
Parallel Index-Based Structural Graph Clustering and Its
Approximation

Tom Tseng

MIT CSAIL

tomtseng@csail.mit.edu

Laxman Dhulipala

MIT CSAIL

laxman@mit.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Abstract
SCAN (Structural Clustering Algorithm for Networks) is a well-

studied, widely used graph clustering algorithm. For large graphs,

however, sequential SCAN variants are prohibitively slow, and

parallel SCAN variants do not effectively share work among queries

with different SCAN parameter settings. Since users of SCAN often

explore many parameter settings to find good clusterings, it is

worthwhile to precompute an index that speeds up queries.

This paper presents a practical and provably efficient parallel

index-based SCAN algorithm based on GS*-Index, a recent sequen-

tial algorithm. Our parallel algorithm improves upon the asymptotic

work of the sequential algorithm by using integer sorting. It is also

highly parallel, achieving logarithmic span (parallel time) for both

index construction and clustering queries. Furthermore, we apply

locality-sensitive hashing (LSH) to design a novel approximate

SCAN algorithm and prove guarantees for its clustering behavior.

We present an experimental evaluation of our algorithms on

large real-world graphs. On a 48-core machine with two-way hyper-

threading, our parallel index construction achieves 50–151× speedup

over the construction of GS*-Index. In fact, even on a single thread,

our index construction algorithm is faster than GS*-Index. Our

parallel index query implementation achieves 5–32× speedup over

GS*-Index queries across a range of SCAN parameter values, and

our implementation is always faster than ppSCAN, a state-of-the-

art parallel SCAN algorithm. Moreover, our experiments show that

applying LSH results in faster index construction while maintaining

good clustering quality.

CCS Concepts
•Theory of computation→ Sharedmemory algorithms;Graph
algorithms analysis; • Information systems→ Clustering.

Keywords
Multicore algorithms, Graph clustering, Locality-sensitive hashing

ACM Reference Format:
Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel Index-Based

Structural Graph Clustering and Its Approximation. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3448016.3457278

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457278

1 Introduction
In data mining and unsupervised learning, clustering is a fundamen-

tal technique that organizes data into meaningful groups. Because

much real-world data can be represented as graphs, there is signifi-

cant practical and theoretical interest in graph clustering, in which

the goal is to partition the vertices of a graph into clusters such that

“similar” vertices fall into the same cluster [3–5, 23, 50, 56, 62, 72].

In particular, a good clustering usually has many edges that fall

within clusters and few edges that connect different clusters. Graph

clustering is a popular problem with a wide range of applications,

including social and biological network analysis [33], load balanc-

ing in distributed systems [2], image segmentation [66], natural

language processing [7], and recommendation systems [6].

One well-known approach to graph clustering is structural clus-
tering, which Xu et al. first introduced via the Structural Clustering

Algorithm for Networks (SCAN) [71]. Structural clustering exploits

the idea that vertices whose neighbor sets resemble each other are

“similar,” a type of homophily that is often satisfied in practice. The

approach is unique in that it also finds hub vertices that connect dif-
ferent clusters, as well as outlier vertices that lack strong ties to any
cluster. Researchers have used SCAN to find meaningful clusters in

biological data [28, 44, 46, 47] and web data [43, 51–53, 57, 58].

SCAN as Xu et al. originally described it suffers from two issues:

(1) the costliness of sequentially computing similarities among all

adjacent vertices, and (2) the costliness of tuning the parameters of

the algorithm to achieve good clustering quality. Many researchers

have developed variants of SCAN to address these issues. To al-

leviate issue (1), some variants exploit parallelism [18, 19, 45, 64,

65, 76, 77] or introduce algorithmic optimizations like pruning un-

necessary similarity computations [16, 18, 59]. To alleviate issue

(2), some variants precompute an index from which computing the

clusterings for different parameter values is fast [13, 37, 68]. To be

efficient on large graphs, SCAN-based algorithms should address

both issues, which existing algorithms fail to do.

This paper addresses the aforementioned issues by presenting

a new parallel index-based SCAN algorithm based on the sequen-

tial GS*-Index SCAN algorithm [68]. Our algorithm achieves the

same work bounds as GS*-Index and is highly parallel, achieving

logarithmic span (parallel time) with high probability (w.h.p.).
1
The

key ingredients to achieve our strong time bounds are the care-

ful use of doubling search, as well as parallel algorithms for graph

connectivity and hash tables. We also show how using matrix multi-

plication on dense graphs and using integer sort improve the index

construction work bound compared to GS*-Index’s bound.

1
The work of an algorithm is the number of operations it performs. The span (parallel

time) of an algorithm is the length of its longest sequential dependence. We use with
high probability (w.h.p.) to describe events that occur with probability at least 1−1/nc
where n is the input size and c is some positive real number.

https://doi.org/10.1145/3448016.3457278
https://doi.org/10.1145/3448016.3457278

Description Work Span

Exact index, weighted graph O ((α + logn)m) w.h.p. O (logn) w.h.p.

Exact index, unweighted graph

O ((α + log logn)m) w.h.p. O (logn) w.h.p.
O (αm) w.h.p. O (nβ) w.h.p.

Approximate index

O ((k + log logn)m) w.h.p. O (logn) w.h.p.
O (km) O (nβ)

Table 1: Summary of asymptotic running time bounds for index construc-

tion. The arboricity of the input graph is α , the number of samples used for

approximation is k , and 0 < β ≤ 1. For the exact indices on dense graphs,

the αm work term may be replaced by nωp , where nωp ≤ n2.373
is the

asymptotic work to multiply two n-by-n matrices in logarithmic span.

To further improve performance, we show how to use locality-

sensitive hashing (LSH) to speed up similarity computation. We

provide a non-trivial theoretical analysis of the accuracy of LSH for

SCAN. Our experiments show that LSH speeds up index construc-

tion while preserving good clustering quality. Table 1 summarizes

the asymptotic running time bounds for index construction.

We present optimized implementations of our algorithms. The

most important optimizations are a merge-based parallel triangle

counting algorithm described by Shun and Tangwongsan [63] to

compute similarities; concurrent union-find to compute connectiv-

ity for queries; and, for our LSH-based approximate algorithms, a

heuristic to avoid using LSH on low-degree vertices that would not

benefit from approximation. In our experiments, our index construc-

tion algorithm achieves 50–151× speedup over the construction of

GS*-Index for several large real-world graphs on a machine with 48

cores and two-way hyper-threading. In fact, our index construction

algorithm is faster than GS*-Index even when we run our algorithm

on a single thread. Furthermore, our parallel index query implemen-

tation, which extracts a clustering for a specific set of parameters

from the index, achieves 5–32× speedup over GS*-Index queries

across a range of SCAN parameter values. Our implementation also

achieves faster query times on all tested parameter values compared

to ppSCAN [18], a state-of-the-art parallel SCAN algorithm.

The contributions of this paper are as follows:

(1) We present a new parallel index-based SCAN algorithm that

matches thework bounds of the sequential GS*-Index algorithm

and has logarithmic span w.h.p. We also show how matrix

multiplication and integer sorting improve the work bounds.

(2) We introduce the use of locality-sensitive hashing as an approx-

imation technique for SCAN that is provably efficient and has

behavior guarantees relative to exact SCAN.

(3) We evaluate our algorithm on large real-world graphs. Our ex-

periments demonstrate that our implementation outperforms

other existing SCAN algorithms and confirm that locality-

sensitive hashing provides running time improvements.

(4) We release the implementation of our algorithm.
2

2 Preliminaries
This section provides background definitions and concepts that

subsequent sections use.

2.1 Set similarity
2.1.1 Similarity measures Two commonmeasures for the similarity

of two sets A and B with elements from a finite universe U are the

2
Code: https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

Jaccard similarity and the cosine similarity:

JaccardSim(A,B) =
|A ∩ B |

|A ∪ B |
, CosineSim(A,B) =

|A ∩ B |√
|A|

√
|B |
.

If the sets are weighted and have weight functionswA,wB : U 7→ R,
then there is a weighted form of cosine similarity:

WeightedCosineSim(A,B) =

∑
x ∈A∩B wA(x)wB (x)√∑

x ∈AwA(x)2
√∑

x ∈B wB (x)2
.

(There is also a weighted version of Jaccard similarity, which we

do not consider in this work.)

The cosine similarity is really a similarity measure between non-

zero vectors; given vectors u and v with an angle of θ between the

two vectors, the cosine similarity is defined as

CosineSim(u,v) = cos(θ) =
u · v

∥u∥∥v ∥
.

Defining cosine similarity for sets with elements from U follows

by representing sets as vectors in RU
(namely, as a bit vector for

unweighted sets and as a vector of weights for weighted sets).

2.1.2 Locality-sensitive hashing Suppose that there is a collection

of large sets with elements from a finite universe U . Locality-
sensitive hashing (LSH) is a technique to quickly approximate the

similarity between pairs of these sets. The idea is to devise a hash

function family that maps similar sets to similar, smaller sketches.
We estimate similarities by precomputing all sketches and operating

on the sketches rather than on the large original sets.

A well-known LSH scheme for estimating Jaccard similarity,

for instance, is MinHash [15]. MinHash works by drawing a uni-

formly random permutation π on U and considering the sketch

of a non-empty set S to be minx ∈S π (x). For any two non-empty

sets A and B, the probability that the sketches of A and B are equal

is JaccardSim(A,B). To increase the precision at the cost of extra

work, we fix a number of samples k ∈ N and perform this process

k times independently to get k-length sketches. The proportion of

matching coordinates between two sketches is an estimate of the

Jaccard similarity between the two corresponding sets. There are

variants of MinHash that are more computationally efficient such

as k-partition MinHash [41]. There are also variants for weighted

Jaccard similarity [70]. Since the weighted variants are more compli-

cated and less practical, we do not use weighted Jaccard similarity

in this work.

SimHash [17] is a well-known LSH scheme for estimating the

angle between two vectors. The idea behind SimHash is to consider

drawing a vector v in RU
with uniformly random direction by

drawing each coordinate independently from the standard normal

distribution. We take the sketch of a vector u to be sign(u · v).
For a pair of non-zero vectors a and b with angle θ ∈ [0,π] in
radians between them, the probability that the sketches of a and b
differ is exactly θ/π ; becausev has uniformly random direction, the

orthogonal hyperplane to v separates a and b with probability θ/π ,
which exactly corresponds to the event that sign(a ·v) , sign(b ·v).
Like with MinHash, to tune the precision, we repeat this process

k ∈ N times to get k-length sketches. The number of differing

entries between the sketches of a and b multiplied by π/k is an

estimate
ˆθ ∼ Binomial(k,θ/π) · π/k , which in turn provides an

estimate cos(ˆθ) for cos(θ) = CosineSim(a,b).

https://github.com/ParAlg/gbbs/tree/master/benchmarks/SCAN/IndexBased

2.2 Graphs and graph notation
We denote an unweighted, undirected graphG byG = (V ,E), where
V is the set of vertices and E ⊆ {{u,v} : u,v ∈ V } is the set of edges.
We denote a weighted graph G by G = (V ,E,w), where the weight
function w : E → R maps edges to weights. Following common

convention, we use n to denote the number of vertices |V | andm
to denote the number of edges |E |. The neighborhood N (v) of a
vertex v is the set of vertices connected to v by an edge. The closed
neighborhood of v is N (v) = N (v) ∪ {v}. The degree of a vertex is
the size of its neighborhood, N (v).

