong-
ing to the root’s buffer is kept in memory. Then the amortized
cost of each insert into an n-element buffer tree is O((k/B)(1 +
logkM/B n)) reads and O((1/B)(1 + logkM/B n)) writes.

PROOF. This proof follows from Arge’s buffer tree performance
proofs [4], augmented with the above lemma. We first consider the
cost of reading and writing the buffers. The last block of the root
buffer need only be written when it becomes full, at which point the
next block must be read, giving O(1/B) reads and writes per insert.
Each element moves through buffers on a root-to-leaf path, so it may
belong to O(1 + logkM/B n) emptying processes. According to
Lemma 4.5, emptying a full buffer costsO(k/B) reads andO(1/B)
writes per element. Multiplying these two gives an amortized cost
per element matching the theorem.

We next consider the cost of rebalancing operations. Given the
choice of (a, b)-tree parameters, the total number of node splits is
O(n/(lB)) [4, Theorem 1] which is O(n/(kM)). Each split is
performed by scanning a constant number of nodes, yielding a cost
of O(kM/B) reads and write per split, or O(n/(kM) · kM/B) =
O(n/B) reads and writes in total or O(1/B) per insert.

4.3.3 An efficient priority queue with fewer writes
The main idea of Arge’s buffer tree-based priority queue [4] is

to store a working set of the O(lB) smallest elements resident in
memory. When inserting an element, first add it to the working set,
then evict the largest element from the working set (perhaps the
one just inserted) and insert it into the buffer tree. To extract the
minimum, find it in the working set. If the working set is empty,
remove the Θ(lB) smallest elements from the buffer tree and add
them to the working set. In the standard buffer tree, l = M/B and
hence operating on the working set is free because it fits entirely in
memory. In our case, however, extra care is necessary to maintain a
working set that has size roughly k times larger.

Our AEM priority queue follows the same idea except the work-
ing set is partitioned into two pieces, the alpha working set and
beta working set. The alpha working set, which is always resident
in memory, contains at most M/4 of the smallest elements in the
priority queue. The beta working set contains at most 2kM of the
next smallest elements in the data structure, stored in O(kM/B)
blocks. The motivation for having a beta working set is that dur-
ing DELETE-MIN operations, emptying elements directly from the
buffer tree whenever the alpha working set is empty would be too
expensive—having a beta working set to stage larger batches of
such elements leads to better amortized bounds. Coping with the
interaction between the alpha working set, the beta working set, and
the buffer tree, is the main complexity of our priority queue. The
beta working set does not fit in memory, but we keep a constant
number of blocks from the beta working set and the buffer tree
(specifically, the last block of the root buffer) in memory.

We begin with a high-level description of the priority-queue op-
erations, with details of the beta working set deferred until later.
For now, it suffices to know that we keep the maximum key in the
beta working set in memory. To insert a new element, first compare
its key against the maximums in the alpha and beta working set.
Then insert it into either the alpha working set, the beta working set,
or the buffer tree depending on the key comparisons. If the alpha
working set exceeds maximum capacity of M/4 elements, move the
largest element to the beta working set. If the beta working set hits
its maximum capacity of 2kM elements, remove the largest kM
elements and insert them into the buffer tree.

To delete the minimum from the priority queue, remove the small-
est element from the alpha working set. If the alpha working set is
empty, extract the M/4 smallest elements from the beta working

set (details to follow) and move them to the alpha working set. If
the beta working set is empty, perform a buffer emptying process
on the root-to-leftmost-leaf path in the buffer tree. Then delete the
leftmost leaf and move its contents to the beta working set.
The beta working set. The main challenge is in implementing the
beta working set. An unsorted list or buffer allows for efficient
inserts by appending to the last block. The challenge, however, is
to extract the Θ(M) smallest elements with O(M/B) writes—if
k > B, each element may reside in a separate block, and we thus
cannot afford to update those blocks when extracting the elements.
Instead, we perform the deletions implicitly.

