
Parallel Write-Efficient Algorithms and Data Structures for
Computational Geometry

Guy E. Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Yan Gu

Carnegie Mellon University

yan.gu@cs.cmu.edu

Julian Shun

MIT CSAIL

jshun@mit.edu

Yihan Sun

Carnegie Mellon University

yihans@cs.cmu.edu

ABSTRACT
In this paper, we design parallel write-efficient geometric algo-

rithms that perform asymptotically fewer writes than standard

algorithms for the same problem. This is motivated by emerging

non-volatile memory technologies with read performance being

close to that of random access memory but writes being signifi-

cantly more expensive in terms of energy and latency. We design

algorithms for planar Delaunay triangulation, k-d trees, and static

and dynamic augmented trees. Our algorithms are designed in

the recently introduced Asymmetric Nested-Parallel Model, which

captures the parallel setting in which there is a small symmetric

memory where reads and writes are unit cost as well as a large

asymmetric memory where writes are ω times more expensive

than reads. In designing these algorithms, we introduce several

techniques for obtaining write-efficiency, including DAG tracing,

prefix doubling, and α-labeling, which we believe will be useful for

designing other parallel write-efficient algorithms.

ACM Reference Format:
Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. 2018. Parallel Write-

Efficient Algorithms and Data Structures for Computational Geometry. In

SPAA ’18: 30th ACM Symposium on Parallelism in Algorithms and Architec-
tures, July 16–18, 2018, Vienna, Austria. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3210377.3210380

1 INTRODUCTION
In this paper, we design a set of techniques and parallel algorithms to

reduce the number of writes to memory as compared to traditional

algorithms. This is motivated by the recent trends in computer

memory technologies that promise byte-addressability, good read

latencies, significantly lower energy and higher density (bits per

area) compared to DRAM. However, one characteristic of these

memories is that reading frommemory is significantly cheaper than

writing to it. Based on projections in the literature, the asymmetry

is between 5–40 in terms of latency, bandwidth, or energy. Roughly

speaking, the reason for this asymmetry is that writing to memory

requires a change to the state of the material, while reading only

requires detecting the current state. This trend poses the interesting

question of how to design algorithms that are more efficient than

traditional algorithms in the presence of read-write asymmetry.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00

https://doi.org/10.1145/3210377.3210380

There has been recent research studying models and algorithms

that account for asymmetry in read and write costs [7, 8, 13, 14, 19,

20, 26, 27, 34, 42, 52, 53]. Blelloch et al. [8, 13, 14] propose models in

which writes to the asymmetric memory costω ≥ 1 and all other op-

erations are unit cost. The Asymmetric RAM model [8] has a small

symmetric memory (a cache) that can be used to hold temporary

values and reduce the number of writes to the large asymmetric

memory. The Asymmetric NP (Nested Parallel) model [14] is the

corresponding parallel extension that allows an algorithm to be

scheduled efficiently in parallel, and is the model that we use in

this paper to analyze our algorithms.

Write-efficient parallel algorithms have been studied for many

classes of problems including graphs, linear algebra, and dynamic

programming. However, parallel write-efficient geometric algo-

rithms have only been developed for the 2D convex hull prob-

lem [8]. Achieving parallelism (polylogarithmic depth) and optimal

write-efficiency simultaneously seems generally hard for many

algorithms and data structures in computational geometry. Here,

optimal write-efficiency means that the number of writes that the

algorithm or data structure construction performs is asymptotically

equal to the output size. In this paper, we propose two general

frameworks and show how they can be used to design algorithms

and data structures from geometry with high parallelism as well as

optimal write-efficiency.

The first framework is designed for randomized incremental

algorithms [21, 39, 45]. Randomized incremental algorithms are rel-

atively easy to implement in practice, and the challenge is in simulta-

neously achieving high parallelism and write-efficiency. Our frame-

work consists of two components: a DAG-tracing algorithm and a

prefix doubling technique. We can obtain parallel write-efficient

randomized incremental algorithms by applying both techniques

together. The write-efficiency is from the DAG-tracing algorithm,

that given a current configuration of a set of objects and a new

object, finds the part of the configuration that “conflicts” with the

new object. Finding n objects in a configuration of size n requires

O(n logn) reads but only O(n) writes. Once the conflicts have been
found, previous parallel incremental algorithms (e.g. [15]) can be

used to resolve the conflicts among objects taking linear reads and

writes. This allows for a prefix doubling approach in which the

number of objects inserted in each round is doubled until all objects

are inserted.

Using this framework, we obtain parallel write-efficient algo-

rithms for comparison sort, planar Delaunay triangulation, and k-d
trees, all requiring optimal work, linear writes, and polylogarithmic

depth. The most interesting result is for Delaunay triangulation

(DT). Although DT can be solved in optimal time and linear writes

sequentially using the plane sweep method [14], previous parallel

DT algorithms seem hard to make write-efficient. Most are based

https://doi.org/10.1145/3210377.3210380
https://doi.org/10.1145/3210377.3210380

on divide-and-conquer, and seem to inherently require Θ(n logn)
writes. Here we use recent results on parallel randomized incremen-

tal DT [15] and apply the above mentioned approach. For compari-

son sort, our new algorithm is stand-alone (i.e., not based on other

complicated algorithms like Cole’s mergesort [13, 22]). Due to space

constraints, this algorithm is presented in the full version of this

paper [16]. For k-d trees, we introduce the p-batched incremental

construction technique that maintains the balance of the tree while

asymptotically reducing the number of writes.

The second framework is designed for augmented trees, includ-

ing interval trees, range trees, and priority search trees. Our goal

is to achieve write-efficiency for both the initial construction as

well as future dynamic updates. The framework consists of two

techniques. The first technique is to decouple the tree construction

from sorting, and introduce parallel algorithms to construct the

trees in linear reads and writes after the objects are sorted (the sort-

ing can be done with linear writes [13]). Such algorithms provide

write-efficient constructions of these data structures, but can also

be applied in the rebalancing scheme for dynamic updates—once

a subtree is unbalanced, we reconstruct it. The second technique

is α-labeling. We subselect some tree nodes as critical nodes, and

maintain part of the augmentation only on these nodes. By doing

so, we can limit the number of tree nodes that need to be written

on each update, at the cost of having to read more nodes.
1

Using this framework, we obtain efficient augmented trees in

the asymmetric setting. In particular, we can construct the trees in

optimal work and writes, and polylogarithmic depth. For dynamic

updates, we provide a trade-off between performing extra reads in

queries and updates, while doing fewer writes on updates. Standard

algorithms useO(logn) reads andwrites per update (O(log2 n) reads
on a 2D range tree). We can reduce the number of writes by a factor

of Θ(logα) for α ≥ 2, at a cost of increasing reads by at most a

factor of O(α) in the worst case. For example, when the number of

queries and updates are about equal, we can improve the work by

a factor of Θ(logω), which is significant given that the update and

query costs are only logarithmic.

The contributions of this paper are new parallel write-efficient

algorithms for comparison sorting, planar Delaunay triangulation,

k-d trees, and static and dynamic augmented trees (including inter-

val trees, range trees and priority search trees). We introduce two

general frameworks to design such algorithms, which we believe

will be useful for designing other parallel write-efficient algorithms.

2 PRELIMINARIES
2.1 Computation Models
Nested-parallel model. The algorithms in this paper is based on

the nested-parallel model where a computation starts and ends with

a single root task. Each task has a constant number of registers,

and runs a standard instruction set from a random access machine,

except it has one additional instruction called FORK. The FORK

instruction takes an integern′ and createsn′ child tasks, which can

run in parallel. Child tasks get a copy of the parent’s register values,

with one special register getting an integer from 1 to n′ indicating

1
At a very high level, the α -labeling is similar to the weight-balanced B-tree (WBB

tree) proposed by Arge et al. [4, 5], but there are many differences and we discuss

them in Section 6.

which child it is. The parent task suspends until all its children finish

at which point it continues with the registers in the same state as

when it suspended, except the program counter advanced by one.

We say that a computation has binary branching if n′ = 2. In the

model, a computation can be viewed as a (series-parallel) DAG in

the standard way. We assume every instruction has a weight (cost).

The work (W) is the sum of the weights of the instructions, and

the depth (D) is the weight of the heaviest path.

Asymmetric NP (Nested Parallel) model.We use the Asymmet-

ric NP (Nested Parallel) model [8], which is the asymmetric version

of the nested-parallel model, to measure the cost of an algorithm

in this paper. The memory in the Asymmetric NP model consists

of (i) an infinitely large asymmetric memory (referred to as large-

memory) accessible to all processors and (ii) a small private sym-
metric memory (small-memory) accessible only to one processor.

The cost of writing to large memory is ω, and all other operations

have unit cost. The size of the small-memory is measured in words.

In this paper, we assume the small memory can store a logarithmic

number of words, unless specified otherwise. A more precise and

detailed definition of the Asymmetric NP model is given in [8].