For directed graphs, each edge in E becomes an ordered pair

rather than an unordered pair. The out-neighborhood of a vertex v
is the set of all vertices u such that (v,u) ∈ E.

The arboricity α of an undirected graphG is the minimum num-

ber of spanning forests that covers all edges of the graph. The

arboricity is bounded below by ⌈m/(n − 1)⌉ since each spanning

forest covers atmostn−1 edges and is bounded above byO
(√
m + n

)
.

A triangle is a triplet of edges {u,v}, {v,x}, {x ,u} between distinct

vertices u,v,x in V . There are triangle counting algorithms that

find all triangles in a graph in O(αm) time [20].

We represent graphs as adjacency lists, in which each vertex has

a list of its neighbors. We only consider simple graphs, i.e., graphs

with at most one edge between any pair of vertices and no self-loop

edges. We index vertices with the integers in the range [1,n].

2.3 Parallelism
2.3.1 Parallel programming model We design our algorithms for

multicore shared-memorymachines. Readily available shared-memory

machines are able to operate on the largest publicly available real-

world graphs, which have hundreds of billions of edges [24]. Shared-

memory systems are fast due to low communication costs and are

easier to program for than distributed systems are.

We use a fork-join programming model with arbitrary forking;

a process can “fork” into an arbitrary number of parallel processes

in unit time and can “join” to synchronize among forked processes.

Most notably, a fork and a join suffice to implement a parallel

for-loop. We further assume that processes can concurrently read,

write, atomically add, and compare-and-swap at memory locations.

Compare-and-swap (CAS) takes three arguments: a memory loca-

tion x, an old value old_V, and a new value new_V. If the value

stored at x is equal to old_V, the CAS atomically updates the value

at x to be new_V and returns true. Otherwise, the CAS returns false.
Almost all modern processors support CAS.

We analyze the complexity of algorithms with the work-span

model, a standard model for analyzing shared-memory parallel

algorithms [22, 39]. The work of a program execution is the total

number of instructions executed, and the span is the length of the

longest sequential critical path of instructions. For a program with

W work and S span, a work-stealing scheduler, such as the one in

Cilk [10], can execute the program inW /P +O(S) expected time

with P processors. A parallel algorithm whose work asymptotically

matches the work of the most efficient known sequential algorithm

is work-efficient, which is an important characteristic sinceW /P
is often much higher than S in well-designed parallel algorithms

when run on large data sets.

2.3.2 Parallel primitives This paper makes use of many existing

parallel algorithms, which we describe below.

Hash tables: Gil et al. present a hash table which supports insert-

ing k elements in O(k) work and O(log∗ k) span w.h.p. Looking up

an element takes O(1) work [32].

Primitives on arrays: The reduce operation computes the sum of

all elements in an array. (The sum operation is often the numeri-

cal addition operation but more generally may be any associative

binary operation. For instance, reduce can compute the maximum

element in an array.) The filter operation returns a subsequence of

the original sequence consisting of all elements matching a user-

specified predicate. For an array of n elements, both operations

run in O(n) work and O(logn) span [9, 39]. The remove duplicates
operation returns an array that has the same set of elements as

the original input array has, but without any duplicate elements.

Removing duplicates using a parallel hash table takes O(n) work
and O(log∗ n) span w.h.p.

Comparison sort: Cole presents a parallel merge sort that sorts n
elements in O(n logn) work and O(logn) span [21].

Integer sort: Suppose that we have n non-negative integers in the

range [0, poly(n)].3 For any positive integer q, we can sort these

integers in O(qn) work and O(qn1/q) span [67]. Raman provides

another integer sorting algorithm that runs in O(n log logn) work
and O(logn/log logn) span w.h.p. [54].

Also, we can sort n non-negative rational numbers whose numer-

ators and denominators are bounded by r ∈ poly(n) with the same

asymptotic running times. Consider two distinct rational numbers

a/b and c/d that meet this criterion. Their absolute difference is

|ad − bc |/|bd | ≥ 1/|bd | ≥ 1/r2. Therefore, if we multiply each ra-

tional number by r2 and round them down to the nearest integer,

we get n integers bounded by r3 ∈ poly(n), whose sorted order

matches the sorted order of the original rational numbers.

Graph connectivity: Gazit gives an algorithm for graph connec-

tivity with O(m + n) expected work and O(logn) span w.h.p. [31].

Matrix multiplication: Two n-by-n matrices can be multiplied in

O(nωp) work and O(logn) span with parallel matrix multiplication

constant ωp ≤ 2.373 [26].

3 Review of SCAN algorithms
In this section, we provide an overview of the SCAN [71] and GS*-

Index [68] clustering algorithms.

3.1 SCAN definitions
The typical problem formulation for graph clustering is to output

a partition (or clustering) of the vertices of the input graph such

that each cluster in the partition has many edges within the cluster

and there are few edges between clusters. How exactly to quan-

tify the quality of a clustering depends on the application domain.

Section 7.2 lists two clustering quality measures.

SCAN [71] is a graph clustering algorithm on undirected graphs.

The output of SCAN diverges slightly from this description of clus-

tering in that SCAN may leave some vertices unclustered. Unclus-

tered vertices are further separated into hubs and outliers. Hubs are
unclustered vertices that neighbor multiple clusters, and outliers

are unclustered vertices that neighbor at most one cluster.

3
poly(n) means O (nc) for some constant c .

.82

.75.71

.75.77.87

.87

.58
.52

.58

1

2 3

4 5 6

8711 9

10.77

.89
.75

Figure 1: Example SCAN clustering with µ = 3 and ε = .6. The labels on

the edges are cosine similarities. Core vertices are blue, whereas non-core

vertices are white. Edges with similarity greater than ε are green, whereas
other edges are red. There are two clusters (vertices {1, 2, 3, 4} and vertices

{6, 7, 8, 11}) as well as three unclustered vertices (hub vertex 5 and outlier

vertices 9 and 10).

For each pair of adjacent vertices {u,v} ∈ E, SCAN computes a

similarity score σ (u,v). The original paper [71] assumes that edges

are unweighted and defines the similarity score to be the cosine

similarity of the closed neighborhoods of the two vertices:

σ (u,v) = CosineSim(N (u),N (v)) =
|N (u) ∩ N (v)|√
|N (u)|

√
|N (v)|

.

For instance, in the graph in Figure 1, the cosine similarity between

vertices 5 and 6 is

|{4, 5, 6} ∩ {5, 6, 7, 8}|√
|{4, 5, 6}|

√
|{5, 6, 7, 8}|

=
2

√
12

≈ .58.

This is just one possible choice for the similarity score, however.

Other papers consider using Jaccard similarity, Dice similarity, or

weighted cosine similarity for the similarity function [16, 36, 37, 45].

SCAN takes two parameters as input, an integer µ ≥ 2 and a

similarity threshold ε ∈ [0, 1]. Call vertices u andv ε-similar if their
similarity σ (u,v) is at least ε . The ε-neighborhood Nε (v) of a vertex

v is the set of its ε-similar neighbors, {u ∈ N (v) | σ (u,v) ≥ ε}.
The core vertices are the vertices whose ε-neighborhood contains

at least µ neighbors, i.e., vertices v such that |Nε (v)| ≥ µ. A vertex

u is structurally reachable from core vertex v if there is a path of

vertices v1,v2, . . . ,vk for some k ≥ 2 where v1 = v , where vk = u,
and where vi is a core and is ε-similar to vi+1 for each integer i
from 1 to k − 1.

The two following properties define each cluster in the clustering

that SCAN finds:

• The cluster is “connected”: for any two vertices u and x in

the cluster C , there is a vertex v such that both u and x are

structurally reachable from v .
• The cluster is “maximal”: for every core vertex v in the cluster,

all vertices structurally reachable from v are also in the cluster.

Figure 1 shows the clusters that result from running SCAN on a

small graph.

The border vertices, which are the clustered non-core vertices

(e.g., vertex 11 in Figure 1), may belong to several distinct clusters

according to the definition of SCAN clusters. The original SCAN

algorithm assigns each of these ambiguous border vertices to any

of its possible clusters arbitrarily.

Computing similarity scores takes O(αm) time with an appro-

priate triangle counting algorithm; to calculate a similarity score

σ (u,v), it suffices to count the number of shared neighbors in

N (u) ∩ N (v), which is precisely the number of triangles in which

edge {u,v} appears. After computing similarities, SCAN finds clus-

ters by performing a modified breadth-first search (BFS), which

takes O(n +m) time.

1
NO[1]

1.0

2
.87

4
.77

2
NO[2]

1.0

4
.89

1
.87

3
NO[3]

1.0

2
.87

4
.77

4
NO[4]

1.0

2
.89

1
.77

3
.77

5
.52

5
NO[5]

1.0

6
.58

4
.52

6
NO[6]

1.0

7
.75

8
.75

5
.58

7
NO[7]

1.0

6
.75

8
.75

11
.71

8
NO[8]

1.0

6
.75

7
.75

9
.58

9
NO[9]

1.0

10
.82

8
.58

10
NO[10]

1.0

9
.82

11
NO[11]

1.0

7
.71

3
.87

Figure 2: Neighbor order for the graph from Figure 1. In this figure, for

each v ∈ V , we display NO[v] as a column. The numbers beside each

vertex are similarity scores. For example, in NO[3], the .87 label beside

vertex 2 represents the cosine similarity of .87 between vertices 3 and 2.

Like in Figure 1, we consider the specific case where ε = 0.6 and color all

ε -similar neighbors green and all other neighbors red.

2
.89

2
.87

4
.89

1
.77

2
.87

1
.87

3
.77

3
.87

4
.77

4
.77

4
.52

9
.82

6
.75

10
.82

7
.75

7
.71

6
.75

8
.75

6
.58

7
.75

9
.58

8
.58

8
.75

5
.52

11
.71
5
.58

CO[2]

CO[3]

CO[4]

CO[5]

Figure 3: Core order for the graph from Figure 1. Each entry of CO is

displayed horizontally. We omit CO[1] since we assume µ ≥ 2. The number

beside each vertex in a row CO[µ] is the core threshold for that vertex

for that µ . For example, in CO[2], the number .75 beside vertex 6 means

that when µ = 2 and ε ≤ .75, vertex 6 is a core vertex. Like in Figure 1,

we consider the specific case where (µ, ε) = (3, .6); we highlight CO[µ] in
gray and color the core vertices (i.e., vertices with core threshold at least ε)
blue.

3.2 Index-based SCAN: GS*-Index
GS*-Index [68] improves on SCAN by precomputing an index from

which finding cores and ε-similar neighbors is fast for any setting

of µ and ε . It takes O((α + logn)m) time to compute the index, and

the index takes O(m) space. After computing the index, the time it

takes to compute the clustering for arbitrary query parameters (µ, ε)
depends on the size of the resulting clusters rather than on the size

of the full graph. Specifically, for a subset of verticesU ⊆ V , define

EU ,ε to be the set of ε-similar edges in the subgraph induced byU .

Then the time to compute the clustering C for parameters µ and ε
is O

(��⋃U ∈C EU ,ε
��)
. Determining whether unclustered vertices are

hubs or outliers is not considered in this time bound.