To facilitate implicit deletions, we maintain a list of ordered
pairs (i1, x1), (i2, x2), (i3, x3), . . ., where (i, x) indicates that all
elements with index at most i and key at most x are invalid. Our
algorithm maintains the invariant that for consecutive list elements
(ij , xj) and (ij+1, xj+1), we have ij < ij+1 and xj > xj+1 (recall
that all keys are distinct).

To insert an element to the beta working set, simply append it to
the end. The invariant is maintained because its index is larger than
any pair in the list.

To extract the minimum M/4 elements, scan from index 0 to i1
in the beta working set, ignoring any elements with key at most x1.
Then scan from i1 + 1 to i2, ignoring any element with key at most
x2. And so on. While scanning, record in memory theM/4 smallest
valid elements seen so far. When finished, let x be the largest key
and let i be the length of the beta working set. All elements with
key at most x have been removed from the full beta working set, so
they should be implicitly marked as invalid. To restore the invariant,
truncate the list until the last pair (ij , xj) has xj > x, then append
(i, x) to the list. Because the size of the beta working set is growing,
ij < i. It should be clear that truncation does not discard any
information as (i, x) subsumes any of the truncated pairs.

Whenever the beta working set grows too large (2kM valid ele-
ments) or becomes too sparse (k extractions of M/4 elements each
have occurred), we first rebuild it. Rebuilding scans the elements
in order, removing the invalid elements by packing the valid ones
densely into blocks. Testing for validity is done as above. When
done, the list of ordered pairs to test invalidity is cleared.

Finally, when the beta working set grows too large, we extract
the largest kM elements by sorting it (using the selection sort of
Lemma 4.2).
Analyzing the priority queue. We begin with some lemmas about
the beta working set.

LEMMA 4.7. Extracting the M/4 smallest valid elements from
the beta working set and storing them in memory costs O(kM/B)
reads and amortized O(1) writes.

PROOF. The extraction involves first performing read-only passes
over the beta working set and list of pairs, keeping one block from
the working set and one pair in memory at a time. Because the
working set is rebuilt after k extractions, the list of pairs can have
at most k entries. Even if the list is not I/O efficient, the cost of
scanning both is O(kM/B + k) = O(kM/B) reads. Next the list
of pairs indicating invalid elements is updated. Appending one new
entry requires O(1) writes. Truncating and deleting any old entries
can be charged against their insertions.

The proof of the following lemma is similar to the preceding one,
with the only difference being that the valid elements must be moved
and written as they are read.

LEMMA 4.8. Rebuilding the beta working set costs O(kM/B)
reads and writes.

THEOREM 4.9. Our priority queue, if initially empty, supports
n INSERT and DELETE-MIN operations with an amortized cost of
O((k/B)(1 + logkM/B n)) reads and O((1/B)(1 + logkM/B n))
writes per operation.

PROOF. Inserts are the easier case. Inserting into the alpha work-
ing set is free. The amortized cost of inserting directly into the
beta working set (a simple append) is O(1/B) reads and writes,
assuming the last block stays in memory. The cost of inserting
directly into the buffer tree matches the theorem. Occasionally, the
beta working set overflows, in which case we rebuild it, sort it, and
insert elements into the buffer tree. The rebuild costs O(kM/B)
reads and writes (Lemma 4.8), the sort costs O(k2M/B) reads and
O(kM/B) writes (by Lemma 4.2), and the kM buffer tree inserts
cost O((k2M/B)(1 + logkM/B n)) reads and O((kM/B)(1 +
logkM/B n)) writes (by Theorem 4.6). The latter dominates. Amor-
tizing against the kM inserts that occur between overflows, the
amortized cost per insert matches the theorem statement.