The work W of a computation is the sum of the costs of the

operations in the DAG, which is similar to the symmetric version

but just has extra charges for writes. The depth D is the sum of

the weights on the heaviest path in the DAG. Since the depth can

vary by a logarithmic factor based on specifics of the model (e.g.

allowing binary or multiway branching), in this paper we show

O(ω · polylog(n)) bounds for the depth of the algorithms, disregard-

ing the particular power in the logarithm. Under mild assumptions,

a work-stealing scheduler can execute an algorithm with workW
and depth ω · polylog(n) inW /P +O(ω · polylog(n)) expected time

on P processors [8]. We assume concurrent-read, and concurrent-

writes use priority-writes to resolve conflicts. In our algorithm

descriptions, the number of writes refers only to the writes to the

large-memory, and does not include writes to the small-memory.

All reads and writes are to words of size Θ(logn)-bits for an input

size of n.

2.2 Write-Efficient Geometric Algorithms
Sorting and searching are widely used in geometry applications.

Sorting requiresO(ωn+n logn)work andO(ω·polylog(n)) depth [13].
Red-black trees with appropriate rebalancing rules require O(ω +
logn) amortized work per update (insertion or deletion) [51].

These building blocks facilitate many classic geometric algo-

rithms. The planar convex-hull problem can be solved by first sort-

ing the points by x coordinates and then using Graham’s scan that

requires O(ωn) work [24]. This scan step can be parallelized with

O(ω · polylog(n)) depth [28]. The output-sensitive version uses

O(n logh + ωn log logh) work and O(ω polylog(n)) depth where h
is the number of points on the hull [8].

3 GENERAL TECHNIQUES FOR
INCREMENTAL ALGORITHMS

In this section, we first introduce our framework for randomized

incremental algorithms. Our goal is to have a systematic approach

for designing geometric algorithms that are highly parallel and

write-efficient.

Our observation is that it should be possible to make random-

ized incremental algorithms write-efficient since each newly added

object on expectation only conflicts with a small region of the cur-

rent configuration. For instance, in planar Delaunay triangulation,

when a randomly chosen point is inserted, the expected number

of encroached triangles is 6. Therefore, resolving such conflicts

only makes minor modifications to the configuration during the

randomized incremental constructions, leading to algorithms using

fewer writes. The challenges are in finding the conflicted region of

each newly added object write-efficiently and work-efficiently, and

in adding multiple objects into the configuration in parallel without

affecting write-efficiency. We will discuss the general techniques

to tackle these challenges based on the history graph [18, 31], and

then discuss how to apply them to develop parallel write-efficient

algorithms for planar Delaunay triangulation in Section 4 and k-d
tree construction in Section 5. The application of these techniques

to designing a write-efficient parallel comparison sorting algorithm

is presented in the full version of this paper [16].

3.1 DAG Tracing
We now discuss how to find the conflict set of each newly added

object (i.e., only output the conflict primitives) based on a history

(directed acyclic) graph [18, 31] in a parallel and write-efficient fash-

ion. Since the history graphs for different randomized incremental

algorithms can vary, we abstract the process as a DAG tracing prob-

lem that finds the conflict primitives in each step by following the

history graph.

Definition 3.1 (DAG tracing problem). The DAG tracing problem

takes an element x , a DAGG = (V ,E), a root vertex r ∈ V with zero

in-degree, and a boolean predicate function f (x ,v). It computes

the vertex set S(G,x) = {v ∈ V | f (x ,v) and out-degree(v) = 0}.

We call a vertex v visible if f (x ,v) is true.

Definition 3.2 (tracable property). We say that the DAG tracing

problem has the tracable property when v ∈ V is visible only if

there exists at least one direct predecessor vertex u of v that is

visible.

Variable Description

D(G) the length of the longest path in G
R(G,x) the set of all visible vertices in G
S(G,x) the output set of vertices

Theorem 3.3. The DAG tracing problem can be solved inO(|R(G,x)|)
work, O(D(G)) depth and O(|S(G,x)|) writes when the problem has
the tracable property, each vertexv ∈ V has a constant degree, f (x ,v)
can be evaluated in constant time, and the small-memory has size
O(D(G)). Here R(G,x), D(G), and S(G,x) are defined in the previous
table.

Proof. Wefirst discuss a sequential algorithm usingO(|R(G,x)|)
work and O(|S(G,x)|) writes. Because of the tracable property, we
can use an arbitrary search algorithm to visit the visible nodes,

which requires O(R(G,x)) writes since we need to mark whether a

vertex is visited or not. However, this approach is not write-efficient

when |S | = o(|R(G,x)|), and we now propose a better solution.

Assume that we give a global ordering ≺v of the vertices in G
(e.g., using the vertex labels) and use the following rule to traverse

the visible nodes based on this ordering: a visible node v ∈ V is

visited during the search of its direct visible predecessor u that has

the highest priority among all visible direct predecessors ofv . Based
on this rule, we do not need to store all visited vertices. Instead,

when we visit a vertex v via a directed edge (u,v) from u, we can
check if u has the highest priority among all visible predecessors

of v . This checking has constant cost since v has a constant degree

and we assume the visibility of a vertex can be verified in constant

time. As long as we have a small-memory of size O(D(G)) that
keeps the recursion stack and each vertex in V has a constant in-

degree, we can find the output set S(G,x) using O(|R(G,x)|) work
and O(|S(G,x)|) writes.

We note that the search tree generated under this rule is unique

and deterministic. Therefore, this observation allows us to traverse

the tree in parallel and in a fork-joinmanner: we can simultaneously

fork off an independent task for each outgoing edges of the current

vertex, and all these tasks can be run independently and in parallel.

The parallel depth, in this case, is upper bounded by O(D(G)), the
depth of the longest path in the graph. □

Here we assume the graph is explicitly stored and accessible, so

we slightly modify the algorithms to generate the history graph,

which is straightforward in all cases in this paper.

3.2 The Prefix-Doubling Approach
The sequential version of randomized incremental algorithms pro-

cess one object (e.g., a point or vertex) in one iteration. The prefix-

doubling approach splits an algorithm into multiple rounds, with

the first round processing one iteration and each subsequent round

doubling the number of iterations processed. This high-level idea

is widely used in parallel algorithm design. We show that the

prefix-doubling approach combined with the DAG tracing algo-

rithm can reduce the number of writes by a factor of Θ(logn) in a

number of algorithms. In particular, our variant of prefix doubling

first processes n/logn iterations using a standard write-inefficient

approach (called as the initial round). Then the algorithm runs

O(log logn) incremental rounds, where the i’th round processes

the next 2
i−1n/logn iterations.

4 PLANAR DELAUNAY TRIANGULATION
A Delaunay triangulation (DT) in the plane is a triangulation of a

set of points P such that no point in P is inside the circumcircle of

any triangle (the circle defined by the triangle’s three corner points).

We say a point encroaches on a triangle if it is in the triangle’s

circumcircle, so the triangle will be replaced once this point is added

to the triangulation. We assume for simplicity that the points are

in general position (no three points on a line or four points on a

circle).

Delaunay triangulation is widely studied due to its importance in

many geometry applications. Without considering the asymmetry

between reads and writes, it can be solved sequentially in opti-

mal Θ(n logn) work. It is relatively easy to generate a sequential

write-efficient version that does Θ(n logn) reads and only requires

Θ(n) writes based on the plane sweep method [14]. There are sev-

eral work-efficient parallel algorithms that run in polylogarithmic

depth [6, 15, 17, 44]. More practical ones (e.g., [18, 31]) have linear

depth. Unfortunately, none of them perform any less thanΘ(n logn)

Algorithm 1: ParIncrementalDT
Input: A sequence V = {v1, . . . ,vn } of points in the plane.

Output: The Delaunay triangulation of V .

Maintains: E(t), the points that encroach on each triangle t .

1 tb ← a sufficiently large bounding triangle

2 E(tb) ← V
3 M ← {tb }
4 while E(t) , ∅ for any t ∈ M do
5 parallel foreach triangle t ∈ M do
6 Let t1, t2, t3 be the three neighboring triangles
7 if min(E(t)) ≤ min(E(t1) ∪ E(t2) ∪ E(t3)) then
8 ReplaceTriangle(M, t ,min(E(t)))
9 returnM

10 function ReplaceTriangle(M ,t ,v)
11 foreach edge (u,w) ∈ t (three of them) do
12 if (u,w) is a boundary of v’s encroached region then
13 to ← the other triangle sharing (u,w)
14 t ′ ← (u,w,v)
15 E(t ′) ← {v ′ ∈ E(t) ∪ E(to) | inCircle(v

′, t ′)}
16 M ← M ∪ {t ′}
17 M ← M \ {t}

writes. In particular the divide-and-conquer algorithms [6, 17] seem

to inherently require Θ(n logn) writes since the divide or merge

step requires generating an output of size Θ(n), and is applied for

Θ(logn) levels. The randomized incremental approach of Blelloch

et al. (BGSS) [15], which improves the Boissonnat and Teillaud

algorithm [18] to polylogarithmic depth, also requires O(n logn)
writes for reasons described below.