The index consists of two data structures, the neighbor order NO
and the core order CO. To compute the index, we first compute

the similarity scores between every pair of adjacent vertices. The

neighbor order is the adjacency list of the graph with each neighbor

list sorted by non-increasing similarity. Figure 2 shows the neighbor

order for the graph in Figure 1. The core order is an array where the

µ-th entry, CO[µ], for any µ is a list of vertices with |N (·)| at least µ,
i.e., all possible core vertices for this µ value. The vertices in CO[µ]
are sorted by non-increasing similarity with vertex NO[·][µ]. This
similarity of a vertex v with vertex NO[v][µ] is v’s core threshold
value. For any ε no greater than the threshold, the vertex is a core

vertex under parameters µ and ε . Figure 3 shows the core order for
the graph in Figure 1. For example, to compute CO[3] in Figure 3, we

consider the nine vertices {1, 2, 3, . . . , 9} with |N (·)| ≥ 3, determine

their core thresholds by looking at the similarities in the third row

of Figure 2, and sort the vertices by non-increasing core threshold.

To find the clustering resulting from SCAN parameters µ and ε ,
we perform a BFS on the core vertices, considering only ε-similar

edges in the graph and not searching further from any non-core

vertices. The core vertices and ε-similar edges are easy to find from

the index since the core vertices are a prefix of CO[µ] and the ε-
similar edges are prefixes of each list inNO due to the sorting. The

BFS reveals all the SCAN clusters in the graph.

4 Parallel algorithm
This section presents our new work-efficient, logarithmic-span

parallel algorithms for constructing the same SCAN index that

GS*-Index constructs, and for retrieving clusters from the index.

For the algorithm descriptions in this section, we assume the ex-

istence of basic utility functions and of functions implementing the

primitives listed in Section 2.3.2. The AllocateArray(s) function
allocates an array that holds s elements. The MakeHashMap(·)

function makes a hash table with the input argument specifying

the key-value elements in the table. The MakeHashSet(·) function

makes a hash table containing only keys rather than key-value

pairs. The Sum(·) function returns the sum of the elements in an

array via the reduce operation. The RemoveDuplicates(·) function

returns an array that has the same set of elements that the input

array has, but without any duplicate values.

4.1 Index construction
4.1.1 Computing similarities To shorten exposition, this section

will only focus on one similarity functionσ (·, ·): cosine similarity for

weighted graphs. Given a weighted undirected graphG = (V ,E,w),
the similarity score between two adjacent vertices {u,v} in E is

σ (u,v) =WeightedCosineSim(N (u),N (v))

=

∑
x ∈N (u)∩N (v)w(u,x)w(v,x)√∑

x ∈N (u)w(u,x)
2

√∑
x ∈N (v)w(v,x)

2

where we setw(x ,x) = 1 for each vertex x . This weighted cosine

similarity measure is the natural generalization to the cosine simi-

larity measure for unweighted graphs that the original SCAN and

GS*-Index algorithms consider. Modifying the algorithm described

in this section to instead compute the unweighted cosine similarity

or Jaccard similarity is straightforward.

Algorithm 1 gives pseudocode for computing similarities. It fol-

lows a known parallel algorithm for triangle counting [63]. The

algorithm creates a hash set for each vertex neighborhood (Lines 5

to 6). Then, for each pair of adjacent vertices u and v , looking up
the neighbors of u in the hash set for v’s neighborhood (Lines 10

to 12) gives the shared neighbors between u and v , allowing the

algorithm to compute WeightedCosineSim(N (u),N (v)) (Line 13).
If the algorithm always searches for neighbors of the lower-

degree vertex in the hash set of the higher-degree vertex’s neighbor-

hood, the work isO
(∑
{u,v }∈E min{|N (u)|, |N (v)|}

)
in expectation,

which is bounded by O(αm) [20]. The span is O(logn) w.h.p.
For dense graphs, we can use matrix multiplication to obtain a

work bound of O(nωp). LetW be an n-by-n matrix withWu,v =

w(u,v) for arbitrary vertices u and v . Then (W 2)u,v is the numer-

ator of WeightedCosineSim(N (u),N (v)), so we can skip Lines 4

Algorithm 1 Algorithm for computing the cosine similarity of

each edge in a weighted graph.

Output: An array of lengthm containing the similarity score of each edge.

1: procedure ComputeSimilarities(G = (V , E, w))

2: norms←
{√∑

u∈N (v)w (u, v) : v ∈ V
}

▷ Compute each entry of the array norms with Sum(·).

3: similarities← AllocateArray(m)
▷ For clarity, we index into similarities with edges from E .

4: neighbor_tables← AllocateArray(n)
5: for v ∈ V do in parallel
6: neighbor_tables[v] ← MakeHashSet(N (v))
7: for {u, v } ∈ E do in parallel
8: (Without loss of generality, let |N (u) | ≤ |N (v) |.)
9: shared_neighbor_weights← AllocateArray(|N (u) |)
10: for i ∈ {1, 2, 3, . . . , |N (u) | } do in parallel
11: x ← i-th element in N (u)
12: shared_neighbor_weights[i] ←

w (u, x) ·w (v, x) if x ∈ neighbor_tables[v] else 0
13: similarities[{u, v }] ←

Sum(shared_neighbor_weights)/(norms[u] · norms[v])
14: return similarities

to 12 and substitute (W 2)u,v for Sum(shared_neighbor_weights) on
Line 13.

Algorithm 2 Algorithms for computing the neighbor order and

core order.

1: procedure MakeNeighborOrder(G = (V , E, w), similarities)
2: NO ← AllocateArray(n)
3: for v ∈ V do in parallel
4: NO[v] ← N (v)
5: Sort u in NO[v] by non-increasing similarities[{u, v }] value.
6: return NO

7: procedure MakeCoreOrder(G = (V , E, w), NO)
8: sorted_V ← V sorted by non-increasing degree.

9: max_degree← maxv∈V |N (v) |
10: CO ← AllocateArray(max_degree)
11: for µ = {2, 3, 4, . . . , max_degree} do in parallel
12: CO[µ] ← {v ∈ V | |N (v) | ≥ µ }

▷ Find {v ∈ V | |N (v) | ≥ µ } by doubling search on sorted_V .

13: Sort v in CO[µ] by non-increasing similarities[{v, NO[v][µ]}] value.

14: return CO[µ]

4.1.2 Neighbor order and core order After computing all similar-

ity values, we construct the neighbor order and core order (Al-

gorithm 2). We form the neighbor order by sorting each vertex’s

neighbor list by non-increasing similarity (Lines 4 to 5). Then, we

form the core order by, for each µ value, finding all possible core

vertices under parameter µ (Line 12) and sorting them by non-

increasing core threshold (Line 13). On Line 12, to find all possible

core vertices (i.e., all vertices v such that |N (v)| ≥ µ), we per-

form a doubling search on sorted_V , the set of vertices sorted by

non-increasing degree (Line 8). This doubling search consists of

sequentially searching for the minimum i , such that the 2
i
-th entry

of sorted_V fails to satisfy the predicate |N (·)| ≥ µ, and then per-

forming binary search on the last interval of the doubling search.

Doubling search is needed for optimal work bounds. Using only

binary search would add O(n logn) in total to the work since each

binary search costs O(logn) work. Doubling search, on the other

hand, costs only O(log j) work to find an item located at index j.
The O(log j) cost is also better than the O(j) work and span that

linear search would incur.

With a work-efficient comparison sort algorithm, the work analy-

sis is the same as the original analysis for GS*-Index, giving bounds

of O(m logn) work and O(logn) span for constructing the orders.

If the graph is unweighted, each Jaccard similarity is a ratio-

nal number, and each unweighted cosine similarity squared is a

rational number. Recall from Section 2.3.2 that we can sort ratio-

nal numbers with an integer sorting algorithm. Therefore, if the

graph is unweighted, we can achieve better work bounds by using

integer sorting rather than comparison sorting. In order to apply

the integer sort running time bounds directly when computing the

neighbor order, instead of sortingNO[v] separately for eachv ∈ V
like Algorithm 2 describes, we instead prepend v to every entry in

NO[v] for each v ∈ V and sort all elements in NO with a single

integer sort. We perform the same transformation to compute the

core order with one integer sort. By doing this, the complexity for

computing the neighbor order and core order match the complexity

for integer sort onm integers, as described in Section 2.3.2.

Summing similarity computation bounds with the neighbor and

core order construction bounds gives the following theorems.

Theorem 4.1. Fix an undirected, weighted graph and let α be its
arboricity. Running the parallel SCAN index construction algorithm
on the graph using cosine similarity as the similarity measure runs in
O((α + logn)m) work (matching the work bound of GS*-Index) and
O(logn) span w.h.p.

Theorem 4.2. Fix an undirected, unweighted graph and let α be the
graph’s arboricity. The parallel SCAN index construction algorithm
with cosine similarity or Jaccard similarity as the similarity measure
can achieve the following running time bounds depending on what
integer sorting algorithm is used:
• O((α + log logn)m) work and O(logn) span w.h.p.,
• O(αm) work and O(nβ) span w.h.p. for any 0 < β ≤ 1.

In both theorems, we can replace the αm work term with nωp if

we use matrix multiplication to compute similarities.

4.2 Querying for clusters
Next, we describe an efficient parallel algorithm for discovering

clusters given the parameters µ and ϵ . The algorithm uses the index

structure from Section 4.1.

Algorithm 3 Helper function for finding core vertices under a

particular setting of SCAN parameters.

Output: An array of core vertices under SCAN parameters (µ, ε).
1: procedure GetCores(µ, ε, NO, CO, similarities)
2: max_degree← |CO |
3: if µ > max_degree then return {} ▷ No vertices are cores.

4: else return {v ∈ CO[µ] | similarities[{v, NO[v][µ]}] ≥ ε }
▷ Find cores using a doubling search on CO[µ].

Algorithm 5 provides pseudocode for extracting a clustering with

arbitrary parameters from the index. Algorithms 3 and 4 are subrou-

tines for Algorithm 5. To retrieve the clustering with parameters µ
and ε , the algorithm performs a doubling search on CO[µ] to find

all core vertices (Line 4 of Algorithm 3) and then performs doubling

searches onNO[v] for each core vertexv to find all ε-similar edges

incident on core vertices (Line 4 of Algorithm 5). For instance, for

the graph in Figure 1 with parameters (µ, ε) = (3, .6), the search
on CO[µ] finds the blue vertices in Figure 3, and the searches on

Algorithm 4 Helper function for assigning border non-core ver-

tices to clusters after clustering all of the core vertices.

1: procedure AssignNonCores(similar_edges, cores_set, clusters)
2: subgraph_vertices← RemoveDuplicates({v | {u, v } ∈ similar_edges})
3: subgraph_non_cores← {v ∈ subgraph_vertices | v < cores_set } ▷ Filter

4: non_cores_count ← |subgraph_non_cores |
5: assignments← AllocateArray(non_cores_count)
6: non_core_indices← MakeHashMap({subgraph_non_cores[i] 7→ i })
7: for i ∈ {1, 2, 3, . . . , non_cores_count } do in parallel
8: assignments[i] = null
9: for {u, v } ∈ similar_edges∧(u < cores_set∨v < cores_set) do in parallel
10: (Without loss of generality, let v < cores_set; then, u ∈ cores_set.)
11: address← &(assignments[non_core_indices[v]])
12: CompareAndSwap(address, null, clusters[u])

▷ Assign border vertex v to an arbitrary neighboring ϵ -similar cluster.