Deleting the minimum element from the alpha working set is
free. When the alpha working set becomes empty, we extract M/4
elements from the beta working set, with a cost of O(kM/B) reads
and O(1) writes (Lemma 4.7). This cost may be amortized against
the M/4 deletes that occur between extractions, for an amortized
cost of O(k/B) reads and O(1/M) writes per delete-min. Every k
extractions of M/4 elements, the beta working set is rebuilt, with
a cost of O(kM/B) reads and writes (Lemma 4.8) or amortized
O(1/B) reads and writes per delete-min. Adding these together,
we so far have O(k/B) reads and O(1/B) writes per delete-min.

It remains to analyze the cost of refilling the beta working set
when it becomes empty. The cost of removing a leaf from the
buffer tree is dominated by the cost of emptying buffers on a length-
O(logkM/B n) path. Note that the buffers are not full, so we cannot
apply Lemma 4.5. But a similar analysis applies. The cost per
node is O(k2M/B +X/B) reads and O(kM/B +X/B) writes
for an X-element buffer. As with Arge’s version of the priority
queue [4], the O(X/B) terms can be charged to the insertion of
the X elements, so we are left with a cost of O(k2M/B) read and
O(kM/B) writes per buffer. Multiplying by O(1 + logkM/B n)

levels gives a cost of O((k2M/B)(1 + logkM/B n)) reads and
O((kM/B)(1 + logkM/B n)) writes. Because each leaf contains
at least kM/4 elements, we can amortize this cost against at least
kM/4 deletions, giving a cost that matches the theorem.

With this priority queue, sorting can be trivially implemented in
O((kn/B)(1+logkM/B n)) reads andO((n/B)(1+logkM/B n))
writes, matching the bounds of the previous sorting algorithms.

5. CACHE-OBLIVIOUS PARALLEL ALGO-
RITHMS

In this section we present low-depth cache-oblivious parallel algo-
rithms for sorting and Fast Fourier Transform, with asymmetric read
and write costs. Both algorithms (i) have only polylogarithmic depth,
(ii) are processor-oblivious (i.e., no explicit mention of processors),
(iii) can be cache-oblivious or cache-aware, and (iv) map to low
cache complexity on parallel machines with hierarchies of shared
caches as well as private caches using the results of Section 2. We
also present a linear-depth, cache-oblivious parallel algorithm for
matrix multiplication. All three algorithms use Θ(k) fewer writes
than reads.

5.1 Sorting
We show how the low-depth, cache-oblivious sorting algorithm

from [9] can be adapted to the asymmetric case. The original algo-
rithm is based on viewing the input as a

√
n ×
√
n array, sorting

the rows, partitioning them based on splitters, transposing the parti-
tions, and then sorting the buckets. The original algorithm incurs
O((n/B) logM (n)) reads and writes. To reduce the number of
writes, our revised version partitions slightly differently and does
extra reads to reduce the number of levels of recursion. The algo-
rithm does O((n/B) logkM (kn)) writes, O((kn/B) logkM (kn))
reads, and has depth O

(
k log2(n/k)

)
w.h.p.

The algorithm uses matrix transpose, prefix sums and mergesort
as subroutines. Efficient parallel and cache-oblivious versions of
these algorithm are described in [9]. For an input of size n, prefix
sums has depth O(k logn) and requires O(n/B) reads and writes,
merging two arrays of lengths n and m has depth O(k log(n+m))
and requires O((n+m)/B) reads and writes, and mergesort has
depth O

(
k log2 n

)
and requires O((n/B) log2(n/M)) reads and

writes. Transposing an n×m matrix has depth O(k log(n+m))
and requires O(nm/B) reads and writes.

Our cache-oblivious sorting algorithm works recursively, with a
base case of n ≤M , at which point any parallel sorting algorithm
with O(n logn) reads/writes and O(k logn) depth can be applied
(e.g. [14]).