In this section, we show how to modify the BGSS algorithm to

use only a linear number of writes, while maintaining the expected

Θ(n logn) bound on work, and polylogarithmic depth. Algorithm 1

shows the pseudocode for the BGSS algorithm. In the algorithm,

the vertices are labeled from 1 to n and when taking a min over

vertices (Lines 7–8) it is with respect to these labels. The algorithm

proceeds in rounds the algorithm adds some triangles (Line 16) and

removes others (Line 17) in each round.

In the algorithm, there are dependences between triangles so that

some of them need to be processed before the other triangles can

proceed. For a sequence of points V , BGSS define the dependence
graphGT (V) = (T ,E) for the algorithm in the following way. The

vertices T correspond to triangles created by the algorithm, and

for each call to ReplaceTriangle(M, t ,vi), we place an arc from

triangle t and its three neighbors (t1, t2, and t3) to each of the one,

two, or three triangles created by ReplaceTriangle. Every triangle

T with depth d(T) in GT (V) is created by the algorithm in round

d(T). BGSS show that for a randomly ordered set of input points

of size n, the depth of the dependence graph is O(logn) whp2, and
hence the algorithm runs in O(logn) rounds whp. Each round can

be done in O(logn) depth giving an overall depth of O(log2 n) whp
on the nested-parallel model.

The algorithm, however, is not write-efficient. In particular, every

point moves down the DAG through the rounds (on line 15), and

therefore can be moved O(logn) times, each requiring a write.

2
We sayO (f (n)) with high probability (whp) to indicateO (c · f (n)) with probability

to be at least 1 − 1/nc for any constant c > 0.

𝑣

𝐴

𝐷

𝐵

𝐶

𝑣

𝐴

𝐷

𝐵

𝐶

𝑣

𝐴

𝐷

𝐵

𝐶

𝐸

𝐹

𝐴 𝐵𝐶𝐷 𝐸𝐹

𝐴

𝐵𝐶

𝐷

(a) (b) (c) (d)

Figure 1: An example of the tracing structure. Here a pointv
is added and the encroaching region contains triangles E and
F (subfigure (a)). Four new triangles will be generated and
replace the two previous triangles. They may or may not be
created in the same round, and in this example this is done
in two substeps (subfigures (b) and (c)). Part of the tracing
structure is shown in subfigure (d). Four neighbor triangles
A, B,C, and D are copied, and four new triangles are created.
An arrow indicates that a point is encroached by the head
triangle only if it is encroached by the tail triangle.

A Linear-Write Version.We now discuss a write-efficient version

of the BGSS algorithm.We use the DAG tracing and prefix-doubling

techniques introduced in Section 3. The algorithm first computes

the DT of then/log
2
n earliest points in the randomized order, using

the non-write-efficient version. This step requires linear writes. It

then runs O(log logn) incremental rounds and in each round adds

a number of points equal to the number of points already inserted.

To insert points, we need to construct a search structure in the

DAG tracing problem. We can modify the BGSS algorithm to build

such a structure. In fact, the structure is effectively a subset of

the edges of the dependence graph GT (V). In particular, in the

algorithm the only inCircle test is on Line 15. In this test, to

determine if a point encroaches t ′, we need only check its two

ancestors t and to (we need not also check the two other triangles

neighboring t , as needed inGT (V)). This leads to a DAG with depth

at most as large asGT (V), and for which every vertex has in-degree

2. The out-degree is not necessarily constant. However, by noting

that there can be at most a constant number of outgoing edges to

each level of the DAG, we can easily transform it to a DAG with

constant out-degree by creating a copy of a triangle at each level

after it has out-neighbors. This does not increase the depth, and the

number of copies is at most proportional to the number of initial

triangles (O(n) in expectation) since the in-degrees are constant.

We refer to this as the tracing structure. An example of this structure

is shown in Figure 1.

The tracing structure can be used in the DAG tracing problem

(Definition 3.1) using the predicate f (v, t) = inCircle(v, t). This
predicate has the traceable property since a point can only be added

to a triangle t ′ (i.e., encroaches on the triangle) if it encroached

one of the two input edges from t and to . We can therefore use the

DAG tracing algorithm to find all of the triangles encroached on

by a given point v starting at the initial root triangle tb .
We first construct the DT of the first n/log

2
n points in the initial

round using Algorithm 1 while building the tracing structure. Then

at the beginning of each incremental round, each point traces down

the structure to find its encroached triangles, and leaves itself in

the encroached set of that triangle. Note that the encroached set

for a given point might be large, but the average size across points

is constant in expectation.

We now analyze the cost of finding all the encroached triangles

when adding a set of new points. As discussed, the depth of G
is upper bounded by O(logn) whp. The number of encroached

triangles of a point x can be analyzed by considering the degree

of the point (number of incident triangles) if added to the DT. By

Euler’s formula, the average degree of a node in a planar graph is

at most 6. Since we add the points in a random order, the expected

value of |S(G,x)| in Theorem 3.3 is constant. Finally, the number

of all encroached (including non-leaf) triangles of this point is

upper bounded by the number of inCircle tests. Then |R(G,x)|, the
expected number of visible vertices of x , is O(logn) (Theorem 4.2

in [15]).

After finding the encroached triangles for each point being added,

we need to collect them together to add them to the triangle. This

step can be done in parallel with a semisort, which takes linear

expected work (writes) andO(ω ·polylog(m)) depthwhp [30], where
m is the number of inserted points in this round. Combining these

results leads to the following lemma.

Lemma 4.1. Given 2m points in the plane and a tracing structureT
generated by Algorithm 1 on a randomly selected subset ofm points,
computing for each triangle in T the points that encroach it among
the remainingm points takes O(m logm + ωm) work (O(m) writes)
and O(ω · polylog(m)) depth whp in the Asymmetric NP model.

The idea of the algorithm is to keep doubling the size of the set

that we add (i.e., prefix doubling). Each round applies Algorithm 1

to insert the points and build a tracing structure, and then the DAG

tracing algorithm to locate the points for the next round. The depth

of each round is upper bounded by the overall depth of the DAG on

all points, which is O(logn) whp, where n is the original size. We

obtain the following theorem.

Theorem 4.2. Planar Delaunay triangulation can be computed
using O(n logn + ωn) work (i.e., O(n) writes) in expectation and
O(ω · polylog(n)) depth whp on the Asymmetric NP model with
priority-writes.

Proof. The original Algorithm 1 in [15] has O(ω · polylog(n))
depthwhp. In the prefix-doubling approach, the depth of each round
is nomore thanO(ω ·polylog(n)), and the algorithm hasO(log logn)
rounds. The overall depth is hence O(ω · polylog(n)) depth whp.

The work bound consists of the costs from the initial round,

and the incremental rounds. The initial round computes the trian-

gulation of the first n/log
2
n points, using at most O(n) inCircle

tests, O(n) writes and O(ωn) work. For the incremental rounds, we

have two components, one for locating encroached triangles in the

tracing structure, and one for applying Algorithm 1 on those points

to build the next tracing structure. The first part is handled by

Lemma 4.1. For the second part we we can apply a similar analysis

to Theorem 4.2 of [15]. In particular, the probability that there is a

dependence from a triangle in the i’th point (in the random order)

to a triangle added by a later point at location j in the ordering is

upper bounded by 24/i . Summing across all points in the second

half (we have already resolved the first half) gives:

E[C] ≤
2m∑

i=m+1

2m∑
j=i+1

24/i = O(m) .

This is a bound on both the number of reads and the number of

writes. Since the points added in each round doubles, the cost is

dominated by the last round, which is O(n logn) reads and O(n)
writes, both in expectation. Combined with the cost of the initial

round gives the stated bounds. □

5 SPACE-PARTITIONING DATA
STRUCTURES

Space partitioning divides a space into non-overlapping regions.
3

This process is usually applied repeatedly until the number of ob-

jects in a region is small enough, so that we can afford to answer a

query in linear work within the region. We refer to the tree struc-

ture used to represent the partitioning as the space-partitioning

tree. Commonly-used space-partitioning trees include binary space

partitioning trees, quad/oct-trees, k-d trees, and their variants, and

are widely used in computational geometry [24, 33], computer

graphics [3], integrated circuit design, learning theory, etc.

In this section, we propose write-efficient construction and up-

date algorithms for k-d trees [9]. We discuss how to support dy-

namic updates write-efficiently in Section 5.2, and we discuss how

to apply our technique to other space-partitioning trees in the full

version of this paper [16].