If the CAS fails, then that means v is already assigned.

13: For v in subgraph_non_cores in parallel, insert

[v 7→ assignments[non_core_indices[v]]] into clusters.
14: return clusters

Algorithm 5 Algorithm for finding the SCAN clustering with pa-

rameters µ and ε from the index.

1: procedure Cluster(µ, ε, NO, CO, similarities)
2: cores← GetCores(µ, ε, NO, CO, similarities)
3: cores_set ← MakeHashSet(cores)
4: similar_edges← {{u, v } | u ∈ cores_set ∧ similarities[{u, v }] ≥ ε }

▷ Get similar_edges by doubling search on NO[u] for each u ∈ cores.
5: similar_core_edges←

{{u, v } ∈ similar_edges | u ∈ cores_set ∧ v ∈ cores_set } ▷ Filter

6: core_clusters← Connected components of subgraph induced by

similar_core_edges, represented as a hash table mapping

[v 7→ component ID] for each v ∈ cores.
7: return AssignNonCores(similar_edges, cores_set, core_clusters)

NO[·] find the green vertices in Figure 2. This corresponds exactly

to the blue core vertices and green edges in Figure 1.

For each of these prefixes ofNO[v], the algorithm also creates a

copy with all border non-core neighbors (e.g., vertex 11 in Figure 1)

filtered away (Line 5 of Algorithm 5). These filtered prefixes con-

stitute an adjacency list for the subgraph induced by the ε-similar

edges on the core vertices. Running a parallel connectivity algo-

rithm on this subgraph assigns all core vertices to a cluster (Line 6 of

Algorithm 5). Finally, the algorithm takes all of the border non-core

neighbors (Lines 2 to 3 of Algorithm 4) and uses compare-and-swap

to assign each of them to the same cluster as an arbitrary neigh-

boring ε-similar core (Line 12 of Algorithm 4). The final output is a

hash table mapping vertices to cluster IDs. The algorithm achieves

the bounds stated in the following theorem.

Theorem 4.3. Suppose the clustering algorithm, Algorithm 5, runs
and returns a collection of clusters C. For a set of verticesU ∈ C, define
EU ,ε to be the set of ε-similar edges in the subgraph induced by U .
DefineZ =

��⋃U ∈C EU ,ε
�� ∈ O(m). Then the clustering algorithm runs

inO(Z) expected work (which matches the work bound for GS*-Index)
and O(logn) span w.h.p.

This theorem holds because the doubling searches in Lines 2

to 4 of Algorithm 5 fetch all of the edges

⋃
U ∈C EU ,ε in the out-

put clustering C in a work-efficient manner, and the remainder of

the clustering algorithm operates only on the subgraph given by⋃
U ∈C EU ,ε in a work-efficient manner.

4.3 Determining hubs and outliers
After finding a clustering, we can determine whether unclustered

vertices are hubs or outliers. For each unclustered vertex v , we
map each neighbor in N (v) to its cluster ID and reduce over the

neighbors to determine whether the vertex has neighbors belonging

to distinct clusters. It takes O(|N (v)|) work and O(log|N (v)|) span
to determine whether v is a hub or outlier. In total, this takes

O(m + n) work and O(logn) span.

5 Approximating similarities
After constructing the index, querying for a clustering is fast. In-

dex construction itself, though, may be expensive since it takes

Ω(min{αm,nω }) work. One unexplored technique for speeding up

SCAN is to use LSH to approximate similarities.

For example, to use SimHash to approximate cosine similarities,

we fix a sample sizek ∈ N. Then, we drawkn random numbers from

the standard normal distribution, which is possible via the Box-

Muller transform [14] given a source of uniform random numbers.

With these normally distributed random numbers, we construct a k-

sample sketch of N (v) for each vertexv . The sketching takesO(km)
work and O(logn) span using the reduce operation to compute

inner products. Now we can compute the similarity between any

adjacent vertices u andv by comparing their sketches inO(k) work
and O(logk) span. Computing the sketches and the similarities

over all edges takes O(km) work and O(logn + logk) span. The
work bound is better than the work bound for computing exact

similarities ifk is asymptotically less than the arboricityα . Similarly,

we can use MinHash to approximate Jaccard similarities.

We can then compute a neighbor order and core order based on

these similarities. Again, we can achieve better work bounds using

an integer sort algorithm, and in fact we can use integer sort on both

unweighted and weighted graphs. This is because the approximate

similarities are non-negative integers scaled by a factor of π/k for

SimHash or 1/k for MinHash, and we can postpone scaling the

integers until after sorting. Therefore, we can construct a SCAN

index with the following running time bounds.

Theorem 5.1. Fix an undirected graph and let k ≤ poly(n). The
parallel SCAN index construction algorithm using k-sample MinHash
(for unweighted graphs) or SimHash (for unweighted or weighted
graphs) to compute approximate similarities can achieve the following
running time bounds depending on the integer sorting algorithm used:
• O((k + log logn)m) work and O(logn) span w.h.p.,
• O(km) work and O(nβ) span for 0 < β ≤ 1.

We can also theoretically analyze the clusterings that result from

these approximate similarities. In particular, suppose we fix some

ε ∈ [0, 1] and δ ∈ (0, 1). The SCAN clustering with parameters ε
and arbitrary µ is only concerned about whether similarities fall

above or below ε , rather than exact similarity values. If the number

of samples is sufficiently high, then w.h.p., all edges outside the

similarity range ε±δ will be “correctly classified” as above or below

the threshold ε by the approximate similarities. We present such a

result for approximating cosine similarity using SimHash.

Theorem 5.2. Let G = (V ,E,w) be an undirected graph with non-
negative edge weights, let ε ∈ [0, 1], and let δ ∈ (0, 1). Suppose
k ≥ π 2

ln(nm)/(2δ2) and suppose we use SimHash with k samples
to compute approximate cosine similarity scores for every edge in
G. Then w.h.p., all edges with exact cosine similarities outside the
interval (ε−δ , ε+

√
1 − ε2δ) are correctly classified by the approximate

similarities as above or below the threshold ε .

0
π
8

π
4

3π
8

π
2

0

0.5

0.9
1

x

ε
cos(x)
f0.9(x)
д0.9(x)

Figure 4: Plot of the SimHash approximation lower and upper bound func-

tions on cosine for ε = 0.9. The bold point is (ϕ, ε).

Proof. Consider an arbitrary edge {u,v} ∈ E with an exact

cosine similarity s ∈ [0, 1] outside the interval (ε − δ , ε +
√
1 − ε2δ).

It suffices to prove that the edge is correctly classified by the ap-

proximate cosine similarity with probability at least 1 − 1/(nm).
Then, applying a union bound over allm edges gives that all edges

outside the similarity interval are classified correctly w.h.p.

Let θ = cos(s) be the angle between the vectors correspond-

ing to N (u) and N (v). The angle is in the range [0,π/2] since
all edge weights are non-negative. Recall from Section 2.1.2 that

the SimHash estimate for the angle between the two vectors is

ˆθ ∼ Binomial(k,θ/π) ·π/k . Hoeffding’s inequality [35] implies that

given arbitrary ℓ ∈ N, p ∈ [0, 1], and t > 0, for a binomial random

variable X ∼ Binomial(ℓ,p), the probabilities Pr[X/ℓ ≥ p + t] and
Pr[X/ℓ ≤ p − t] are each bounded above by exp(−2ℓt2). Using

this inequality on
ˆθ with ℓ = k , p = θ/π , and t = δ/π gives that

both Pr[ˆθ ≥ θ + δ] and Pr[ˆθ ≤ θ − δ] are each bounded above by

exp

(
−2kδ2/π 2

)
≤ 1/(nm).

Let ϕ = arccos(ε) ∈ [0,π/2] be the similarity threshold ε trans-
formed into an angle threshold. First, consider the case where

s ∈ [0, ε − δ], which also implies that ε ≥ δ . The straight line

from the point (ϕ, ε) to the point (π/2, 0) has the equation

fε (x) = ε −
ε

π/2 − ϕ
(x − ϕ),

which Figure 4 shows in red for ε = .9. By concavity of the cosine

function in [0,π/2], we have that cos(x) ≥ fε (x)when x ∈ [ϕ,π/2].
We have that ϕ + δ = arccos(ε) + δ ≤ arccos(δ) + δ ≤ π/2; the
first inequality comes from the arccosine function being decreasing

combined with the constraint that ε ≥ δ , and the second inequal-

ity comes from taking derivatives to maximize arccos(δ) + δ for

δ ∈ (0, 1). Therefore, we can substitute ϕ + δ for x in the inequal-

ity cos(x) ≥ fε (x) to get that cos(ϕ + δ) ≥ ε − ε
(π /2−arccos(ε))δ .

Plotting the multiplicative factor
ε

(π /2−arccos(ε)) with varying ε

shows that the factor falls in the range [2/π , 1], giving a looser

but clearer bound that cos(ϕ + δ) ≥ ε − δ ≥ s . Taking the arc-

cosine of the leftmost and rightmost sides of the inequality gives

ϕ + δ = arccos(cos(ϕ + δ)) ≤ arccos(s) = θ , where the first equal-
ity uses the fact that ϕ + δ ∈ [0,π/2]. Now the upper bound on

Pr[ˆθ ≤ θ − δ] gives that the probability that
ˆθ > θ − δ ≥ ϕ is

at least 1 − 1/(nm). Taking the cosine of both sides gives that the

cosine similarity estimate cos(ˆθ) falls below ε with probability at

least 1 − 1/(nm) as desired.

Next, consider the case where s ∈ [ε +
√
1 − ε2δ , 1]. If ε = 1, then

s = 1 and SimHash will always return the correct estimate cos(ˆθ) =
cos(0) = 1 as desired. For ε < 1, define h(δ) =

(
1 − δ2

)
/
(
1 + δ2

)

and note that

ε +
√
1 − ε2δ ≤ 1 ⇐⇒ δ ≤

1 − ε
√
1 − ε2

⇐⇒

δ2 ≤
(1 − ε)2

1 − ε2
=

1 − ε

1 + ε
⇐⇒ δ2 + εδ2 ≤ 1 − ε ⇐⇒ ε ≤ h(δ)

Next, linearize the cosine function at the input point ϕ to get the

line

дε (x) = ε − sin(ϕ)(x − ϕ) = ε − sin(arccos(ε))(x − ϕ)

= ε −
√
1 − ε2(x − ϕ),

which Figure 4 shows in blue for ε = .9. By concavity of the cosine

function, we have that cos(x) ≤ дε (x) when x ∈ [0,π/2]. Note
that we have that ϕ − δ = arccos(ε) − δ ≥ arccos(h(δ)) − δ ≥
0; the first inequality comes from the arccosine function being

decreasing combined with the constraint that ε ≤ h(δ), and the

second inequality comes from plotting arccos(h(δ))−δ to see that it

is non-negative for δ ∈ (0, 1) . Hence, we can substituteϕ−δ for x in

the inequality cos(x) ≤ дε (x) to get that cos(ϕ−δ) ≤ ε+
√
1 − ε2δ ≤

s . Taking the arccosine of the leftmost and rightmost sides of the

inequality gives ϕ − δ = arccos(cos(ϕ − δ)) ≥ arccos(s) = θ , where
the first equality uses the fact that ϕ − δ ∈ [0,π/2]. Now, the upper

bound on Pr[ˆθ ≥ θ +δ] gives that the probability that ˆθ < θ +δ ≤ ϕ
is at least 1 − 1/(nm). Taking the cosine of both sides gives that the

cosine similarity estimate cos(ˆθ) is above ε with probability at least

1 − 1/(nm) as desired. □

We also present a similar result for approximating the Jaccard

similarity using MinHash.