Figure 1 illustrates the steps of the algorithm. Given an input
array of size n, the algorithm first splits it into

√
nk subarrays of

size
√
n/k and recursively sorts each of the subarrays. This step

corresponds to step (a) in Figure 1.
Then the algorithm determines the splitters by sampling. After

the subarrays are sorted, every (logn)’th element from each row
is sampled, and these n/ logn samples are sorted using a cache-
oblivious mergesort. Then

√
n/k − 1 evenly-distributed splitters

are picked from the sorted samples to create
√
n/k buckets. The

algorithm then determines the boundaries of the buckets in each
subarray, which can be implemented by merging the splitters with
each row, requiring O(k logn) depth and O(n/B) writes overall.
This step is shown as step (b) in Figure 1. Notice that on average
the size of each bucket is O

(√
nk
)

, and the largest bucket has no

more than 2
√
nk logn elements.

After the subarrays are split into
√
n/k buckets, prefix sums and

a matrix transpose can be used to place all keys destined for the same
bucket together in contiguous arrays. This process is illustrated as
step (c) in Figure 1. This process requiresO(n/B) reads and writes,
and O(k logn) depth.

The next step is new to the asymmetric algorithm and is the part
that requires extra reads. As illustrated in Figure 1 (d), k − 1 pivots
are chosen from each bucket to generate k sub-buckets. We sample
max{k,

√
kn/ logn} samples, apply a mergesort, and evenly pick

k − 1 pivots in the sample. Then the size of each sub-bucket can be
shown to be O

(√
n/k logn

)
w.h.p. using Chernoff bounds. We

then scan each bucket for k rounds to partition all elements into k
sub-buckets, and sort each sub-bucket recursively.

THEOREM 5.1. Our cache-oblivious sorting algorithm requires
O((kn/B) logkM (kn)) reads,O((n/B) logkM (kn)) writes, and
O
(
k log2(n/k)

)
depth w.h.p.

PROOF. All the subroutines except for the recursive calls do
O(n/B) writes. The last partitioning process to put elements into
sub-buckets takes O(kn/B) reads and the other subroutines require
fewer reads. The overall depth is dominated by the mergesort to find
the first

√
n/k pivots, requiring O

(
k log2(n/k)

)
depth per level of

recursion. Hence, the recurrence relations (w.h.p.) for read I/O’s
(R), write I/O’s (W), and depth (D) are:

R(n) = O

(
kn

B

)
+
√
kn ·R

(√
n

k

)
+

√
kn∑

i=1

R(ni)

݊/݇

݇݊

݊/݇log ݊

sorted

݇ − 1
splitters

(a) The input is split into ݇݊
subarrays, and the subarrays
are sorted recursively.

(b) ݊/݇ splitters (grey)
are picked from ݊/log	݊
samples (light grey).

(d) Another ݇ − 1 splitters (black) are picked
in each bucket so that elements are logically
placed into smaller sub-buckets. Each sub-
bucket is then sorted recursively.

(c) All elements are put into
buckets by prefix-sums and
matrix transpose operations.

Figure 1: The low-depth cache-oblivious algorithm on asymmetric read and write costs to sort an input array of size n.

W (n) = O
(n
B

)
+
√
kn ·W

(√
n

k

)
+

√
kn∑

i=1

W (ni)

D(n) = O
(
k log2 n

k

)
+ max

i=1,··· ,
√

kn
{D(ni)}

where ni is the size of the i’th sub-bucket, and ni = O
(√

n/k logn
)

and
∑
ni = n. The base case for the I/O complexity is R(M) =

W (M) = O(M/B). Solving these recurrences proves the theo-
rem.

5.2 Fast Fourier Transform
We now consider a parallel cache-oblivious algorithm for com-

puting the Discrete Fourier Transform (DFT). The algorithm we
consider is based on the Cooley-Tukey FFT algorithm [15], and our
description follows that of [20]. We assume that n at each level
of recursion and k are powers of 2. The standard cache-oblivious
divide-and-conquer algorithm [20] views the input matrix as an√
n×
√
n matrix, and incurs O((n/B) logM (n)) reads and writes.