5.1 k-d Tree Construction and Queries
k-d trees have many variants that facilitate different queries. We

start with the most standard applications on range queries and

nearest neighbor queries, and discussions for other queries are in

the full version of this paper. A range query can be answered in

O(n(k−1)/k) worst-case work, and an approximate (1 + ϵ)-nearest

neighbor (ANN) query requires logn · O(1/ϵ)k work assuming

bounded aspect ratio,
4
both in k-dimensional space. The tree to

achieve these bounds can be constructed by always partitioning

by the median of all of the objects in the current region either

on the longest dimension of the region or cycling among the k
dimensions. The tree has linear size and log

2
n depth [24], and can

be constructed using O(n logn) reads and writes. We now discuss

how to reduce the number of writes to O(n).
One solution is to apply the incremental construction by insert-

ing the objects into a k-d tree one by one. This approach requires

linear writes,O(n logn) reads and polylogarithmic depth. However,

the splitting hyperplane is no longer based on the median, but

the object with the highest priority pre-determined by a random

permutation. The expected tree depth can be c log
2
n for c > 1,

but to preserve the range query cost we need the tree depth to be

log
2
n+O(1) (see details in Lemma 5.1). Motivated by the incremen-

tal construction, we propose the following variant, called p-batched
incremental construction, which guarantees both write-efficiency

and low tree depth.

The p-batched incremental construction. The p-batched incre-

mental construction is a variant of the classic incremental con-

struction where the dependence graph is a tree. Unlike the classic

version, where the splitting hyperplane (splitter) of a tree node is

3
The other type of partitioning is object partitioning that subdivides the set of objects

directly (e.g., R-tree [32, 36], bounding volume hierarchies [29, 54]).

4
The largest aspect ratio of a tree node on any two dimensions is bounded by a constant,

which is satisfied by the input instances in most real-world applications.

(a) (b) (c)

Figure 2: An illustration of one round in the p-batched incre-
mental construction for p = 4. Subfigure (a) shows the initial
state of this round. Then the new objects (shown in orange)
are added to the buffers in the leaves, as shown in subfigure
(b). Two of the buffers overflow, and so we settle these two
leaves as shown in subfigure (c).

immediately set when inserting the object with the highest priority,

in the p-batched version, each leaf node will buffer at most p objects

before it determines the splitter. We say that a leaf node overflows
if it holds more than p objects in its buffer. We say that a node

is generated when created by its parent, and settled after finding

the splitters, creating leaves and pushing the objects to the leaves’

buffers.

The algorithm proceeds in rounds, where in each round it first

finds the corresponding leaf nodes that the inserted objects belong

to, and adds them into the buffers of the leaves. Then it settles all

of the overflowed leaves, and starts a new round. An illustration of

this algorithm is shown in Figure 2. After all objects are inserted,

the algorithm finishes building the subtree of the tree nodes with

non-empty buffers recursively. For write-efficiency, we require the

small-memory size to be Ω(p), and the reason will be shown in the

cost analysis.

We make a partition once we have gathered p objects in the

corresponding subregion based on the median of these p objects.

When p = 1, the algorithm is the incremental algorithm mentioned

above, but the range query cost cannot be preserved. When p =
n, the algorithm constructs the same tree as the classic k-d tree

construction algorithm, but requires more than linear writes unless

the small-memory size isO(n), which is impractical when n is large.

We now try to find the smallest value of p that preserves the query

cost, and we analyze the cost bounds accordingly.

Range query. We use the following lemma to analyze the cost

of a standard k-d range query (on an axis-aligned hypercube for

k ≥ 2).

Lemma 5.1. A k-d range query costs O(2((k−1)/k)h) using our k-d
tree of height h.

Proof Sketch. A k-d range query has at most 2k faces that

generate 2k half-spaces, and we analyze the query cost of each half-

space. Since each axis is partitioned once in every k consecutive

levels, one side of the partition hyperplane perpendicular to the

query face will be either entirely in or out of the associated half-

space.We do not need to traverse that subtree (we can either directly

report the answer or ignore it). Therefore every k levels will expand

the search tree by a factor of at most 2
k−1

. Thus the query cost is

O(2((k−1)/k)h). □

Lemma 5.2. For our p-batched k-d tree, p = Ω(log3 n) guarantees
the tree height to be no more than log

2
n +O(1) whp.

Proof. We now consider the p-batched incremental construc-

tion. Since we are partitioning based on the median of p random

objects, the hyperplane can be different from the actual median. To

get the same cost bound, we want the actual number of objects on

the two sides to differ by no more than a factor of ϵ whp. Since we
pick p random samples, by a Chernoff bound the probability that

more than 1/2p samples are within the first (1/2 − ϵ/4)n objects

is upper bounded by e−pϵ
2/24

. Hence, the probability that the two

subtree weights of a tree node differ by more than a factor of ϵ is

no more than 2e−pϵ
2/24

. This ϵ controls the tree depth, and based

on the previous analysis we want to have n(1
2
+ ϵ

4
)log2 n/p+O (1) < p.

Namely, wewant the tree to have nomore than log
2
n/p+O(1) levels

whp to reach the subtrees with less than p elements, so the overall

tree depth is bounded by log
2
n/p +O(1) + log

2
p = log

2
n +O(1).

Combining these constraints leads to ϵ = O(1)/log
2
n and p =

Ω(log3 n). □

Lemma 5.2 indicates that settingp = Ω(log3 n) gives a tree height
of log

2
n +O(1) whp, and Lemma 5.1 shows that the corresponding

range query cost is O(2((k−1)/k)(O (1)+log2 n)) = O(n(k−1)/k), match-

ing the standard range query cost.

ANNquery. If we assume that the input objects arewell-distributed

and the k-d tree satisfies the bounded aspect ratio, then the cost of

a (1 + ϵ)-ANN query is proportional to the tree height. As a result,

p = Ω(logn) leads to a query cost of logn ·O(1/ϵ)k whp.5

Parallel construction and cost analysis. To get parallelism,

we use the prefix-doubling approach, starting with n/logn objects

in the first round. The number of reads of the algorithm is still

Θ(n logn), since it is lower bounded by the cost of sorting when

k = 1, and upper bounded by O(n logn) since the modified algo-

rithm makes asymptotically no more comparisons than the classic

implementation. We first present the following lemma.

Lemma 5.3. When a leaf overflows at the end of a round, the
number of objects in its buffer is O(p) whp when p = Ω(logn).

Proof Sketch. In the previous round, assume n′ objects were
in the tree. At that time no more than p − 1 objects are buffered
in this leaf node. Then in the current round another n′ objects are
inserted, and by a Chernoff bound, the probability that the number

of objects falling into this leaf node is more than (c + 1)p is at most

e−c
2p/2

. Plugging in p = Ω(logn) proves the lemma. □

We now bound the parallel depth of this construction. The initial

round runs the standard construction algorithm on the firstn/log
2
n

objects, which requires O(ω · polylog(n)) depth. Then in each of

the next O(log logn) incremental rounds, we need to locate leaf

nodes and a parallel semisort to put the objects into their buffers.

Both steps can be done in O(ω · polylog(n)) depth whp [30]. Then

we also need to account for the depth of settling the leaves after

the incremental rounds. When a leaf overflows, by Lemma 5.3 we

need to split a set of O(p) objects for each leaf, which has a depth

5
Actually the tree depth is O (logn) even when p = 1. However, for write-efficiency,

we need p = Ω(logn) to support efficient updates as discussed in Section 5.2 that

requires the two subtree sizes to be balanced at every node.

of O(ω · polylog(n)) using the classic approach, and is applied for

no more than a constant number of times whp by Lemma 5.3.

We now analyze the number of writes this algorithm requires.

The initial round requires O(n) writes as it uses a standard con-

struction algorithm on n/log
2
n objects. In the incremental rounds,

O(1) writes whp are required for each object to find the leaf node it

belongs to and add itself to the buffer using semisorting [30]. From

Lemma 5.3, when finding the splitting hyperplane and splitting the

object for a tree node, the number of writes required is O(p) whp.
Note that after a new leaf node is generated from a split, it contains

at least p/2 objects. Therefore, after all incremental rounds, the

tree contains at most O(n/p) tree nodes, and the overall writes to

generate them is O((n/p) · p) = O(n). After the incremental rounds

finish, we need O(n) writes to settle the leaves with non-empty

buffers, assuming O(p) cache size. In total, the algorithm uses O(n)
writes whp.

Theorem 5.4. A k-d tree that supports range and ANN queries
efficiently can be computed using O(n logn +ωn) expected work (i.e.,
O(n) writes) andO(ω · polylog(n)) depth whp in the Asymmetric NP
model. For range query the small-memory size required is Ω(log3 n).