Theorem 5.3. Let G = (V ,E) be an undirected graph, let ε ∈ [0, 1],
and let δ ∈ (0, 1). Suppose k ≥ ln(nm)/

(
2δ2

)
and suppose we use

standard MinHash with k samples to compute approximate similarity
scores for every edge in G . Then w.h.p., all edges with exact Jaccard
similarities outside the interval (ε − δ , ε + δ) are correctly classified
by the approximate similarities as above or below the threshold ε .

Proof. The result follows from applying Hoeffding’s inequality

as in the proof of Theorem 5.2. We omit full details for brevity. □

Though the bounds in these theorems require a large number of

samples k to achieve high accuracy, experiments in Section 7 show

that lower values of k still achieve good clusterings. This approxi-

mation strategy helps for denser graphs with large arboricity.

6 Implementation
We implement the algorithms described in Sections 4 and 5 to

determine how they perform in practice. We write our code in C++

within the Graph Based Benchmark Suite (GBBS) framework [24,

27]. GBBS provides libraries useful for implementing parallel graph

algorithms. Our implementations use the concurrent hash table

implementation [61], parallel sorting algorithms, and various graph

processing helper functions that GBBS provides.

Though the algorithms as described in Sections 4 and 5 achieve

good theoretical bounds, our actual implementations make several

changes for better performance. This section explains the more

significant changes.

6.1 Computing similarities
We implement similarity computation for both cosine similarity

and Jaccard similarity. Experiments by Shun and Tangwongsan [63]

suggest that the hash-based approach to triangle counting or com-

puting similarities in Algorithm 1 incurs many cache misses and

that a merge-based approach is faster in comparison, even though

it increases the asymptotic work bound from O(mα) to O(m3/2).

Our implementation uses the merge-based approach of Shun and

Tangwongsan. This approach assumes that each neighbor list in the

adjacency list of the input graph is sorted by vertex number, which

is true for graphs converted to GBBS’s graph file format. In order to

count each triangle only once and hence reduce work, we construct

a directed version of the input graph by filtering each neighbor list

so as to direct each edge towards its higher-degree vertex. Then,

for each pair of adjacent vertices (u,v), we find triangles of the

form {(u,v), (v,x), (u,x)} for x in N (u) ∩N (v) by merging the out-

neighborhoods of u and v in the directed graph. To get similarity

scores for each pair of adjacent vertices, the implementation main-

tains an atomic counter for each edge and increments the counters

for all three edges of any triangle found.

The merge logic between two neighbor lists follows the logic of

the parallel merge implementation in GBBS: if both neighbor lists

are small, we iterate through the sorted neighbor lists sequentially

to find shared neighbors; if one neighbor list is small and the other

is large, then we search for each element of the small neighbor list

in the larger list via binary search; and finally, if both neighbor lists

are large, then we split them into smaller sub-lists and recursively

merge the sub-lists in parallel.

To compute similarities using matrix multiplication instead of

merge, we use the Intel Math Kernel Library’s cblas_sgemm func-
tion for matrix multiplication.

4
Though its documentation does not

provide asymptotic running time bounds, it runs well in practice.

6.2 Querying for clusters
When querying the index for clusters (Algorithm 5), we find the

connected components on the core vertices (Line 6) by using the con-

current union-find implementation from the GBBS codebase [25].

Using union-find allows us to avoid materializing the subgraph to

pass to a work-efficient connectivity algorithm. We “union” the

edges in similar_core_edges (Line 5) and apply “find” to each ver-

tex to populate an n-length array of vertices’ cluster IDs rather

than a hash table as described in Line 6. Having this array also

simplifies the logic for AssignNonCores (Algorithm 4) by chang-

ing AssignNonCores to skip the preprocessing in lines 2–8 and

instead compare-and-swap directly into the cluster ID array.

6.3 Approximate similarities
We implement similarity approximation logic using both SimHash

and MinHash. For MinHash, we use a variant called k-partition
MinHash, or one permutation hashing [41]. It is more computation-

ally efficient than the original version of MinHash; computing a

sketch of a vertexv takes onlyO(k+ |N (v)|)work using k-partition

MinHash, rather than O(k |N (v)|) work using standard MinHash,

since k-partition MinHash generates a k-length sketch using only

4
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/

onemkl.html

 https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
 https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html

one permutation rather than k permutations. The k-partition vari-

ant still provides reasonable clustering results, but the accuracy

bound in Theorem 5.3 no longer applies for this variant.

When the number of samples k for the LSH approximation

scheme is high, it becomes more expensive to compute and pro-

cess sketches to get approximate similarities. For low-degree ver-

tices, the merge-based algorithm described in Section 6.1 is cheap

and cache-friendly enough that it is better to compute similari-

ties exactly rather than approximately. As a simple example, if

two adjacent vertices have degree significantly less than k , it is
faster and more accurate to process the original neighbor lists of

the vertices instead of their k-length sketches. To avoid sketching

low-degree vertices, we add a heuristic to choose which vertices to

sketch and which similarities to approximate. The heuristic is to

only approximate similarities between pairs of vertices that both

have sufficiently high degree and to compute similarities exactly

with triangle counting for all other pairs of vertices. We determine

whether a vertex is high degree by checking whether its degree

exceeds a threshold value of k for approximate cosine similarity and

3k/2 for approximate Jaccard similarity. No sketches are needed

for vertices that either do not have high degree or do not have any

neighbors with high degree.

7 Experiments
Our timing experiments show that our implementation achieves

good speedup over sequential baselines and performs competitively

against ppSCAN [18], a state-of-the-art parallel shared-memory

SCAN implementation. Our results for our approximate SCAN

implementation suggest that LSH can speed up index construction

while maintaining good clustering quality.

Non-shared-memory parallel algorithms fail to outperform our

implementation as well. Zhao et al.’s reported timings for their

distributed SCAN algorithm [76] are much slower than our times;

they report taking 36 minutes with fifteen eight-core machines to

cluster their largest graph, which has four million vertices and sixty

million edges, whereas our algorithm takes under three seconds to

process the larger, denser Orkut graph using fewer cores. Chen et

al. [19] and Zhou and Wang [77] only test their distributed SCAN

algorithms on graphs with fewer than two million edges and do

not report times. Stovall et al. [64] only test their GPU-based SCAN

algorithm on graphs with fewer than six million edges, whereas

we focus on much larger graphs in our experiments.

7.1 Benchmarking environment
We run experiments on an Amazon EC2 c5.24xlarge instance,

which has 192 GiB of RAM and 48 CPU cores with two-way hyper-

threading for a maximum of 96 hyper-threads. We enable hyper-

threading in our parallel experiments by default. We implement our

parallel algorithm using the merge-based approach for computing

similarities described in Section 6.1 (GBBSIndexSCAN in the experi-

mental plots) aswell as usingmatrixmultiplication (GBBSIndexSCAN-

MM in the plots). We compare our parallel algorithm using all 48

cores with hyper-threading to our algorithm using only 1 thread, to

the original sequential GS*-Index implementation,
5
and to ppSCAN

5
We obtained the GS*-Index code via personal correspondence with its authors.

Name Number of vertices Number of edges Type

Orkut 3,072,441 117,185,083 unweighted

brain 784,262 267,844,669 unweighted

WebBase 118,142,155 854,809,761 unweighted

Friendster 65,608,366 1,806,067,135 unweighted

blood vessel 25,825 70,240,269 weighted

cochlea 25,825 282,977,319 weighted

Table 2: Summary of the graphs for the experiments.

with AVX2 instructions
6
using all 48 cores with hyper-threading.

ppSCAN’s authors show that ppSCAN outperforms other existing

parallel SCAN algorithms (pSCAN [16], anySCAN [45], and SCAN-

XP [65]). For fixed parameters µ and ε , all of these algorithms

return the same output, except that ambiguous border vertices

may have different assignments. All code written is C++ code, and

compiled with GCC 7.5.0 using the -O3 optimization flag. The GBB-

SIndexSCAN code uses GBBS’s scheduler library [8] written using

standard C++ threads. We run the parallel codes with numactl
--interleave=all, which interleaves memory allocations across

CPUs and gives better performance for this particular problem on

the EC2 instance. Each time measurement is the median of five

trials, unless specified otherwise.

Table 2 summarizes the graphs that we use in the experiments.

“Orkut” and “Friendster” are the com-Orkut and com-Friendster

graphs from the Stanford Large Network Dataset Collection [40].
7

Both are social network graphs in which the vertices are users

and the edges represent friend relationships. “Brain” is the bn-

human-Jung2015-M87113878 dataset from NeuroData
8
provided

by Network Repository [55].
9
The graph represents a mapping of

human brain connections. “WebBase” is the webbase-2001 graph

from the Laboratory for Web Algorithmics [11, 12].
10

The graph

represents the links discovered by a web crawler. Although the orig-

inal WebBase graph is a directed graph, we change the edges to be

undirected and remove self-loop edges so that SCAN can operate on

the graph. “Blood vessel” and “cochlea” are weighted graphs from

HumanBase [34].
11

Vertices represent genes, edges represent pairs

of genes with evidence of a functional relationship in blood vessel

tissues or cochlea tissues, and edge weights represent the proba-

bility of there being a relationship. For convenience, on the brain,

Friendster, blood vessel, and cochlea graphs, we compact vertex

IDs so that all IDs are contiguous with no zero-degree vertices.

Neither GS*-Index and ppSCAN run on weighted graphs, so we

do not run them on the blood vessel and cochlea graphs. We also

only test cosine similarity on the weighted graphs since we did not

implement weighted Jaccard similarity for GBBSIndexSCAN.

7.2 Clustering quality measures
We evaluate our clustering results using the modularity and ad-

justed Rand index measures. These quality measures are popular

and consistent with existing graph clustering literature. The mod-
ularity of a clustering is the proportion of edges that fall within

clusters in the clustering minus the expected number of edges that

6
The ppSCAN code is available at https://github.com/RapidsAtHKUST/ppSCAN/tree/

master/pSCAN-refactor.

7
https://snap.stanford.edu/data/

8
https://neurodata.io/

9
http://networkrepository.com/bn-human-Jung2015-M87113878.php

10
http://law.di.unimi.it/webdata/webbase-2001/

11
https://hb.flatironinstitute.org/download under the “top edges” column

https://github.com/RapidsAtHKUST/ppSCAN/tree/master/pSCAN-refactor
https://github.com/RapidsAtHKUST/ppSCAN/tree/master/pSCAN-refactor
https://snap.stanford.edu/data/
https://neurodata.io/
http://networkrepository.com/bn-human-Jung2015-M87113878.php
http://law.di.unimi.it/webdata/webbase-2001/
https://hb.flatironinstitute.org/download

would fall within clusters in a random graph with the same de-

gree distribution [49]. Specifically, fix some clustering, let Au,v for

arbitrary vertices u and v be 1 if u and v are neighbors and be 0

otherwise, and let δu,v be 1 if u andv are assigned the same cluster

and be 0 otherwise. The modularity is computed as

1

2m

∑
u,v ∈V

(
Au,v −

|N (u)| |N (v)|

2m

)
δu,v .