To reduce the number of writes, we modify the algorithm to the
following:

1. View input of size n as a k
√
n/k ×

√
n/k matrix in row-

major order. Transpose the matrix.

2. Compute a DFT on each row of the matrix as follows

(a) View the row as a k ×
√
n/k matrix

(b) For each row i

i. Calculate the values of column DFTs for row i
using the brute-force method. This will require k
reads (each row) and 1 write (row i) per value.

ii. Recursively compute the FFT for the row.

(c) Incorporate twiddle factors

(d) Transpose k ×
√
n/k matrix

3. Transpose matrix

4. Recursively compute an FFT on each length
√
n/k row.

5. Transpose to final order.

The difference from the standard cache-oblivious algorithms is
the extra level of nesting in step 2, and the use of a work-inefficient
DFT over k elements in step 2(b). The transposes in steps 1, 2(d)
and 3 can be done with O(n/B) reads/writes and O(k logn) depth.
The brute-force calculations in step 2(b)i require a total of kn reads
(and arithmetic operations) and n writes. This is where we waste a
k factor in reads in order to reduce the recursion depth. The twiddle
factors can all be calculated with O(n) reads and writes. There are
a total of 2k

√
n/k recursive calls on problems of size

√
n/k.

Our base case is of size M , which uses M/B reads and writes.
The number of reads therefore satisfies the following recurrence:

R(n) =

{
O(n/B) if n ≤M
2k
√
n/k R

(√
n/k

)
+O(kn/B) otherwise

which solves to R(n) = O((kn/B) logkM (kn)), and the number
of writes is

W (n) =

{
O(n/B) if n ≤M
2k
√
n/k W

(√
n/k

)
+O(n/B) otherwise

which solves to W (n) = O((n/B) logkM (kn)).
Since we can do all the rows in parallel for each step, and the

brute-force calculation in parallel, the only important dependence
is that we have to do step 2 before step 5. This gives a recurrence
D(n) = 2D

(√
n/k

)
+O(k logn) for the depth, which solves to

O(k logn log log n).
We note that the algorithm as described requires an extra transpose

and an extra write in step 2(b)i relative to the standard version. This
might negate any advantage from reducing the number of levels,
however we note that these can likely be removed. In particular
the transpose in steps 2(d) and 3 can be merged by viewing the
results as a three dimensional array and transposing the first and last
dimensions (this is what the pair of transposes does). The write in
step 2(b)i can be merged with the transpose in step 1 by combining
the columnwise FFT with the transpose, and applying it k times.

5.3 Matrix Multiplication
In this section, we consider matrix multiplication in the asym-

metric read/write setting. The standard cubic-work sequential algo-
rithm trivially uses O

(
n3
)

reads and Θ
(
n2
)

writes, one for each
entry in the output matrix. For the EM model, the blocked algo-

rithm that divides the matrix into sub-matrices of size
√
M ×

√
M

uses O
(
n3/(B

√
M)
)

reads [11, 20]. Because we can keep each
√
M ×

√
M sub-matrix of the output matrix in memory until it is

completely computed, the number of writes is proportional to the
number of blocks in the output, which is O

(
n2/B

)
. This gives the

following simple result:

THEOREM 5.2. External-memory matrix multiplication can be
done in O

(
n3/(B

√
M)
)

reads and O
(
n2/B

)
writes.

We now turn to a divide-and-conquer algorithm for matrix multi-
plication, which is parallel and cache-oblivious. We assume that we
can fit 3M elements in cache instead of M , which only affects our
bounds by constant factors. Note that the standard cache-oblivious
divide-and-conquer algorithm [11, 20] recurses on four parallel sub-
problems of size n/2 × n/2, resulting in Θ

(
n3/(B

√
M)
)

reads

and writes. To reduce the writes by a factor of Θ(k), we instead
recurse on k2 parallel subproblems (blocks) of size n/k × n/k.
On each level of recursion, computing each output block of size
n/k×n/k requires summing over the k products of n/k×n/k size
input matrices. We assume the recursive calls writing to the same
target block are processed sequentially so that all writes (and reads)
can be made at the leaves of the recursion to their final locations.