5.2 k-d Tree Dynamic Updates
Unlike many other tree structures, we cannot rotate the tree nodes

ink-d trees since each tree node represents a subspace instead of just
a set of objects. Deletion is simple for k-d trees, since we can afford

to reconstruct the whole structure from scratch when a constant

fraction of the objects in the k-d tree have been removed, and

before the reconstruction we just mark the deleted node (constant

reads and writes per deletion via an unordered map). In total, the

amortized cost of each deletion is O(ω + logn). For insertions, we
discuss two techniques that optimize either the update cost or the

query cost.

Logarithmic reconstruction [41]. We maintain at most log
2
n

k-d trees of sizes that are increasing powers of 2. When an object is

inserted, we create a k-d tree of size 1 containing the object. While

there are trees of equal size, we flatten them and replace the two

trees with a tree of twice the size. This process keeps repeating until

there are no trees with the same size. When querying, we search in

all (at most log
2
n) trees. Using this approach, the number of reads

and writes on an insertion isO(log2 n), and on a deletion isO(logn).

The costs for range queries and ANN queries are O(n(k−1)/k) and

log
2 n ·O(1/ϵ)k respectively, plus the cost for writing the output.

If we apply our write-efficient p-batched version when recon-

structing the k-d trees, we can reduce the writes (but not reads) by

a factor of O(logn) (i.e., O(logn) and O(1) writes per update).
When using logarithmic reconstruction, querying up toO(logn)

trees can be inefficient in some cases, so here we show an alternative

solution that only maintains a single tree.

Single-tree version. As discussed in Section 5.1, only the tree

height affects the costs for range queries and ANN queries. For

range queries, Lemma 5.2 indicates that the tree height should be

log
2
n +O(1) to guarantee the optimal query cost. To maintain this,

we can tolerate an imbalance between the weights of two subtrees

by a factor of O(1/logn), and reconstruct the subtree when the

imbalance is beyond the constraint. In the worst case, a subtree of

size n′ is rebuilt once after O(n′/logn) insertions into the subtree.

Since the reconstructing a subtree of size n′ requires O(n′ logn′ +
ωn′)work, each inserted object contributesO(logn logn′+ω logn)
work to every node on its tree path, and there are O(logn) such
nodes. Hence, the amortized work for an insertion is O(log3 n +
ω log

2 n). For efficient ANN queries, we only need the tree height

to be O(logn), which can be guaranteed if the imbalance between

two subtree sizes is at most a constant multiplicative factor. Using

a similar analysis, in this case the amortized work for an insertion

is O(log2 n + ω logn).

6 AUGMENTED TREES
An augmented tree is a tree that keeps extra data on each tree

node other than what is used to maintain the balance of this tree.

We refer to the extra data on each tree node as the augmentation.
In this section, we introduce a framework that gives new algo-

rithms for constructing both static and dynamic augmented trees

including interval trees, 2D range trees, and priority search trees

that are parallel and write-efficient. Using these data structures

we can answer 1D stabbing queries, 2D range queries, and 3-sided

queries (defined in Section 6.1). For all three problems, we assume

that the query results need to be written to the large-memory. Our

results are summarized in Table 1. We improve upon the traditional

algorithms in two ways. First, we show how to construct inter-

val trees and priority search trees using O(n) instead of O(n logn)
writes (since the 2D range tree requiresO(n logn) storagewe cannot
asymptotically reduce the number of writes). Second, we provide

a tradeoff between update costs and query costs in the dynamic

versions of the data structures. The cost bounds are parameterized

by α . By setting α = O(1) we achieve the same cost bounds as the

traditional algorithms for queries and updates. α can be chosen

optimally if we know the update-to-query ratio r . For interval and
priority trees, the optimal value of α ismin(2+ω/r ,ω). The overall
work without considering writing the output can be improved by

a factor of Θ(logα). For 2D range trees, the optimal value of α is

2 +min(ω/r ,ω)/log
2
n.

We discuss two techniques in this section that we use to achieve

write-efficiency. The first technique is to decouple the tree construc-

tion from sorting, and we introduce efficient algorithms to construct

interval and priority search trees in linear reads and writes after the

input is sorted. Sorting can be done in parallel and write-efficiently

(linear writes).Using this approach, the tree structure that we obtain

is perfectly balanced.

The second technique that we introduce is the α-labeling tech-
nique.Wemark a subset of tree nodes as critical nodes by a predicate
function parameterized by α , and only maintain augmentations

on these critical nodes. We can then guarantee that every update

only modifies O(logα n) nodes, instead of O(logn) nodes as in the

classic algorithms. At a high level, the α-labeling is similar to the

weight-balanced B-tree (WBB tree) proposed by Arge et al. [4, 5]

for the external-memory (EM) model [1]. However, as we discuss

in Section 6.3, directly applying the EM algorithms [2, 4, 5, 47, 48]

does not give us the desired bounds in our model. Secondly, our

underlying tree is still binary. Hence, we mostly need no changes to

the algorithmic part that dynamically maintains the augmentation

in this trees, but just relax the balancing criteria so the underlying

search trees can be less balanced. An extra benefit of our framework

Construction Query Update

Classic interval tree O(ωn logn) O(ωk + logn) O(ω logn)

Our interval tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic priority search tree O(ωn logn) O(ωk + logn) O(ω logn)

Our priority search tree O(ωn + n logn) O(ωk + α logα n) O((ω + α) logα n)

Classic range Tree O(ωn logn) O(ωk + log2 n) O((logn + ω) logn)

Our range tree O((α + ω)n logα n) O(ωk + α logα n logn) O((α logn + ω) logα n)

Table 1: A summary of thework cost of the data structures discussed in Section 6. In all cases, we assume that the tree containsn
objects (intervals or points). For interval trees and priority search trees, we can reduce the number ofwrites in the construction
from O(logn) per element to O(1). For dynamic updates, we can reduce the number of writes per update by a factor of Θ(logα)
at the cost of increasing the number of reads in update and queries by a factor of α for any α ≥ 2.

is that bulk updates can be supported in a straightforward manner.

Such bulk updates seem complicated and less obvious in previous

approaches. We propose algorithms on our trees that can support

bulk updates write-efficiently and in polylogarithmic depth.

The rest of this section is organized as follows. We first provide

the problem definitions and review previous results in Section 6.1.

Then in Section 6.2, we introduce our post-sorted construction

technique for constructing interval and priority search trees using

a linear number of writes. Finally, we introduce the α-labeling
technique to support a tradeoff in query and update cost for interval

trees, priority search trees, and range trees in Section 6.3.

6.1 Preliminaries and Previous Work
We define the weight or size of tree node or a subtree as the number

of nodes in this subtree plus one. The “plus one” guarantees that the

size of a tree node is always the sum of the sizes of its two children,

which simplifies our discussion. This is also the standard balancing

criteria used for weight-balanced trees [40].

Interval trees and the 1D stabbing queries.An interval tree6 [24,
25, 37] organizes a set of n intervals S = {si = (li , ri)} defined by

their left and right endpoints. The key on the root of the interval

tree is the median of the 2n endpoints. This median divides all inter-

vals into two categories: those completely on its left/right, which

then form the left/right subtrees recursively, and those covering the

median, which are stored in the root. The intervals in the root are

stored in two lists sorted by the left and right endpoints respectively.

In this paper, we use red-black trees to maintain such ordered lists

to support dynamic updates and refer to them as the inner trees.
In the worst case, the previous construction algorithms scan and

copy O(n) intervals in O(logn) levels, leading to O(n logn) reads
and writes.

The interval tree can be used to answer a 1D stabbing query:

given a set of intervals, report a list of intervals covering the spe-

cific query point pq . This can be done by searching pq in the tree.

Whenever pq is smaller (larger) than the key of the current node,

all intervals in the current tree node with left (right) endpoints

smaller than pq should be reported. This can be done efficiently by

scanning the list sorted by left (right) endpoints. The overall query

cost is O(ωk + logn) (where k is the output size).

6
There exist multiple versions of interval trees. In this paper, we use the version

described in [24].

2DRange trees and the 2D range queries.The 2D range tree [10]
organizes a set of n points p = {pi = (xi ,yi)} on the 2D plane. It is

a tree structure augmented with an inner tree, or equivalently, a

two-level tree structure. The outer tree stores every point sorted by

their x-coordinate. Each node in the outer tree is augmented with

an inner tree structure, which contains all the points in its subtree,

sorted by their y-coordinate.

The 2D range tree can be used to answer the 2D range query:

given n points in the 2D plane, report the list of points with x-
coordinate between xL and xR , and y-coordinate between yB and

yT . Such range queries using range trees can be done by two

nested searches on (xL ,xR) in the outer tree and (yB ,yT) in at

most O(logn) associated inner trees. Using balanced BSTs for both

the inner and outer trees, a range tree can be constructed with

O(n logn) reads and writes, and each query takes O(log2 n + k)
reads and O(k) writes (where k is the output size). A range tree

requiresO(n logn) storage so the number of writes for construction

is already optimal.