The definition ofmodularity also easily extends toweighted graphs [48].

Higher modularity scores suggest better clusterings.

Another way to measure the quality of a proposed clustering is

to check how similar it is against a known ground-truth clustering.

The adjusted Rand index (ARI) [38] is one well-known metric for

evaluating this similarity. ARI counts the number of pairs of vertices,

such that the two vertices are assigned to the same clusters or to

different clusters in both the proposed clustering and the ground-

truth clustering. This count is then adjusted for chance. Let C be

the proposed clustering on the set of n vertices V and let G be the

ground-truth clustering. For integers i in {1, 2, 3, . . . , |C|} and j in
{1, 2, 3, . . . , |G|}, let ni, j be the number of vertices in both cluster i

of C and cluster j of G. Let ni,∗ =
∑ |G |
j=1 ni, j and let n∗, j =

∑ |C |
i=1 ni, j

for each i and j. Then, the ARI between C and G is∑ |C |
i=1

∑ |G |
j=1

(ni, j
2

)
−
∑ |C |
i=1

(ni,∗
2

) ∑ |G |
j=1

(n∗, j
2

)
/
(n
2

)(∑ |C |
i=1

(ni,∗
2

)
+
∑ |G |
j=1

(n∗, j
2

))
/2 −

∑ |C |
i=1

(ni,∗
2

) ∑ |G |
j=1

(n∗, j
2

)
/
(n
2

) .
Higher ARI scores suggest a better match with the ground-truth

clustering. Neither the modularity nor the ARI can exceed 1, and

they may be negative if the clustering is “worse than random.”

7.3 Results
7.3.1 Index construction time comparison The first experimentmea-

sures the running time to construct the SCAN index with exact

cosine similarity. The time to compute the index using Jaccard

similarity is about the same (at most 9% difference for GBBSIn-

dexSCAN on 48 cores), so we do not report it separately. Figure 5

shows the time measurements. GBBSIndexSCAN achieves a par-

allel self-relative speedup of 23–70× on index construction. More-

over, GBBSIndexSCAN running sequentially is 1.4-2.2× faster than

the original GS*-Index implementation, likely due to the directed

triangle counting optimization that Section 6.1 describes, so the

speedup of GBBSIndexSCAN on 48 cores with hyper-threading

is 50–151× over GS*-Index. On the two dense graphs with fewer

vertices, GBBSIndexSCAN-MM outperforms GBBSIndexSCAN, but

it takes too much memory to run on the other graphs.

7.3.2 Clustering time comparison The second experiment is to mea-

sure the running time for querying for the clustering over various

settings of parameters (µ, ε). The plots only consider exact cosine

similarity since times are about the same using Jaccard similarity

(at most either 10
−4

absolute difference or 4% difference for GBB-

SIndexSCAN on 48 cores). Clustering behavior is the same between

GBBSIndexSCAN and GBBSIndexSCAN-MM, so we omit times for

GBBSIndexSCAN-MM. Figure 6 measures the running times with

µ = 5 and ε ∈ {.1, .2, .3, . . . , .9}, and Figure 7 measures the running

times with ε = 0.6 and µ ∈
{
2
i | 1 ≤ i ≤ 14, 2i ≤ max_degree

}
.

Orkut
brain

WebBase

Friendster

blood vessel

cochlea

10
0

10
2

10
4

2.7
7

1
9.8

3

1
9.8

7

5
6.0

8
3
2.2

3

6
1
9.0

5
1
4
2.7

1,0
5
4.2

6
4
5
7.6

2

3,9
2
0.1

8

1,6
2
2.2

9

3
0,8

9
2.1

2
1
5

1,5
2
7

1,0
0
3

8,4
8
4

2
9.3

3
3.6

5

3
2
5.9

9

3
9
4.8

2

I
n
d
e
x
c
o
n
s
t
r
u
c
t
i
o
n

t
i
m
e
(
s
e
c
o
n
d
s
)

GBBSIndexSCAN (48 cores) GBBSIndexSCAN (1 thread)

GS*-Index (1 thread) GBBSIndexSCAN-MM (48 cores)

GBBSIndexSCAN-MM (1 thread)

Figure 5: Index construction times with exact cosine similarity as the

similarity measure. We only run GBBSIndexSCAN-MM on the blood vessel

and cochlea graphs, whose adjacency matrices fit in memory.

GBBSIndexSCAN is faster than ppSCAN and GS*-Index on all

tested parameter settings, though this ignores the time that GBB-

SIndexSCAN takes to precompute its index. This precomputation

cost that GBBSIndexSCAN incurs is preferable over ppSCAN only

when the user makes many queries. Notably, though, it might not

take many queries for GBBSIndexSCAN to become preferable over

ppSCAN. For example, on the Orkut and Friendster graphs, the

sum of the time measurements for ppSCAN on the nine parameter

settings in Figure 6 exceeds the sum of the corresponding measure-

ments for GBBSIndexSCAN plus the index construction time for

GBBSIndexSCAN.

Sequentially, GBBSIndexSCAN can be slower at querying for

clusters than GS*-Index due to adjustments made in GBBSIndexS-

CAN to make it more friendly to parallelism, namely using union-

find instead of sequential breadth-first search, as well as iterating

over all edges an additional time to assign non-core vertices (Al-

gorithm 4). It is up to 4.5× slower than GS*-Index on the tested

parameter settings and graphs. GBBSIndexSCAN running on 48

cores, however, is faster than the other implementations on all

tested parameter settings; it is faster than GS*-Index by 5–32× and

faster than ppSCAN by 1.26–12,070×.

7.3.3 Approximate index construction time The third experiment

measures the running time of constructing GBBSIndexSCAN with

48 cores using the approximate cosine and approximate Jaccard sim-

ilarity measures with varying numbers of samples. For the weighted

graphs, we only test the approximate cosine similarity measure

since the k-partition MinHash variant that we implement for Jac-

card similarity does not handle weighted graphs. Each trial uses

a different pseudorandom seed for the randomness in the approx-

imation schemes. Figure 8 displays the results. The approximate

Jaccard similarity implementation is consistently faster than the

approximate cosine similarity implementation because of the better

efficiency of constructing sketches for k-partition MinHash com-

pared to SimHash. The times plateau or even decrease at large

sample sizes for some graphs due to the heuristic discussed in

Section 6.3 for avoiding sketching for low-degree vertices.

7.3.4 Quality of approximate clusterings The fourth experiment

measures the quality of the clusterings achieved with the approx-

imate similarity measures compared to the clusterings achieved

with the exact similarity measures. Although the AssignNonCores

(Algorithm 4) portion of the clustering algorithm assigns each bor-

der non-core vertex to the same cluster as an arbitrary ε-similar

0.
2

0.
4

0.
6

0.
8

10
−4

10
−2

10
0

ε

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
) Orkut

0.
2

0.
4

0.
6

0.
8

10
−3

10
−1

10
1

ε

brain

0.
2

0.
4

0.
6

0.
8

10
−1

10
0

10
1

10
2

ε

WebBase

0.
2

0.
4

0.
6

0.
8

10
−2

10
0

10
2

ε

Friendster

0.
2

0.
4

0.
6

0.
8

10
−2

10
0

ε

blood vessel

0.
2

0.
4

0.
6

0.
8

10
−2

10
−1

10
0

10
1

ε

cochlea

GBBSIndexSCAN (48 cores) GBBSIndexSCAN (1 thread) GS*-Index (1 thread) ppSCAN (48 cores)

Figure 6: Clustering time with µ = 5 and varying ε using exact cosine similarity as the similarity measure.

2
2

2
8

2
14

10
−4

10
−2

10
0

µ

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
) Orkut

2
2

2
8

2
14

10
−4

10
−2

10
0

µ

brain

2
2

2
8

2
14

10
−2

10
0

µ

WebBase

2
2

2
8

2
14

10
−2

10
−1

10
0

10
1

µ

Friendster

2
2

2
8

2
14

10
−5

10
−3

10
−1

µ

blood vessel

2
2

2
8

2
14

10
0

10
1

µ

cochlea

Figure 7: Clustering time with ε = 0.6 and varying µ using exact cosine similarity as the similarity measure.

2
5

2
10

2
15

0

2

4

Number of samples

I
n
d
e
x
c
o
n
s
t
r
u
c
t
i
o
n

t
i
m
e
(
s
e
c
o
n
d
s
)

Orkut

2
5

2
10

2
15

0

10

20

Number of samples

brain

2
5

2
10

2
15

0

10

20

Number of samples

WebBase

2
5

2
10

2
15

0

20

40

60

Number of samples

Friendster

2
5

2
10

2
15

0

10

20

30

40

Number of samples

blood vessel

2
5

2
10

2
15

0

20

40

60

80

Number of samples

cochlea

Approximate cosine similarity Approximate Jaccard similarity Exact cosine similarity

Figure 8: Index construction times for GBBSIndexSCAN (48 cores with hyper-threading) using approximate similarity measures with varying sample sizes.

core vertex, to get consistent measurements for this experiment, we

remove this source of non-determinism by assigning each border

vertex to the same cluster as the most similar neighboring core

vertex, breaking ties in favor of lower vertex IDs.

We use the modularity as a heuristic measurement for clustering

quality, treating unclustered vertices as each being in its own cluster.

We select the parameters (µ, ε) maximizing modularity from the

following set Σ:

Σ =
{
2, 4, 8, 16, . . . , 218

}
× {.01, .02, .03, . . . , .99}. (1)

Figure 9 plots the best modularity scores found when using the

approximate similarity measures with varying numbers of samples.

To better illustrate the trade-off between computation time and

clustering quality, we use the index construction times from Figure 8

on the horizontal axis instead of the number of samples. Each

plotted modularity score for a fixed number of samples is the mean

of five trials with different pseudorandom seeds on each trial.

Similarly, Figure 10 plots the ARI of the clustering found by the

approximate similarity measures with varying numbers of samples

versus the “ground-truth” clustering under the corresponding exact

similarity measures. Again, each plotted ARI is the mean of five

trials with different pseudorandom seeds. The SCAN parameters

used in this plot are the best parameters in Σ relative to the exact

similarity measures. Hence, this plot shows howwell the clusterings

using approximate similarity measures match the clusterings using

exact similarity measures at a particular parameter setting.

Points to the top and the left represent sample sizes that give

good quality as well as low index construction times. The figures

also include the times to construct indices with exact similarity

measures from Figure 5, with the assumption that the times for

exact Jaccard similarity are the same as those measured for cosine

similarity.

The improved approximation accuracy in these plots as the sam-

ple size increases is not only attributable to better LSH accuracy

with more samples, but also to the heuristic described in Section 6.3

that reverts to computing exact similarity for vertices that have low

degree relative to the number of samples.