For the purpose of analysis we consider a base case when the
problem is of size k

√
M × k

√
M . At this point each of its sub-

problems of size
√
M ×

√
M is writing into an output block of size

M , which fits in cache. Therefore since we do the products for the
output blocks sequentially, the result can stay in cache and only be
written when all k are done. The number of writes is thereforeM/B
per output block and k2M/B total. For reads all of the k3 subprob-
lems might require reading both inputs so there are 2k3M/B reads.
The non-base recursive calls do not contribute any significant reads
or writes since all reading and writing to the arrays is done at the
leaves. This gives us the following recurrence for the number of
writes for an n× n matrix:

W (n) =

{
k2M/B if n < k

√
M

k3W (n/k) +O(1) otherwise

This solves to W (n) = O
(
n3/(kB

√
M)
)

, which is a factor of

k less than for the standard EM or cache-oblivious matrix multiply.3

The number of reads satisfies:

R(n) =

{
2k3M/B if n < k

√
M

k3R(n/k) +O(1) otherwise

This solves to R(n) = O
(
n3/(B

√
M)
)

, which is the same as for
the standard EM or cache-oblivious matrix multiply.

Because the products contributing to a block are done sequen-
tially, the depth of the algorithm satisfies the recurrence D(n) =
kD(n/k)+O(1) with base caseD(1) = k, which solves toO(kn).
This gives the following theorem:

THEOREM 5.3. Our cache-oblivious matrix multiplication algo-
rithm requires O

(
n3/(B

√
M)
)

reads, O
(
n3/(kB

√
M)
)

writes,

and O(kn) depth.

3Note that for this analysis we assume the initial problem is of size
n = ki

√
M for some integer i.

6. CONCLUSION
Motivated by the high cost of writing relative to reading in emerg-

ing non-volatile memory technologies, we have considered a variety
of models for accounting for read-write asymmetry, and proposed
and analyzed a variety of sorting algorithms in these models. For
the asymmetric RAM and PRAM models, we have shown how
to reduce the number of writes from O(n logn) to O(n) without
asymptotically increasing the other costs (reads, parallel depth).
For the asymmetric external memory models (including the cache-
oblivious model) the reductions in writes are mostly more mod-
est, often increasing the base of a logarithm, and at the cost of
asymptotically more reads. However, these algorithms might still
have practical benefit. We also presented a cache-oblivious matrix-
multiply that asymptotically reduces the writes by a factor of k while
not asymptotically increasing reads. Future work includes proving
lower bounds for the asymmetric external memory models, devising
write-efficient algorithms for additional problems, and performing
experimental studies.

Acknowledgments
This research was supported in part by NSF grants CCF-1218188,
CCF-1314633, and CCF-1314590, and by the Intel Science and
Technology Center for Cloud Computing.

7. REFERENCES
[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data

locality of work stealing. Theory Comput. Sys., 35(3), 2002.
[2] A. Aggarwal and J. S. Vitter. The input/output complexity of

sorting and related problems. CACM, 31(9), 1988.
[3] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and

S. Swanson. Onyx: A prototype phase change memory
storage array. In HotStorage, 2011.

[4] L. Arge. The buffer tree: A technique for designing batched
external data structures. Algorithmica, 37(1), 2003.

[5] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip
multiprocessors. In SPAA, 2008.

[6] M. Athanassoulis, B. Bhattacharjee, M. Canim, and K. A.
Ross. Path processing using solid state storage. In ADMS,
2012.

[7] A. Ben-Aroya and S. Toledo. Competitive analysis of
flash-memory algorithms. In ESA, 2006.