Priority search trees and 3-sided range queries. The priority
search tree [24, 38] (priority tree for short) contains a set of n points

p = {pi = (xi ,yi)} each with a coordinate (xi) and a priority (yi).
There are two variants of priority trees, one is a search tree on co-

ordinates that keeps a heap order of the priorities as the augmented

values [4, 38]. The other one is a heap of the priorities, where each

node is augmented with a splitter between the left and right sub-

trees on the coordinate dimension [24, 38]. The construction of both

variants uses O(n logn) reads and writes as shown in the original

papers [24, 38]. For example, consider the second variant. The root

of a priority tree stores the point with the highest priority in p. All
the other points are then evenly split into two sets by the median of

their coordinates which recursively form the left and right subtrees.

The construction scans and copies O(n) points in O(logn) levels,
leading to O(n logn) reads and writes for the construction.

Many previous results on dynamic priority search trees use the

first variant because it allows for rotation-based updates. In this

paper, we discuss how to construct the second variant allowing

reconstruction-based updates, since it is a natural fit for our frame-

work. We also show that bulk updates can be done write-efficiently

in this variant. For the rest of this section, we discuss the second

variant of the priority tree.

The priority tree can be used to answer the 3-sided queries:

given a set of n points, report all points with coordinates in the

range [xL ,xR], and priority higher than yB . This can be done by

traversing the tree, skipping the subtrees whose coordinate range

do not overlap [xL ,xR], or where the priority in the root is lower

than yB . The cost of each query is O(ωk + logn) for an output of

size k [24].

6.2 The Post-Sorted Construction
For interval trees and priority search trees, the standard construc-

tion algorithms [23–25, 37, 38] require O(n logn) reads and writes,

even though the output is only of linear size. This section describes

algorithms for constructing them in an optimal linear number of

writes. Both algorithms first sort the input elements by their x-
coordinate in O(ωn + n logn) work and O(ω · polylog(n)) depth
using the write-efficient comparison sort described in the full ver-

sion of this paper [16]. We now describe how to build the trees

in O(n) reads and writes given the sorted input. For a range tree,

since the standard tree has O(n logn) size, the classic construction
algorithm is already optimal.

Interval Tree. After we sort all 2n coordinates of the endpoints,

we can first build a perfectly-balanced binary search tree on the

endpoints usingO(n) reads and writes andO(ω · polylog(n)) depth.
We now consider how to construct the inner tree of each tree node.

We create a lowest common ancestor (LCA) data structure on

the keys of the tree nodes that allows for constant time queries.

This can be constructed in O(n) reads/writes and O(ω · polylog(n))
depth [11, 35]. Each interval can then find the tree node that it

belongs to using an LCA query on its two endpoints. We then use

a radix sort on the n intervals. The key of an interval is a pair with

the first value being the index of the tree node that the interval

belongs to, and the second value being the index of the left endpoint

in the pre-sorted order. The sorted result gives the interval list for

each tree node sorted by left endpoints. We do the same for the

right endpoints. This step takes O(n) reads/writes overall. Finally,
we can construct the inner trees from the sorted intervals in O(n)
reads/writes across all tree nodes.

Parallelism is straightforward for all steps except for the radix

sort. The number of possible keys can beO(n2), and it is not known
how to radix sort keys from such a range work-efficiently and in

polylogarithmic depth. However, we can sort a range of O(n logn)
in O(ωn) expected work and O(ω · polylog(n)) depth whp [43].

Hence our goal is to limit the first value into a O(logn) range. We

note that given the left endpoint of an interval, there are only

log
2
(2n) possible locations for the tree node (on the tree path) of

this interval. Therefore instead of using the tree node as the first

value of the key, we use the level of the tree node, which is in the

range [1, . . . ,O(logn)]. By radix sorting these pairs, so we have the
sorted intervals (based on left or right endpoint) for each level. We

observe that the intervals of each tree node are consecutive in the

sorted interval list per level. This is because for tree nodes u1 and
u2 on the same level where u1 is to the left of u2, the endpoints of
u1’s intervals must all be to the left of u2’s intervals. Therefore, in
parallel we can find the first and the last intervals of each node

in the sorted list, and construct the inner tree of each node. Since

the intervals are already sorted based on the endpoints, we can

build inner trees in O(n) reads and writes and O(ω · polylog(n))
depth [12].

Priority Tree. In the original priority tree construction algorithm,

points are recursively split into sub-problems based on the median

at each node of the tree. This requires O(n) writes at each level

of the tree if we explicitly copy the nodes and pack out the root

node that is removed. To avoid explicit copying, since the points

are already pre-sorted, our write-efficient construction algorithm

passes indices determining the range of points belonging to a sub-

problem instead of actually passing the points themselves. To avoid

packing, we simply mark the position of the removed point in the

list as invalid, leaving a hole, and keep track of the number of valid

points in each sub-problem.

Our recursive construction algorithm works as follows. For a

tree node, we know the range of the points it represents, as well

as the number of valid points nv . We then pick the valid point

with the highest priority as the root, mark the point as invalid,

find the median among the valid points, and pass the ranges based

on the median and number of valid points (either ⌊(nv − 1)/2⌋ or
⌈(nv − 1)/2⌉) to the left and right sub-trees, which are recursively

constructed. The base case is when there is only one valid point

remaining, or when the number of holes is more than the valid

points. Since each node in the tree can only cause one hole, for every

range corresponding to a node, there are at most O(logn) holes.
Since the size of the small-memory is Ω(logn), when the number

of valid points is fewer than the number of holes, we can simply

load all of the valid points into the small-memory and construct

the sub-tree.

To efficiently implement this algorithm, we need to support three

queries on the input list: finding the root, finding the k-th element

in a range (e.g., the median), and deleting an element. All queries

and updates can be supported using a standard tournament tree

where each interior node maintains the minimum element and the

number of valid nodes within the subtree. With a careful analysis,

all queries and updates throughout the construction require linear

reads/writes overall. The details are provided in the full version of

this paper [16].

The parallel depth is O(ω · polylog(n))—the bottleneck lies in

removing the points. There are O(logn) levels in the priority tree

and it costsO(ω logn) for removing elements from the tournament

tree on each level. For the base cases, it takes linear writes overall to

load the points into the small-memory and linear writes to generate

all tree nodes. The depth is O(ω logn).
We summarize our result in this section in Theorem 6.1.

Theorem 6.1. An interval tree or a priority search tree can be
constructed with pre-sorted input in O(ωn) expected work and O(ω ·
polylog(n)) depth whp on the Asymmetric NP model.

6.3 Dynamic Updates using
Reconstruction-Based Rebalancing

Dynamic updates (insertions and deletions) are often supported

on augmented trees [23–25, 37, 38] and the goal of this section

is to support updates write-efficiently, at the cost of performing

extra reads to reduce the overall work. Traditionally, an insertion or

deletion costs O(logn) for interval trees and priority search trees,

and O(log2 n) for range trees. In the asymmetric setting, the work

is multiplied by ω. To reduce the overall work, we introduce an

approach to select a subset of tree nodes as critical nodes, and only

update the balance information of those nodes (the augmentations

are mostly unaffected). The selection of these critical nodes are done

by the α-labeling introduced in Section 6.3.1. Roughly speaking, for

each tree path from the root to a leaf node, we haveO(logα n) criti-
cal nodes marked such that the subtree weights of two consecutive

marked nodes differ by about a factor of α ≥ 2. By doing so, we

only need to update the balancing information in the critical nodes,

leading to fewer tree nodes modified in an update.

Arge et al. [4, 5] use a similar strategy to support dynamic up-

dates on augmented trees in the external-memory (EM) model, in

which a block of data can be transferred in unit cost [1]. They use

a B-tree instead of a binary tree, which leads to a shallower tree

structure and fewer memory accesses in the EMmodel. However, in

the Asymmetric NP model, modifying a block of data requires work

proportional to the block size, and directly using their approach

cannot reduce the overall work. Inspired by their approach, we

propose a simple approach to reduce the work of updates for the

Asymmetric NP model.

The main component of our approach is reconstruction-based
rebalancing using the α-labeling technique. We can always obtain

the sorted order via the tree structure, so when imbalance occurs,

we can afford to reconstruct the whole subtree in reads and writes

proportional to the subtree size and polylogarithmic depth. This

gives a unified approach for different augmented trees: interval

trees, priority search trees, and range trees.

We introduce the α-labeling idea in Section 6.3.1, the rebalancing
algorithm in Section 6.3.2, and its work analysis in Section 6.3.3.

We then discuss the maintenance of augmented values for different

applications in Section 6.3.4. We mention how to parallelize bulk

updates in Section 6.3.5 and in the full version of the paper [16].