The approximate Jaccard clusterings approach the quality of the

corresponding exact similarity clusterings at lower sample sizes

than approximate cosine clusterings do, which is perhaps expected

due to the better sampling efficiency that MinHash variants tend

to have over SimHash, as suggested by Shrivastava and Li [60] and

by our bounds in Theorems 5.2 and 5.3.

The modularity and ARI scores indicate that approximating sim-

ilarities can significantly speed up index construction while still

achieving good quality clusterings. The modularity plots in Figure 9

look more favorable than the ARI plots in Figure 10, suggesting that

though at low sample sizes the approximate clusters at a particular

parameter setting may noticeably differ from the corresponding

exact clusters, we are still able to find a good quality clustering by

searching over a range of parameter values.

8 Related Work
Xu et al. introduced the original SCAN algorithm [71] and borrowed

ideas from the popular spatial clustering algorithm DBSCAN [29].

One major inconvenience of SCAN is the difficulty of choosing its

two user-selected parameters, µ and ε . GS*-Index alleviates this

issue by creating an index upon which future SCAN queries with

0 2 4

0.1

0.15

0.2

0.25

Index construction

time (seconds)

M
o
d
u
l
a
r
i
t
y

Orkut

0 10 20

0.2

0.25

0.3

Index construction

time (seconds)

brain

0 10 20

0.6

0.65

0.7

0.75

0.8

Index construction

time (seconds)

WebBase

0 20 40 60

0.07

0.08

0.09

0.1

Index construction

time (seconds)

Friendster

0 10 20 30 40

0

0.02

0.04

0.06

Index construction

time (seconds)

blood vessel

0 20 40 60 80

0

0.01

0.02

0.03

Index construction

time (seconds)

cochlea

Exact cosine similarity Approximate cosine similarity Exact Jaccard similarity Approximate Jaccard similarity

Figure 9: Trade-off curve of approximate similarity index construction time with varying numbers of samples versus the best modularity score found among

parameters from Σ (Equation (1)). The index construction times on the horizontal axis come from Figure 8.

0 2 4

0.4

0.6

0.8

1

Index construction

time (seconds)

A
d
j
u
s
t
e
d
R
a
n
d
i
n
d
e
x Orkut

0 10 20

0

0.5

1

Index construction

time (seconds)

brain

0 10 20

0.8

0.85

0.9

0.95

1

Index construction

time (seconds)

WebBase

0 20 40 60

0.2

0.4

0.6

0.8

1

Index construction

time (seconds)

Friendster

0 10 20 30 40

0

0.5

1

Index construction

time (seconds)

blood vessel

0 20 40 60 80

0

0.5

1

Index construction

time (seconds)

cochlea

Exact similarity measure Approximate cosine similarity Approximate Jaccard similarity

Figure 10: Trade-off curve of approximate similarity index construction time with varying numbers of samples versus the accuracy (measured via adjusted

Rand index) of the resulting approximate clustering relative to a “ground-truth” clustering from the corresponding exact similarity index. For each graph, the

tested parameters (µ, ε) are the modularity-maximizing parameters from Σ (Equation (1)) relative to the exact similarity measure. The index construction

times on the horizontal axis come from Figure 8.

arbitrary parameters are efficient [68]. SCOT [13] and gSkeleton-

Clu [37] also essentially compute indices for SCAN, but only for

a fixed µ value. SCOT outputs an ordering of vertices, similar to

what the OPTICS algorithm [1] outputs for DBSCAN, such that ver-

tices that tend to be in the same cluster are nearby in the ordering.

gSkeletonClu computes a spanning tree on potential core vertices.

SHRINK [36], DHSCAN [73], and AHSCAN [74] are all based on

SCAN, but avoid the parameter selection issue by being parameter-

free algorithms that use a quality function like the modularity to

guide the clustering process. DPSCAN [69] is another parameter-

free SCAN-based algorithm that uses a density metric to select

clusters. These algorithms are easier to use due to their lack of

parameters, although having tunable parameters can be helpful in

allowing the user to explore alternative clusterings.

Other work building on SCAN focuses on making SCAN scale to

large graphs. LinkSCAN* [42] reduces computation time at the cost

of accuracy by operating on a sampled subgraph of the original

graph. It may be worthwhile in the future to compare the efficiency

and clustering quality of the LinkSCAN* sampling approach versus

the LSH approach of our paper. Zhao et al. [75] and Mai et al. [45]

describe anytime algorithms for SCAN, with Mai et al.’s algorithm

being parallel. Users may pause queries and examine intermediate

clustering results, making it useful for large graphs on which fin-

ishing a query may take a long time. Our work, on the other hand,

strives to make finishing a query as fast as possible so that this

anytime functionality is unnecessary.

SCAN++ [59], pSCAN [16], and ppSCAN [18], for a fixed setting

of SCAN parameters, speed up SCAN by pruningmany unnecessary

similarity score computations between pairs of vertices. Che et al.’s

ppSCAN is parallel and uses vectorized instructions as well for

additional performance. SCAN-XP [65] is another parallel SCAN

algorithm but does not perform pruning.

For distributed systems, Chen et al. [19] and Zhao et al. [76]

present MapReduce parallelizations of SCAN, and SparkSCAN [77]

is a Spark parallelization of SCAN. GPUSCAN [64] uses GPUs to

speed up SCAN.

There are many other graph clustering algorithms besides SCAN

and its variants. Interested readers may refer to surveys written by

other researchers, such as Schaeffer [56] and Fortunato [30].

9 Conclusion
This paper presents index-based SCAN algorithms that achieve

significant parallel speedup over the state of the art. They allow

users to query efficiently for SCAN clusterings for arbitrary pa-

rameter settings. The algorithms achieve improved work bounds

over GS*-Index and have logarithmic span w.h.p. We also present

an optimized multicore implementation of the algorithm that runs

well in practice. Moreover, we demonstrate that LSH is a viable

approximation scheme to speed up the computationally expensive

component of index construction.

For future work, first, we are interested in extending our work

to dynamic graphs by devising parallel algorithms for processing

batches of edge updates. Second, we are interested in quickly ex-

tracting hierarchical clusterings from the SCAN index. Third, we

would like to investigate the speed and clustering quality of SCAN

when using other similarity measures. Last, we wish to compare

SCAN to other parallel clustering algorithms in quality and speed.

Acknowledgments
We thank Rezaul Chowdhury for suggesting using matrix multipli-

cation on dense graphs. This research was supported by DOE Early

Career Award #DE-SC0018947, NSF CAREER Award #CCF-1845763,

Google Faculty Research Award, DARPA SDH Award #HR0011-18-

3-0007, and Applications Driving Architectures (ADA) Research

Center, a JUMP Center co-sponsored by SRC and DARPA.

References
[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.

OPTICS: Ordering Points to Identify the Clustering Structure. SIGMOD Record
28, 2 (1999), 49–60.

[2] Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. 2016. Distributed

Balanced Partitioning via Linear Embedding. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. 387–396.

[3] Ariful Azad, Georgios A. Pavlopoulos, Christos A. Ouzounis, Nikos C. Kyrpides,

and Aydin Buluç. 2018. HipMCL: a high-performance parallel implementation of

the Markov clustering algorithm for large-scale networks. Nucleic Acids Research
46, 6 (2018).

[4] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. 2004. Correlation Clustering.

Machine Learning 56, 1-3 (2004), 89–113.

[5] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, Mohammad-

Taghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab Mirrokni. 2017.

Affinity Clustering: Hierarchical Clustering at Scale. In Advances in Neural Infor-
mation Processing Systems. 6864–6874.

[6] Alejandro Bellogín and Javier Parapar. 2012. Using Graph Partitioning Techniques

for Neighbour Selection in User-Based Collaborative Filtering. In Proceedings of
the Sixth ACM Conference on Recommender Systems. 213–216.

[7] Chris Biemann. 2006. ChineseWhispers - an Efficient GraphClusteringAlgorithm

and its Application to Natural Language Processing Problems. In Proceedings
of the First Workshop on Graph-based Methods for Natural Language Processing.
73–80.

[8] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. Brief Announce-

ment: ParlayLib - A Toolkit for Parallel Algorithms on Shared-Memory Multicore

Machines. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures. 507–509.

[9] Guy E. Blelloch and Bruce M. Maggs. 2010. Parallel Algorithms. In Algorithms
and Theory of Computation Handbook: Special Topics and Techniques (2nd ed.),

Mikhail J. Atallah and Marina Blanton (Eds.). Vol. 2. Chapter 25.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded

Computations by Work Stealing. J. ACM 46, 5 (1999), 720–748.

[11] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered

Label Propagation: AMultiResolution Coordinate-Free Ordering for Compressing

Social Networks. In Proceedings of the 20th International Conference on World
Wide Web. 587–596.

[12] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Compres-

sion Techniques. In Proceedings of the 13th International Conference on World
Wide Web. 595–602.

[13] Dustin Bortner and Jiawei Han. 2010. Progressive Clustering of Networks Using

Structure-Connected Order of Traversal. In IEEE 26th International Conference on
Data Engineering. 653–656.

[14] George E. P. Box and Mervin E. Muller. 1958. A note on the generation of random

normal deviates. The Annals of Mathematical Statistics 29, 2 (1958), 610–611.
[15] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In

Proceedings of the Compression and Complexity of SEQUENCES. 21–29.
[16] Lijun Chang, Wei Li, Lu Qin, Wenjie Zhang, and Shiyu Yang. 2017. pSCAN: Fast

and Exact Structural Graph Clustering. IEEE Transactions on Knowledge and Data
Engineering 29, 2 (2017), 387–401.

[17] Moses S. Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-

rithms. In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of
Computing. 380–388.

[18] Yulin Che, Shixuan Sun, and Qiong Luo. 2018. Parallelizing Pruning-based

Graph Structural Clustering. In Proceedings of the 47th International Conference
on Parallel Processing. Article 77.

[19] Jia-Jun Chen, Ji-Meng Chen, Jie Liu, and Va-Lou Huang. 2013. PSCAN: A paral-

lel structural clustering algorithm for networks. In International Conference on
Machine Learning and Cybernetics, Vol. 2. 839–844.

[20] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing

algorithms. SIAM Journal on computing 14, 1 (1985), 210–223.

[21] Richard Cole. 1988. Parallel merge sort. SIAM J. Comput. 17, 4 (1988), 770–785.
[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2009. Introduction to Algorithms. MIT Press.

[23] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. 2006. Corre-

lation clustering in general weighted graphs. Theoretical Computer Science 361,
2–3 (2006), 172–187.

[24] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient

Parallel Graph Algorithms Can Be Fast and Scalable. In Proceedings of the 30th
ACM Symposium on Parallelism in Algorithms and Architectures. 393–404.

[25] Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: A Frame-

work for Static and Incremental Parallel Graph Connectivity Algorithms. Pro-
ceedings of the VLDB Endowment 14, 4 (2020), 653–667.

[26] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. 2021. Parallel

Batch-Dynamic k -Clique Counting. In Symposium on Algorithmic Principles of
Computer Systems. SIAM, 129–143.

[27] Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun.

2020. The Graph Based Benchmark Suite (GBBS). In Proceedings of the 3rd Joint
International Workshop on Graph Data Management Experiences & Systems and
Network Data Analytics. Article 11, 8 pages.