[8] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache
among threads. In SPAA, 2004.

[9] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low-depth
cache oblivious algorithms. In SPAA, 2010.

[10] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha. A comparison of sorting
algorithms for the Connection Machine CM-2. In SPAA, 1991.

[11] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and
K. H. Randall. An analysis of dag-consistent distributed
shared-memory algorithms. In SPAA, 1996.

[12] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In CIDR, 2011.

[13] S. Cho and H. Lee. Flip-N-Write: A simple deterministic
technique to improve PRAM write performance, energy and
endurance. In MICRO, 2009.

[14] R. Cole. Parallel merge sort. SIAM J. Comput., 17(4), 1988.
[15] J. W. Cooley and J. W. Tukey. An algorithm for the machine

calculation of complex fourier series. Mathematics of
Computation, 19, 1965.

[16] X. Dong, N. P. Jouupi, and Y. Xie. PCRAMsim: System-level
performance, energy, and area modeling for phase-change
RAM. In ICCAD, 2009.

[17] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen. Circuit
and microarchitecture evaluation of 3D stacking magnetic
RAM (MRAM) as a universal memory replacement. In DAC,
2008.

[18] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and
P. Pszona. Wear minimization for cuckoo hashing: How not to
throw a lot of eggs into one basket. In SEA, 2014.

[19] W. D. Frazer and A. C. McKellar. Samplesort: A sampling
approach to minimal storage tree sorting. J. ACM, 17(3), 1970.

[20] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In FOCS, 1999.

[21] E. Gal and S. Toledo. Algorithms and data structures for flash
memories. ACM Computing Surveys, 37(2), 2005.

[22] S. Huddleston and K. Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17, 1982.

[23] www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014.
[24] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley

Professional, 1992.
[25] H. Kim, S. Seshadri, C. L. Dickey, and L. Chu. Evaluating

phase change memory for enterprise storage systems: A study
of caching and tiering approaches. In FAST, 2014.

[26] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
phase change memory as a scalable DRAM alternative. In
ISCA, 2009.

[27] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng. Overview
of emerging nonvolatile memory technologies. Nanoscale
Research Letters, 2014.

[28] S. Nath and P. B. Gibbons. Online maintenance of very large
random samples on flash storage. VLDB J., 19(1), 2010.

[29] T. Ottmann and D. Wood. How to update a balanced binary
tree with a constant number of rotations. In SWAT, 1990.

[30] H. Park and K. Shim. FAST: flash-aware external sorting for
mobile database systems. Journal of Systems and Software,
82(8), 2009.

[31] M. K. Qureshi, S. Gurumurthi, and B. Rajendran. Phase
Change Memory: From Devices to Systems. Morgan &
Claypool, 2012.

[32] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM J.
Comput., 18(3), 1989.

[33] J. H. Reif and S. Sen. Parallel computational geometry: An
approach using randomization. In J. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, chapter 18.
Elsevier Science, 1999.

[34] N. Sitchinava and N. Zeh. A parallel buffer tree. In SPAA,
2012.

[35] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, 28(2), 1985.

[36] S. Viglas. Write-limited sorts and joins for persistent memory.
PVLDB, 7(5), 2014.

[37] S. D. Viglas. Adapting the B+-tree for asymmetric I/O. In
ADBIS, 2012.

[38] C. Xu, X. Dong, N. P. Jouppi, and Y. Xie. Design implications
of memristor-based RRAM cross-point structures. In DATE,
2011.

[39] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G.
Yu. A low power phase-change random access memory using
a data-comparison write scheme. In ISCAS, 2007.

[40] Yole Developpement. Emerging non-volatile memory
technologies, 2013.

[41] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In ISCA, 2009.

[42] O. Zilberberg, S. Weiss, and S. Toledo. Phase-change
memory: An architectural perspective. ACM Computing
Surveys, 45(3), 2013.