6.3.1 α-Labeling. The goal of the α-labeling is to maintain the

balancing information at only a subset of tree nodes, the critical

nodes, such that the number of writes per update is reduced. Once

the augmented tree is constructed, we label the node as a critical

node if for some integer i ≥ 0, (1) its subtree weight is between 2α i

and 4α i − 2 (inclusive); or (2) its subtree weight is 2α i − 1 and its

sibling’s subtree weight is 2α i . All other nodes are secondary nodes.

As a special case, we always treat the root as a virtual critical

node, but it does not necessary satisfy the invariants of critical

nodes. Note that all leaf nodes are critical nodes in α-labeling since
they always have subtrees of weight 2. When we label a critical

node, we refer to its current subtree weight (which may change

after insertions/deletions) as its initial weight. Note that after the
augmented tree is constructed, we can find and mark the critical

nodes in O(n) reads/writes and O(ω logn) depth. After that, we
only maintain the subtree weights for these critical nodes, and use

their weights to balance the tree.

Fact 6.2. For a critical node A, 2α i − 1 ≤ |A| ≤ 4α i − 2 holds for
some integer i .

This fact directly follows the definition of the critical node.

For two critical nodes A and B, if A is B’s ancestor and there is

no other critical node on the tree path between them, we refer to B
as A’s critical child, and A as B’s critical parent. We define a critical
sibling accordingly.

We show the following lemma on the initial weights.

Lemma 6.3. For any two critical nodes A and B where A is B’s
critical parent, their initial weights satisfymax{(α/2)|B |, 2|B | − 1} ≤
|A| ≤ (2α + 1)|B |.

Proof. Based on Fact 6.2, we assume 2α i −1 ≤ |A| ≤ 4α i −2 and
2α j −1 ≤ |B | ≤ 4α j −2 for some integers i and j . We first show that

i = j + 1. It is easy to check that j cannot be larger than or equal to

i . Assume by contradiction that j < i − 1. With this assumption, we

will show that there exists an ancestor of B, which we refer to it asy,
which is a critical node. The existence of y contradicts the fact that

A is B’s critical parent. We will use the property that for any tree

node x the weight of its parent p(x) is 2|x | − 1 ≤ |p(x)| ≤ 2|x | + 1.
Assume that B does not have such an ancestor y. Let z be the

ancestor of B with weight closest to but no more than 2α i−1. We

consider two cases: (a) |z | ≤ 2α i−1 − 2 and (b) |z | = 2α i−1 − 1. In
case (a) z’s parent p(z) has weight at most 2|z |+1 = 4α i−1−3. |p(z)|
cannot be less than 2α i−1 by definition of z, and soy = p(z), leading
to a contradiction. In case (b), z’s sibling does not have weight 2α i−1,
otherwisey = z. However, then |p(z)| ≤ 2|z | = 4α i−1−2, and either
z is not the ancestor with weight closest to 2α i−1 or y = p(z).

Given i = j + 1, we have (α/2)|B | ≤ |A| ≤ (2α + 1)|B | (by
plugging in 2α i − 1 ≤ |A| ≤ 4α i − 2 and 2α i−1 − 1 ≤ |B | ≤ 4α i−1 −
2). Furthermore, since A is B’s ancestor, we have 2|B | − 1 ≤ |A|.
Combining the results proves the lemma. □

6.3.2 Rebalancing Algorithm based on α -Labeling. We now con-

sider insertions and deletions on an augmented tree. Maintaining

the augmented values on the tree are independent of our α-labeling
technique, and differs slightly for each of the three tree structures.

We will further discuss how to maintain augmented values in Sec-

tion 6.3.4.

We note that deletions can be handled by marking the deleted

objects without actually applying the deletion, and reconstructing

the whole subtree once a constant fraction of the objects is deleted.

Therefore in this section, we first focus on the insertions only. We

analyze single insertions here, and discuss bulk insertions in the

full version of the paper [16]. Once the subtree weight of a critical

node A reaches twice the initial weight s , we reconstruct the whole
subtree, label the critical nodes within the subtree, and recalculate

the initial weights of the new critical nodes. An exception here is

that, if s ≤ 4α i − 2 and 2α i+1 − 1 ≤ 2s for a certain i , we do not

mark the new root since otherwise it violates the bound stated in

Lemma 6.4 (see more details in Section 6.3.3) withA’s critical parent.
After this reconstruction, A’s original critical parent gets one extra
critical child, and the two affected children now have initial weights

the same asA’s initial weight. If imbalance occurs at multiple levels,

we reconstruct the topmost tree node. An illustration of this process

is shown in Figure 3.

We can directly apply the algorithms in Section 6.2 to reconstruct

a subtree as long as we have the sorted order of the (end)points

in this subtree. For interval and range trees, we can acquire the

sorted order by traversing the subtree. using linear work andO(ω ·
polylog(n)) depth [8, 46]. For priority trees, since the tree nodes are

not stored in-order, we need to insert all interior nodes into the tree

in a bottom-up order based on their coordinates (without applying

rebalancing) to get the total order on coordinates of all points (the

details and cost analysis can be found in the full version of this

(a) (b) (c)

Figure 3: An illustration of rebalancing based on α-labeling.
The critical nodes are shaded. The case after construction is
shown in (a) with solid borders. After some insertions, the
size of one of the subtrees grows to twice its initial weight
(dashed lines in (a)), so the algorithm reconstructs the sub-
tree, as shown in (b). As we keep inserting new nodes along
the left spine, the tree will look like what is shown in (c),
but Lemma 6.4 guarantees that the subtree of the topmost
critical node will be reconstructed before it gets more than
4α + 2 critical children. The lemma also guarantees that on
the path from a critical node to any of its critical children,
there can be at most 4α − 1 secondary nodes.

paper [16]). After we have the sorted order, a subtree of weight n
can be constructed in O(ωn) work and O(ω · polylog(n)) depth.

As mentioned, we always treat the root as a virtual critical node,

but it does not necessary satisfy the invariants of critical nodes. By

doing so, once the weight of the whole tree doubles, we reconstruct

the entire tree. We need Ω(n) insertions for one reconstruction

on the root (there can be deletions). The cost for reconstruction

is O(ωn) for interval trees and priority trees, and O(ωn logα n) for
range trees (shown in Section 6.3.4). The amortized cost is of a

lower order compared to the update cost shown in Theorem 6.8.

6.3.3 Cost Analysis of the Rebalancing. To show the rebalancing

cost, we first prove some properties about our dynamic augmented

trees.

Lemma 6.4. In a dynamic augmented tree with α -labeling, we have
max{(α/4)|B |, (3/2)|B | − 1} ≤ |A| ≤ (4α + 2)|B | for any two critical
nodes A and B where A is B’s critical parent.

Proof. For any critical node A in the tree, the subtree weight

of its critical child B can grow up to a factor of 2 of B’s initial
weight, after which the subtree is reconstructed to two new critical

nodes with the same initial weight of B. A’s weight can grow up

to a factor of 2 of A’s initial weight, without affecting B’s weight
(i.e., all insertions occur in A’s other critical children besides B).
Combining these observations with the result in Lemma 6.3 shows

this lemma except for the (3/2)|B | − 1 ≤ |A| part. Originally we

have 2|B | − 1 ≤ |A| after the previous reconstruction. |A| grows
together when |B | grows, and right before the reconstruction of B
we have (3/2)|B | − 1 ≤ |A|. □

Lemma 6.4 shows that each critical node has at most 4α + 2

critical children, and so that there are at most 4n + 1 secondary

nodes to connect them. This leads to the following corollary.

Corollary 6.5. The length of the path from a critical node to its
critical parent is at most 4α + 1.

Combining Lemma 6.4 and Corollary 6.5 gives the following

result.

Corollary 6.6. For a leaf node in a tree with α -labeling, the tree
path to the root contains O(logα n) critical nodes and O(α logα n)
nodes.

Corollary 6.6 shows the number of reads during locating a node

in an augmented tree, and the number of critical nodes on that

path.

With these results, we now analyze the cost of rebalancing for

each insertion. For a critical node with initial weightW , we need

to insert at least anotherW new nodes into this subtree before the

next reconstruction of this critical node. Theorem 6.1 shows that

the amortized cost for each insertion in this subtree is therefore

O(ω) on this node. Based on Corollary 6.6, the amortized cost for

each insertion contains O(logα n) writes and O(α logα n) reads. In
total, the work per insertion is O((α + ω) logα n), since we need to

traverse O(α logα n) tree nodes, update O(logα n) subtree weights,
and amortize O(ω logα n) work for reconstructions.

We note that any interleaving insertions can only reduce the

amortized cost for deletions. Therefore, both the algorithm and the

bound can be extended to any interleaving sequence of insertions

and deletions. Altogether, we have the following result, which may

be of independent interest.

Theorem 6.7. Using reconstruction-based rebalancing based on
the α -labeling technique, the amortized cost of each update (insertion
or deletion) to maintain the balancing information on a tree of size n
is O((ω + α) logα n).

6.3.4 Handling Augmented Values. Since the underlying tree

structure is still binary, minor changes to the trees are required for

different augmentations.