[28] Yijun Ding, Minjun Chen, Zhichao Liu, Don Ding, Yanbin Ye, Min Zhang, Reagan

Kelly, Li Guo, Zhenqiang Su, Stephen C. Harris, Feng Qian, Weigong Ge, Hong

Fang, Xiaowei Xu, and Weida Tong. 2012. atBioNet–an integrated network

analysis tool for genomics and biomarker discovery. BMC Genomics 13, Article
325 (2012).

[29] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-

Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.

In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining. 226–231.

[30] Santo Fortunato. 2010. Community detection in graphs. Physics Reports 486, 3–5
(2010), 75–174.

[31] Hillel Gazit. 1991. An optimal randomized parallel algorithm for finding con-

nected components in a graph. SIAM J. Comput. 20, 6 (1991), 1046–1067.
[32] Joseph Gil, Yossi Matias, and Uzi Vishkin. 1991. Towards a Theory of Nearly

Constant Time Parallel Algorithms. In Proceedings of the 32nd Annual Symposium
on Foundations of Computer Science. 698–710.

[33] Michelle Girvan and Mark E. J. Newman. 2002. Community structure in social

and biological networks. Proceedings of the National Academy of Sciences 99, 12
(2002), 7821–7826. arXiv:https://www.pnas.org/content/99/12/7821.full.pdf

[34] Casey S. Greene, Arjun Krishnan, Aaron K. Wong, Emanuela Ricciotti, Rene A.

Zelaya, Daniel S. Himmelstein, Ran Zhang, Boris M. Hartmann, Elena Zaslavsky,

Stuart C. Sealfon, Daniel I. Chasman, Garret A. FitzGerald, Kara Dolinski, Tilo

Grosser, and Troyanskaya Olga G. 2015. Understanding multicellular function

and disease with human tissue-specific networks. Nature Genetics 47 (2015),

569–576.

[35] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random

variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30.
[36] Jianbin Huang, Heli Sun, Jiawei Han, Hongbo Deng, Yizhou Sun, and Yaguang

Liu. 2010. SHRINK: A Structural Clustering Algorithm for Detecting Hierar-

chical Communities in Networks. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management. 219–228.

[37] Jianbin Huang, Heli Sun, Qinbao Song, Hongbo Deng, and Jiawei Han. 2013.

Revealing Density-Based Clustering Structure from the Core-Connected Tree of

a Network. IEEE Transactions on Knowledge and Data Engineering 25, 8 (2013),

1876–1889.

[38] Lawrence Hubert and Phipps Arabie. 1985. Comparing Partitions. Journal of
Classification 2 (1985), 193–218.

[39] Joseph JáJá. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.

[40] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[41] Ping Li, Art Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In

Advances in Neural Information Processing Systems 25. 3113–3121.
[42] Sungsu Lim, Seungwoo Ryu, Sejeong Kwon, Kyomin Jung, and Jae-Gil Lee. 2014.

LinkSCAN*: Overlapping Community Detection Using the Link-Space Transfor-

mation. In IEEE 30th International Conference on Data Engineering. 292–303.
[43] Cindy Xide Lin, Yintao Yu, Jiawei Han, and Bing Liu. 2010. Hierarchical Web-page

Clustering via In-page and Cross-page Link Structures. In Proceedings of the 14th
Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining.
222–229.

[44] Zhichao Liu, Qiang Shi, Don Ding, Reagan Kelly, Hong Fang, and Weida Tong.

2011. Translating Clinical Findings into Knowledge in Drug Safety Evaluation

- Drug Induced Liver Injury Prediction System (DILIps). PLOS Computational
Biology 7, 12 (2011).

[45] Son T. Mai, Sihem Amer-Yahia, Ira Assent, Mathias Skovgaard Birk, Martin Stor-

gaard Dieu, Jon Jacobsen, and Jesper M. Kristensen. 2019. Scalable Interactive

Dynamic Graph Clustering on Multicore CPUs. IEEE Transactions on Knowledge
and Data Engineering 31, 7 (2019), 1239–1252.

[46] Venkata-Swamy Martha, Zhichao Liu, Li Guo, Zhenqiang Su, Yanbin Ye, Hong

Fang, Don Ding, Weida Tong, and Xiaowei Xu. 2011. Constructing a robust

protein-protein interaction network by integrating multiple public databases. In

BMC Bioinformatics, Vol. 12. Article S7.
[47] Mutlu Mete, Fusheng Tang, Xiaowei Xu, and Nurcan Yuruk. 2008. A structural

approach for finding functional modules from large biological networks. In BMC
Bioinformatics, Vol. 9. Article S19.

[48] Mark E. J. Newman. 2004. Analysis of weighted networks. Physical Review E 70

(2004), 056131. Issue 5.

[49] Mark E. J. Newman andMichelle Girvan. 2004. Finding and evaluating community

structure in networks. Physical Review E 69 (2004), 026113. Issue 2.

[50] Xinghao Pan, Dimitris Papailiopoulos, Samet Oymak, Benjamin Recht, Kannan

Ramchandran, and Michael I. Jordan. 2015. Parallel Correlation Clustering on

Big Graphs. In Advances in Neural Information Processing Systems. 82–90.
[51] Symeon Papadopoulos, Yiannis Kompatsiaris, and Athena Vakali. 2009. Leverag-

ing Collective Intelligence through Community Detection in Tag Networks. In

Proceedings of Workshop on Collective Knowledge Capturing and Representation.

https://arxiv.org/abs/https://www.pnas.org/content/99/12/7821.full.pdf
http://snap.stanford.edu/data

[52] Symeon Papadopoulos, Yiannis Kompatsiaris, and Athena Vakali. 2010. A Graph-

Based Clustering Scheme for Identifying Related Tags in Folksonomies. In Data
Warehousing and Knowledge Discovery. 65–76.

[53] Symeon Papadopoulos, Christos Zigkolis, Giorgos Tolias, Yannis Kalantidis,

Phivos Mylonas, Yiannis Kompatsiaris, and Athena Vakali. 2010. Image cluster-

ing through community detection on hybrid image similarity graphs. In IEEE
International Conference on Image Processing. 2353–2356.

[54] Rajeev Raman. 1990. The Power of Collision: Randomized Parallel Algorithms

for Chaining and Integer Sorting. In Foundations of Software Technology and
Theoretical Computer Science. 161–175.

[55] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence. 4292–4293.

[56] Satu Elisa Schaeffer. 2007. Graph clustering. Computer Science Review 1, 1 (2007),

27–64.

[57] Manos Schinas, Symeon Papadopoulos, Yiannis Kompatsiaris, and Pericles A.

Mitkas. 2015. Visual Event Summarization on Social Media Using TopicModelling

and Graph-based Ranking Algorithms. In Proceedings of the 5th ACM International
Conference on Multimedia Retrieval. 203–210.

[58] Manos Schinas, Symeon Papadopoulos, Georgios Petkos, Yiannis Kompatsiaris,

and Pericles A. Mitkas. 2015. Multimodal Graph-based Event Detection and Sum-

marization in Social Media Streams. In Proceedings of the 23rd ACM International
Conference on Multimedia. 189–192.

[59] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2015. SCAN++:

Efficient Algorithm for Finding Clusters, Hubs andOutliers on Large-scale Graphs.

Proceedings of the VLDB Endowment 8, 11 (2015), 1178–1189.
[60] Anshumali Shrivastava and Ping Li. 2014. In Defense of MinHash Over SimHash.

In Proceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics. 886–894.

[61] Julian Shun and Guy Edward Blelloch. 2014. Phase-Concurrent Hash Tables

for Determinism. In Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures. 96–107.

[62] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W. Ma-

honey. 2016. Parallel Local Graph Clustering. Proceedings of the VLDB Endowment
9, 12 (2016), 1041–1052.

[63] Julian Shun and Kanat Tangwongsan. 2015. Multicore Triangle Computations

Without Tuning. In IEEE 31st International Conference on Data Engineering. 149–
160.

[64] Thomas Ryan Stovall, Sinan Kockara, and Recep Avci. 2015. GPUSCAN: GPU-

based Parallel Structural Clustering Algorithm for Networks. IEEE Transactions
on Parallel and Distributed Systems 26, 12 (2015), 3381–3393.

[65] Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2017. SCAN-

XP: Parallel Structural Graph Clustering Algorithm on Intel Xeon Phi Coproces-

sors. In Proceedings of the 2nd International Workshop on Network Data Analytics.
Article 6.

[66] David A. Tolliver and Gary L. Miller. 2006. Graph Partitioning by Spectral

Rounding: Applications in Image Segmentation and Clustering. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Vol. 1. 1053–1060.

[67] Uzi Vishkin. 2010. Thinking in Parallel: Some Basic Data-Parallel Algorithms

and Techniques.

[68] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2017. Efficient

structural graph clustering: an index-based approach. Proceedings of the VLDB
Endowment 11, 3 (2017), 243–255.

[69] Changfa Wu, Yu Gu, and Ge Yu. 2019. DPSCAN: Structural Graph Clustering

Based on Density Peaks. In Database Systems for Advanced Applications. 626–641.
[70] Wei Wu, Bin Li, Ling Chen, Junbin Gao, and Chengqi Zhang. 2020. A Review

for Weighted MinHash Algorithms. IEEE Transactions on Knowledge and Data
Engineering (2020).

[71] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. 2007.

SCAN: A Structural Clustering Algorithm for Networks. In Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 824–833.

[72] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-

Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 555–564.

[73] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas A. J. Schweiger. 2007. A Di-

visive Hierarchical Structural Clustering Algorithm for Networks. In Proceedings
of the Seventh IEEE International Conference on Data Mining Workshops. 441–448.

[74] Nurcan Yuruk, Mutlu Mete, Xiaowei Xu, and Thomas A. J. Schweiger. 2009.

AHSCAN: Agglomerative Hierarchical Structural Clustering Algorithm for Net-

works. In Proceedings of the International Conference on Advances in Social Network
Analysis and Mining. 72–77.

[75] Weizhong Zhao, Gang Chen, and Xiaowei Xu. 2017. AnySCAN: An Efficient

Anytime Framework with Active Learning for Large-scale Network Clustering.

In IEEE International Conference on Data Mining. 665–674.
[76] Weizhong Zhao, Venkataswamy Martha, and Xiaowei Xu. 2013. PSCAN: A paral-

lel structural clustering algorithm for big networks in MapReduce. In Proceedings
of the IEEE 27th International Conference on Advanced Information Networking
and Applications. 862–869.

[77] Qijun Zhou and Jingbin Wang. 2016. SparkSCAN: A Structure Similarity Cluster-

ing Algorithm on Spark. In Big Data Technology and Applications. 163–177.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Set similarity
	2.2 Graphs and graph notation
	2.3 Parallelism

	3 Review of SCAN algorithms
	3.1 SCAN definitions
	3.2 Index-based SCAN: GS*-Index

	4 Parallel algorithm
	4.1 Index construction
	4.2 Querying for clusters
	4.3 Determining hubs and outliers

	5 Approximating similarities
	6 Implementation
	6.1 Computing similarities
	6.2 Querying for clusters
	6.3 Approximate similarities

	7 Experiments
	7.1 Benchmarking environment
	7.2 Clustering quality measures
	7.3 Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