Interval trees. We do not need any changes for the interval tree.

Since we never apply rotations, we directly insert/delete the interval

in the associated inner tree with a cost of O(logn + ω).

Range trees. For the range tree, we only keep the inner trees

for the critical nodes. As such, the overall augmentation weight

(i.e., overall weights of all inner trees) is O(n logα n). For each up-

date, we insert/delete this element in O(logα n) inner trees (Corol-
lary 6.6), and the overall cost is O((logn + ω) logα n). Then each

query may look into no more than O(α logα n) inner trees each
requiring O(logn) work for a 1D range query. The overall cost for

a query is therefore O(ωk + α logα n logn).

Priority trees. For insertions on priority trees, we search its coor-

dinate in the tree and put it where the current tree node is of lower

priority than the new point. The old subtree root is then recursively

inserted to one of its subtrees. The cost can be as expensive as

O(ωα logα n) when a point with higher priority than all tree nodes

is inserted. To address this, points are only stored in the critical

nodes, and the secondary nodes only partition the range, without

holding points as augmented values. This can be done by slightly

modifying the construction algorithm in Section 6.2. During the

construction, once the current node is a secondary node, we only

partition the range, but do not find the node with the highest pri-

ority. Since all leaf nodes are critical, the tree size is affected by

at most a factor of 2. With this approach, each insertion modifies

at most O(logα n) nodes, and so the extra work per insertion for

maintaining augmented data is O((α + ω) logα n). A deletion on

priority trees can be implemented symmetrically, and can lead to

cascading promotions of the points. Once the promotions occur,

we leave a dummy node in the original place of the last promoted

point, so that all of the subtree sizes remain unchanged (and the

tree is reconstructed once half one the nodes are dummy). The cost

of a deletion is also O((α + ω) logα n).
Combining the results above gives the following theorem.

Theorem 6.8. Given any integer α ≥ 2, an update on an interval
or priority search tree requires O((ω + α) logα n) amortized work
and a query costs O(ωk + α logα n); for a 2D range tree, the query
and amortized update cost is O((α logn + ω) logα n) and O(ωk +
α logα n logn).

6.3.5 Bulk Updates. One of the benefits of the reconstruction-
based approach is that bulk updates on our augmented trees can

be directly supported. In this case we need to change the inner

trees to be treaps to support efficient bulk insertions/deletions [12,

49, 50]. We discuss the details bulk updates in the full version of

this paper [16]. The overall conclusion is that, given a bulk update

of sizem, we can process it in parallel using the same amount of

work as applying the updates sequentially, and inO(ω · polylog(n))
depth.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-1408940, CCF-

1533858, and CCF-1629444.

REFERENCES
[1] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9), 1988.

[2] D. Ajwani, N. Sitchinava, and N. Zeh. Geometric algorithms for private-cache

chip multiprocessors. In ESA, 2010.
[3] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. CRC Press,

2008.

[4] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and

optimal range search indexing. In PODS, 1999.
[5] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM

Journal on Computing, 32(6), 2003.
[6] M. Atallah and M. Goodrich. Deterministic parallel computational geometry. In

Synthesis of Parallel Algorithms, pages 497–536. Morgan Kaufmann, 1993.

[7] A. Ben-Aroya and S. Toledo. Competitive analysis of flash-memory algorithms.

In ESA, 2006.
[8] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,

and J. Shun. Parallel algorithms for asymmetric read-write costs. In SPAA, 2016.
[9] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9), 1975.

[10] J. L. Bentley. Decomposable searching problems. Information Processing Letters,
8(5), 1979.

[11] O. Berkman and U. Vishkin. Recursive *-tree parallel data-structure. In FOCS,
1989.

[12] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In

SPAA, 2016.
[13] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Sorting with

asymmetric read and write costs. In SPAA, 2015.
[14] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun. Efficient algorithms

with asymmetric read and write costs. In ESA, 2016.
[15] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental

algorithms. In SPAA, 2016.
[16] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and

data structures for computational geometry. arXiv preprint:1805.05592, 2018.

[17] G. E. Blelloch, J. C. Hardwick, G. L. Miller, and D. Talmor. Design and imple-

mentation of a practical parallel Delaunay algorithm. Algorithmica, 24(3-4),
1999.

[18] J.-D. Boissonnat andM. Teillaud. On the randomized construction of the delaunay

tree. Theoretical Computer Science, 112(2), 1993.
[19] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and

H. V. Simhadri. Write-avoiding algorithms. In IPDPS, 2016.
[20] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms for phase

change memory. In CIDR, 2011.
[21] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational

geometry, II. Discrete & Computational Geometry, 4(5), 1989.
[22] R. Cole. Parallel merge sort. SIAM J. Comput., 17(4), 1988.
[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(3rd edition). MIT Press, 2009.

[24] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geom-
etry: Algorithms and Applications. Springer-Verlag, 2008.

[25] H. Edelsbrunner. Dynamic data structures for orthogonal intersection queries. Tech-
nische Universität Graz/Forschungszentrum Graz. Institut für Informationsver-

arbeitung, 1980.

[26] D. Eppstein, M. T. Goodrich, M. Mitzenmacher, and P. Pszona. Wear minimization

for cuckoo hashing: How not to throw a lot of eggs into one basket. In SEA, 2014.
[27] E. Gal and S. Toledo. Algorithms and data structures for flash memories. ACM

Computing Surveys, 37(2), 2005.
[28] M. T. Goodrich. Finding the convex hull of a sorted point set in parallel. Infor-

mation Processing Letters, 26(4), 1987.
[29] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via

approximate agglomerative clustering. In High-Performance Graphics Conference,
2013.

[30] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In SPAA,
2015.

[31] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of

Delaunay and Voronoi diagrams. Algorithmica, 7(4):381–413, 1992.
[32] A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD,

1984.

[33] S. Har-Peled. Geometric approximation algorithms, volume 173. American Math-

ematical Society, 2011.

[34] R. Jacob and N. Sitchinava. Lower bounds in the asymmetric external memory

model. In SPAA, 2017.
[35] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[36] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-trees:
Theory and Applications. Springer Science & Business Media, 2010.

[37] E. M. McCreight. Efficient algorithms for enumerating intersecting intervals and

rectangles. Technical report, 1980.

[38] E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2), 1985.
[39] K. Mulmuley. Computational geometry–an introduction through randomized

algorithms. Prentice Hall, 1994.
[40] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM

journal on Computing, 2(1), 1973.
[41] M. H. Overmars. The design of dynamic data structures, volume 156. Springer

Science & Business Media, 1983.

[42] H. Park and K. Shim. FAST: Flash-aware external sorting for mobile database

systems. Journal of Systems and Software, 82(8), 2009.
[43] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized

parallel sorting algorithms. SIAM J. Comput., 18(3), 1989.
[44] J. H. Reif and S. Sen. Optimal randomized parallel algorithms for computational

geometry. Algorithmica, 7(1-6):91–117, 1992.
[45] R. Seidel. Backwards analysis of randomized geometric algorithms. In New

Trends in Discrete and Computational Geometry. 1993.
[46] J. Shun, Y. Gu, G. Blelloch, J. Fineman, and P. Gibbons. Sequential random

permutation, list contraction and tree contraction are highly parallel. In SODA,
2015.

[47] N. Sitchinava. Computational geometry in the parallel external memory model.

SIGSPATIAL Special, 4(2), 2012.
[48] N. Sitchinava and N. Zeh. A parallel buffer tree. In SPAA, 2012.
[49] Y. Sun and G. E. Blelloch. Parallel range and segment queries with augmented

maps. arXiv preprint:1803.08621, 2018.
[50] Y. Sun, D. Ferizovic, and G. E. Blelloch. PAM: Parallel augmented maps. In PPoPP,

2018.

[51] R. E. Tarjan. Updating a balanced search tree in O (1) rotations. Information
Processing Letters, 16(5), 1983.

[52] S. D. Viglas. Adapting the B
+
-tree for asymmetric I/O. In ADBIS, 2012.

[53] S. D. Viglas. Write-limited sorts and joins for persistent memory. PVLDB, 7(5),
2014.

[54] I. Wald, S. Boulos, and P. Shirley. Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Transactions on Graphics (TOG), 26(1), 2007.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Computation Models
	2.2 Write-Efficient Geometric Algorithms

	3 General Techniques for Incremental Algorithms
	3.1 DAG Tracing
	3.2 The Prefix-Doubling Approach

	4 Planar Delaunay Triangulation
	5 Space-Partitioning Data Structures
	5.1 k-d Tree Construction and Queries
	5.2 k-d Tree Dynamic Updates

	6 Augmented Trees
	6.1 Preliminaries and Previous Work
	6.2 The Post-Sorted Construction
	6.3 Dynamic Updates using Reconstruction-Based Rebalancing

	References

